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The Mullins-Sekerka linear stability analysis of a perturbation on a growing interface is
extended to take into account concentration effects. The concentration dependence is included
by considering the surrounding particles as an effective medium in the form of a sink term

[x — «®c] in the diffusion equation. This problem is analyzed without the effects of surface
tension for d = 2 and d = 3 and with surface tension for d = 3. The stability analysis is also
applied to two particles in isolation as well as V particles arranged in a regular planar polygon
to study directly the competition for the diffusing species between the N growing spheres. We
conclude that the Mullins—Sekerka criterion for growth or decay of an instability is only valid

for an isolated particle and that in the presence of an effective medium, the surrounding
particles have the effect of increasing an otherwise negative growth rate to a positive value.

I. INTRODUCTION

Many examples of spontaneous pattern formation in na-
ture are found in directional solidification or crystal growth.
There are two main approaches to studying dendritic
growth, the type of tree-like branching observed in the
growth of alloy crystals and snowflakes.

Computer simulations of the type performed by Mea-
kin' and Witten and Sander? create aggregates with a com-
plex random dendritic structure called fractals.> Although
surface tension and heat of aggregation are known to be im-
portant in understanding solidification, the computer simu-
lations do not take these effects into account. For example, in
diffusion limited aggregation,'? a seed particle is placed at a
lattice site, a random walk is released isotropically from a
long distance, and when it reaches a nearest neighbor site, it
becomes part of the growing cluster. Once the particle sticks
to the cluster, it cannot rearrange in any way.

Another approach to studying pattern formation is to
consider an advancing unfaceted solidification front and ex-
amine its stability properties. The systems studied are those
in which the particle grows by a diffusion controlled process.
Convective effects are ignored. Langer,* who recently mod-
eled dendritic solidification including interfacial kinetics,
crystalline anisotropy, and a local approximation for the dy-
namics of the thermal diffusion field, has reviewed this sub-

ject at length.’

Mullins and Sekerka® (MS) were the first to show that
the competition between heat flow or diffusion and the sur-
face tension is the underlying mechanism which leads to in-
stability in the growth of the interface. They employed a
linear stability analysis to determine the conditions of
growth or decay of a spherical harmonic perturbation on the
surface of a spherical particle undergoing diffusion con-
trolled growth. They assumed local equilibrium at the inter-
face and steady state, so that the concentration field obeyed
Laplace’s equation. Their results show that for all spherical

) Present address: Physical Sciences, Inc., P.O. Box 3100, Andover, Massa-
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harmonics greater than (/ = 1) there is a certain critical ra-
dius R,: for R > R_, the spherical particle grows, and for
R <R_, the spherical particle shrinks.

Goldstein’ has studied interparticle interference effects
in diffusion controlled growth with and without surface ten-
sion. He derives a criterion for the mean number density of
precipitating particles which assumes that morphological in-
stability with respect to a harmonic perturbation of degree /
or higher will never be attained in the course of a precipita-
tion process. He obtains an expression for the rate of growth
of the / th harmonic of a spherical perturbation in the pres-
ence of a nearest neighbor. This implies that the initiation of
a harmonic perturbation does not require an adventitious
fluctuation to start it off. Goldstein’s equations are strictly
deterministic compared to the MS treatment, where the
equations are deterministic, but there is an assumed random
event to produce the initial shape distortion (in the form of a
spherical harmonic).

The purpose of this work is to investigate the concentra-
tion dependence of the Mullins—Sekerka (MS) linear stabil-
ity analysis of a perturbation on a growing interface. This is
accomplished by replacing Laplace’s equation with a pheno-
menological steady state transport equation® that has a sink
term which depends on the density p of the surrounding
particles qualitatively treated as an effective medium.

In the following section, we review the Mullins—Sekerka
result without surface tension for both two and three dimen-
sions. We derive a steady state growth law for the “bumps”
or perturbations on the growing spherical surface taking into
account concentration effects in the form of a sink term in
the diffusion equation. We also present our result for the
growth law including surface tension for three dimensions
and compare it to the MS result. In Sec. III, we derive a
growth law for the perturbations on a sphere, without sur-
face tension, using a microscopic approach instead of an ef-
fective medium approach: We consider two particles in iso-
lation as well as n particles arranged in a regular planar
polygon to study directly the competition for the diffusing
species between the n growing spheres. In the last section, we
discuss the results.
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Il. PHENOMENOLOGICAL APPROACH

A. MS result without surface tension in two and three
dimensions

In three dimensions, Mullins and Sekerka® obtained a
growth law as follows. They considered an equation for the
distorted sphere of initial radius R:

r(0,¢) =R +6,Y,,(0,4), (2.1)
where the Y, ’s are the spherical harmonics of order /,m and
& is small; powers higher than the first will be neglected.

The concentration field ¢(7,6,4) obeys Laplace’s equa-
tion:

Vc(r,6,6) =0 2.2)
and in general has the form
A B/, Y,
0,4) =c, +— 2.3
c(rb,¢) =c +r+Z g (2.3)
when subject to the boundary condition
c(r6,8)|,-, =c.. (2.4)

At the surface of the now “bumpy” sphere, Eq. (2.4) be-
comes

A

c(r,9, )r= =¢s=¢, +——
¢ I R+ 6,Y,, 5 R +51Y1m

Bﬁl lem

_—, 2.5
®Rt5Y,, 1 &

where ¢, = equilibrium value of ¢ at the interface with the
precipitate. Equation (2.5) is expanded to first order in §,.
Since the expansion in harmonics is unique, 4 and B are
easily determined by equating coefficients of like harmonics
so that the concentration becomes

c(r6,9) = (c,, —cs)( Co
w —Cs

(2.6)

The velocity v describes the diffusion controlled growth
of the interface

v=__.D__(i)
(C—c,) \On
D

C—c¢

5

r=R+567Y,,

1 61 Y, Im
(c, Cs)[R+(1 D R2 ] (2.7)
Here, D = diffusion coefficient of solute, C = fixed concen-
tration of solute in the precipitate, and dc/dn = normal de-
rivative of solute concentration. Since the tangent plane of
the precipitate particle deviates only slightly from the tan-
gent plane of the original sphere, the velocity can also be
obtained by taking the radial derivative
_4R a5,
=t Yim dt’
Continuity requires Egs. (2.7) and (2.8) to be identical and
we obtain expressions for the diffusion controlled growth
law R and for ,, the rate of growth of the amplitude of the
spherical harmonic,

(2.8)
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R =M, (2.9)
(C_cs )R
, D(c, —c,)(I—-1)5,
= = . 2.10
5, (C—c)R? ( )

Thus, when the bulk concentration is higher than the con-
centration at the interface, both the sphere and the bump
grow; otherwise, both the sphere and the bump will dissolve.
This is the simplest possible expression for &,/8, since sur-
face tension is not included; it guarantees the growth of
bumps on the sphere for /> 1.

We can follow a similar procedure to derive expressions
for R and 4, in two dimensions. However, since the general
solution of the steady state diffusion equation in a cylindri-
cally symmetric two-dimensional system is

c(ry=A+Blnr, (2.11)
the boundary condition ¢(r,8)|,_ , =c, cannot be satis-
fied. We introduce a cutoff distance R, which serves as an

outer limit at which the boundary condition is satisfied. Us-
ing this approach,® which will be justified later, we find

R=—Dlcx —c:) (2.12)
(C—c¢;)RIn(R,/R)
and
8 - D(Cm _cs)al
"7 (C=¢,)R*In(R,/R)
(R/R)" + (R/R))’
X[—1+l R R R (2.13)

B. Concentration effects on the MS instability without
surface tension in two and three dimensions

Concentration effects on one particle growth are includ-
ed by considering the surrounding particles as an effective
medium. A phenomenological steady state transport equa-
tion of the form

DV —kc=0 (2.14)

is adopted. A heuristic argument for the sink term follows.

Consider a single particle undergoing diffusion con-
trolled growth. The concentration field obeys Laplace’s
equation (2.2) and has the form

c(ry=c_ [1—R/r] (2.15)

with the absorbing boundary condition at the surface of the
particle c(R) = 0 and the usual boundary condition at infin-
ity c( ) = ¢, . Then the total flux into the particle is

Jr = 47R*DVc|,_ =47RDc,, . (2.16)

If instead of one absorbing particle, there were many such
sinks with an average number density p, then the bulk con-
centration ¢, would obey the equation

[ = —ke_,

ot
where k = 47RDp. Therefore, a sink term of the form — k¢
(where c is a local concentration) would act as an “effective
medium” in the steady state one particle diffusion equation.
A more detailed microscopic justification for a mean field

(2:17)
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reaction—diffusion equation of this form has been presented
by many authors including Felderhof and Deutch.®

We define a new parameter, the screening length x™ ! as
follows:
K=k/D. (2.18)

At low density, the screening length « ' is large and at high
density, x~! is small. The steady state transport equation
(2.14) becomes

Vi —k*c=0. 2.19)
In three dimensions, a general solution for the above Helm-

holtz equation, assuming the surface of the bumpy sphere is
perfectly absorbing, i.e., ¢, =0, is

c(z,6,6) =c, +\n/2z [AKl/z(z) + BI,,(z)

+ 2 Y, (6.8 [CK,12(2)

I>1

+Dd, 1y (2)]], (2.20)

where z = kr and the K, 1, I}, 1, () are the modified
spherical Bessel functions of the third kind and of fractional
order.!! Since the outer boundary condition requires c—c_,
as r— w0, the I, ,,, (2) solutions are discarded. The inner
boundary condition requires ¢ =0 at z=xR + k6, Y ,,,
the surface of the sphere. To first order in §, one finds

—2c_ &R
T

A=

and
_ c.0. (1/R + k)
Va/(2kR)K, , ,,, (kR)

The other C,’s are all zero and

K,/2(2) =V7/(2z) exp( —2).
Since the velocity v obeys
yo D e
C oz
as well as Eq. (2.8), we find
Dc
R {1 +«R},
_Dc6,
~ CR?
[LK. 12 (kR) + (L + DK, . 3, (kR)]
(2L + DK, , 1, (kR) )

C, = (2.21)

(2.22)

R=

(2.23)

L

[—2KR—2—K2R2+(KR+K2R2)

(2.24)

In two dimensions, a general solution to Eq. (2.19), assum-
ingc, =0, is ‘

Ky(z) Iy(z)

9) =A -
c(z0) °[KO(KR,) I,(xkR,)

Jre-

— Im (Z) eiam
1, (kR,)

b

K, (2)
+ Y B, o
mz>:1 [ Km (KRI)

(2.25)
where z = «R and the K, (2), I,, (z) are the modified Bessel

functions of integer order."! In order to satisfy steady state
conditions in two dimensions, the solution (2.25) was re-
quired to approach the bulk concentration c,, at the cutoff
distance R,. The inner boundary condition requires ¢ = 0 at
r = kR + k8, ¢™9, the surface of the absorbing sink. There-
fore, to first order in &, , the coefficients are

—c
A0= 2 )
K,(«R) _ I (kR)
Ky («R,) I;(xR,)
K,(kR)  I,(xR)
L —
K,(«R,) I,(kR,))
B, = 0 1 0 1
- K,(kR)  I,(kR) (226)

K,(kR,) I;(xR,)

All other B,,’s are zero.
The rates of growth of the sphere and the instability 6, are
derived in the usual manner

I,(«kR) , K,(xR)
R=DeakR L)(kR,) Ko(kR,) , (2.27)
" CR  KykR) _ L(xkR)
Ko(kR,)  Io(«kR,)
5, = Dxk§, [AM[KO(KR) + K, (kR)
2C Ko(kR))
_ Iy(xR) + L,(xR)
I,(kR,)
_B_L K, _(«R) + K, (xR)
6[, KL (KRI)
I, _(kR) +1I,,,(kR) ] (2.28)
I, (kR,)

Since R, is the radius for which c—c¢_ , kR, is large and the
ratios x = [Ky(kR,)1/[1(«R,)] and y=[K_(kR)]/
[Z. (xR,)] are very small. Equations (2.27) and (2.28) can
be rewritten in terms of x and y and these terms can be ne-
glected such that

R= Dc_ kR K,(kR)

, (2.29a)
CR K,(«xR)
SL =DK2R zcw 5L
2CR?
% _I_Kz(KR) K, (xR)
K,(kR) - Ky,(«kR)
Ki_R) + K, (RR) | (2.29b)
K, («R)

It is clear from Eq. (2.23) that the rate of growth R of
the sphere in three dimensions is linear with R. For two
dimensions R is also linear with «R. This result is, not sur-
prisingly, in agreement with the simple case of concentration
effects on a smooth growing sphere: The growth rate of a
smooth growing sphere can easily be derived and is identical
to Eq. (2.27) for d = 2 and to Eq. (2.23) for d = 3. There-
fore, the overall rate of growth of the sphere remains the
same whether the sphere is bumpy or smooth. In Figs. 1 and
2, F(delta) = &8, /[8, Dc, /(CR ?)] is plotted as a function
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F (delta)

-

kR

FIG. 1. F(delta) = 4, /[6,Dc_ /(CR?)] [Eq. (2.29b)] is plotted vs the
dimensionless variable kR for L =2, 3 (d = 2).

of kR for different values of L and d = 2 and 3, respectively.
The function F(delta) increases linearly at first but then
quickly reaches a plateau which is different for different L.

In the limit of very large «R in three dimensions, we find
that F(delta) ~ — xR for L = 2; this implies that as the
number density p in the square of the inverse screening
length «*> = 47Rp increases , there is more competition
between the sinks, and the bumps not only stop growing but
actually shrink. However, in this same limit of large «R, the
overall growth rate R is proportional to kR and the sphere
grows with p. For moderate screening 0 <«R < 6, both the
sphere and its bumps grow with the screening parameter «R.
The effect of concentration on the rate coefficient was inves-
tigated previously'®'?: This local rate coefficient was found
to increase with sink number density. In a system of static
sinks reacting with diffusing molecules, one would expect
the competition for molecules between the sinks tolead to a
decrease in the total rate of reaction relative to independent
sinks.

When Figs. 1 and 2 are compared, it is evident that
F(delta) behaves very similarly in two and three dimen-
sions; for example, the L = 2 curve in three dimensions is the
same as the L = 2 curve in two dimensions shifted by a con-
stant equal to 0.6. The cutoff distance R, in the two-dimen-
sional case is not significant.

<R

FIG. 2. F(delta) =8, /[6, Dcwo/(CR?)] [Eq. (2.24)] is plotted vs the
dimensionless variable kR for L = 2,3,4,5 (d = 3).

0.5 43 T L I |
R=1.4x10"5
0.0/ ——————— eSS vl =y
~—~—~ . T ——
_ ‘/-"‘ "‘-\_\ \\\\L=2 '{
o V T~ -
= _ ~. =3 ~
%—0'5— //- T \_ —1
- ~.
w / =~ L=4 ™~
1.0 \\
~
L=6 \
-1.5 L 1 1 1
(o) 2 49 6 8 10
xR

FIG. 3. F(delta) =&, /[6,Dc,/(CR?)] with surface tension effects
(d = 3) [Eq. (2.30)] is plotted vs kR for L =2,3,4,5and R = 1.4X 1073
cm.

The limit of large R,/R can be taken in Eqs. (2.27) and
(2.28) to obtain expressions for R and F(delta) which are
independent of R, [see Egs. (2.29a) and (2.29b) ]. One finds
that R and F(delta) behave qualitatively the same for both
d=2andd =3,

C. Concentration effects on MS instability with surface
tension in 3D

The effects of surface tension are included in the d = 3
case of the previous section according to the MS approach.®
The Helmholtz equation (2.19) now obeys the following
boundary conditions:

c(z= o) =0,
clz=kR+k8; Y, (0,4)] = ¢, =co+ ¢, pG,

where ¢, = equilibrium value of ¢ at a flat interface.
G = mean curvature.
I'p = yQ2/RT =the capillarity constant (typically
', = 1077 cm) in which 7 is the interfacial free energy,
Q) the increment of precipitate volume per mole of added
solute, R the gas constant, and 7" the absolute tempera-
ture.

The result of this calculation is simply

0.75 T T T T
d=3 s
R=4.4 x 10 _————
—
0.50( - . . L=5 =g
G 4 L=4 "=~
] 025} -~ T — ]
~ /, L=3 b
™ f o e
Lt=2 ]
0.00
-0.25 1 I 1 |
o 2 4 6 8 10
kR

FIG. 4. F(delta) =4, /[5, Dc,/(CR?)] with surface tension effects
(d = 3), Eq. (2.30), is plotted vs xR for L =2,3,4,5and R =4.4%x10~%
cm.

J. Chem. Phys., Vol. 86, No. 12, 15 June 1987
Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



A. A. Rigos and J. M. Deutch: Mullins-Sekerka instability 7123

5. Dcod; {(1 2, ¢,
5L Rz(C—CR)

+—I—{——-——)(2KR +&°R*+2)

Co

kR 21‘D coc)
—|r, = +2 L-—1+(1+————
[ >R (L +2)( ) R o

X (kR + kR 2)]

LK, ,,(kR)+ (L+1)KL+3/2(KR)} (2.30)
(2L + YK, . 1,2 (kR) ’ ‘
. D(c, —cR)( 1)
R=""= "R’/ —), 2.31
€ —en) K+R ( )

where

2r . .
cr = ¢l 1 + =2 | = concentration on the undistorted
R

sphere.
It is easy to show, for each L, that as «—0, Eq. (2.30) be-
comes the MS result:

b, _ Dey(L—1) [€e —Co
8, (C—cg)R? o

r
—-Rﬂ[(L+1)(L+2)+2]]. (2.32)

For L =1, 6, /5, is zero.There is a critical radius R, for
which Eq. (2.32) is zero:

(L+D(L+2)+2]T,
(c,/co) — 1 ’

ForR>R,, 8, /8, is positive and the perturbations grow;
forR <R_,8; /6, is negative and the perturbations decay in
the zero xR limit. In Figs. 3 and 4, F(delta) = 6, /{6, Dcy/
[R2(C — cg )1} is plotted vs the dimensionless variable kR
which is a measure of the screening effect for different values
of L(L =2,3,4,5). R has been chosen to equal R, (L = 2)
which is 14T, /(¢ /¢y — 1) ~1.4X 107> cm in Fig. 3 and
R.(L=5) =44X10"°cmin Fig. 4.

Thus, for R = 1.4 X 1075 ¢m, the L = 2 curve is zero at
«R =0 and the curves for higher L’s are all negative at
xR =0 in agreement with the results of Mullins and Se-
kerka.® However, as the parameter xR increases, some of the
growth curves$, /{8, Dco/[ (C — cg )R *]} changesign. As
R is increased to R, (L =5)=4.4X107° cm, all four
curves are positive. For small values of R(~1.4X 10~3cm)
the effect of including the surface tension is to change the
growth rate of the bumps from the simpler case of concentra-
tion effects in d = 3 (see Fig. 2). The growth rate of some
harmonics will be positive at first, then as kR increases
further, it will become negative. Other harmonics will have
negative growth rates for small kR, positive growth rates for
intermediate «R, and then again negative growth rates for
very large kR. Without the effect of surface tension, the gra-
dient effect dominates and the bumps grow; however, for
very large kR ( > 10), the concentration effect kicks in and
the bumps shrink. In this section, we have seen that intro-
ducing surface tension rescales this behavior into a narrower
regime of kR values: 8, /5, reaches a maximum at smaller
«R(~2) and has a negative slope at xR = 10. This occurs
because, for small kR, the gradient effect dominates and the

R, = (2.33)

bumps grow while, for large values of kR (~10) the capil-
lary effect kicks in and the bumps start to shrink. However,
the growth rate of the sphere R is not affected much by the
surface tension [cf. Egs. (2.23) and (2.31)] and increases
linearly with «R.

1. MICROSCOPIC APPROACH
A. Two particles

The concentration dependence of this diffusion con-
trolled process, which in the previous sections is included
phenomenologically through the — «”c term, physically
arises from the competition of the diffusing species among
many growing spheres: The many surrounding particles ab-
sorb some of the diffusing species before it reaches the cen-
tral particle.

In this section and the next, we examine the growth of
not one but two or more particles. The net effect of this mod-
el of competition is the same: reduction of the effective rate
coefficient below the value obtained from N independent
sinks. For two particles, the competition between the grow-
ing spheres of radius R separated by a distance @ must have
the form'"!?

c(r)=cw+A[ 1,1 ]
[r—r| |r—r

> 1 1
+ AP[ + ]
2P e T
(3.1)

which satisfies Laplace’s equation (2.2). For convenience,
we chooser =0 and r, = (a,0,¢ =0).

Expression (3.1) satisfies the outer boundary condition,
c—c, as r—ow. The inner boundary condition
¢(R + 6, P; ) = 0 determines the coefficients 4 and 4; . To
first orderin 8, ,

c. R

14+R/a’
—c. 6.
R[1+R/a][1/RE+1 + 1/a* ']

(3.2)

AL

All other 4,’s are zero. In determining the coefficients 4 and
A, , we assume R <a, otherwise the spheres will overlap.

The flux dc/3r evaluated at r = R + 8, P, to first order
in §, and for R <a is

9 _e [ 1 ( _MLPL)
orlr—r+s.p, “IR[14+ (R/a)] R
+ S, P (L+1) }
RZI[1+ (R/a)][1+ (R /a)t*1]
(3.3)

Therefore, the overall rate of growth of the sphere and the
rate of growth of the perturbation obey

S _ Dc,, [_2 L+1 ]
5, R*C(1+R/a) 1+ (R/a)E+)
(3.4)
. Dc
R=2f= [14+R/a]" N 3.5
Re [1+R/a] (3.5)
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N=2 _ PR
/’/“/ L=5
3 - —~
]
s |
gz/' -
w /", L=3
i [ -
//"""'_ L=2
0 ] ] 1 I
2 4 6 8 10 12
ao/R

FIG. 5. F(delta) = 3L/[6LDcw /CR?)1[Eq. (3.4)]isplotted vs a/R for
L=1234;5.

For large separation of the two spheres, i.e., R /a—0,
Eq. (3.4) reduces to

by _ De,

5, CR?
which is the result for the single particle perturbation growth
rate, Eq. (2.10) (for ¢, =0). In Fig. 5, F(delta) =6,/
[6.Dc, /(CR?)] is plotted vs a/R for different values of
L(L =2,3,4,5). For large a/R, F(delta) correctly ap-
proaches the single sphere F(delta) in Fig. 2 forkR = 0. It is

unfortunate that this two sink problem could not be solved
H

(L-1)

(3.6)

b, D4

L+1
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exactly since it is the small a/R domain that is of most inter-
est. The overall rate of growth of the sphere R is not linear
witha/R and the quantity RRC /(Dc_, ) approaches unity at
large separation.

B. Polygon

Another case of a many sink problem which can easily
be analyzed is that of ¥ spheres of equal radius R arranged in
a regular planar polygon'’ with sides of length a.

The concentration field must satisfy Laplace’s equation
(2.2) and has the form

N
c(r)y=c, +4 3 L 4 P Z

n——‘l,r_rni n=1 l’ !L+1

3.7

where the coefficients are determined as in the previous sec-
tion:

A= —c [R +M Z [Sm(rrn/N)]“‘]“l
n=1
(3.8)
L+1
Ay = (45, /RD Rt 4 [T
N-—1 1
n=1

The flux dc/dr evaluated at r=R + 8, P, and Eq.
(2.8) give the following expression for the rate of growth of
the perturbation:

—29. (3.10)

5L CR?

n=1

InFigs.6and 7, F(delta) = 8, /(8c,, D /CR ?)isplotted vs
a/R for N =3 and N = 20, respectively. As expected, &, /
&, increases as a function of the separation ratio a/R. How-
ever, the rate of growth of the perturbation decreases as the
number of sinks in increased; this happens because the com-
petition for molecules between sinks leads to a decrease in
the total rate of reaction as the number of sinks is increased.

4 T T T T
N=3
""" (=5
3 — .
2 // /./-'“"“"”--—_- L4
§2 /'/- |
il Vg L=3
/,,———“"’"" L=2
L~
0 1 1 1 1
2 4 6 8 10 12
a/R

FIG. 6. F(delta)
for N=3.

=6./16,¢c, D/(CRH][Eq. (3.10)] is plotted vs a/R

N—1
14 (R/a)** ! [sin(a/N)1E+! Y [sin(an/N)} 5!

|
IV. CONCLUDING REMARKS

We have extended the Mullins—Sekerka linear stability
analysis to include concentration effects. This concentration
dependence is included by considering the surrounding par-
ticles as an effective medium. The dimensionless parameter
kR is a measure of the density of the surrounding particles
which constitute the effective medium: Small values of xR

F (deilta)

FIG. 7. F(delta)
N =20.

=&,/(8,¢,D/CR?) [Eq. (3.10) ] is plotted vs a/R for
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correspond to a low density of surrounding particles while
large values of ¥R correspond to a thick entourage of parti-
cles.

Mullins and Sekerka showed that the competition
between diffusion and surface tension is the underlying
mechanism which leads to instability in the growth of the
interface. They determined conditions of growth or decay.
For all harmonics greater than / = 1 there is a certain critical
radius R, : for R > R, the bumps grow, for R < R, the bumps
shrink.

We have identified another variable xR, which is a mea-
sure of the concentration dependence and which plays a role
similar to the surface tension in that is attenuates the growth
of the instabilities. When both decay mechanisms (surface
tension and concentration effect) are included, the surface
tension effectively rescales the rise and decay of the growth
rate (5, /8, ) to a narrower regime of kR values. The critical

radius R, of Mullins and Sekerka is no longer the only criti-
cal factor which determines the growth or decay of the
bumps. This R, is the starting value to 8, /5, which in-
creases with xR, levels out at some intermediate value of kR,
and finally decreases again for large «R. It is possible for a
given spherical harmonic perturbation to begin at xR =0
with a negative §, /8, but to reach a positive 8, /8, for
some intermediate «R. However, for two same particles of
radius R, it is also certain that for a large enough value of
the spherical harmonic order L, the rate of growth of the
bumps will never be positive.

We have observed that, in the absence of surface tension,
for L > 1, the higher the harmonic the greater the maximum
growth rate because as the order of the spherical harmonic L
is increased, the Y ,,’s oscillate more rapidly and thus form
shaper bumps more quickly (Figs. 1 and 2). The behavior is
similar in d = 2 and d = 3. Finally, in Sec. III of this paper

we take a microscopic approach and we derive a growth law
for the perturbations on a sphere, without surface tension by
directly including the one or more competing particle sinks.
As expected, the growth law for each particle’s bumps in-
creases as the competing particles are moved further away
(by increasing a/R, see Figs. 5, 6, and 7). Similarly, the
growth rate of the bumps decreases overall as the number of
competing particles is increased.

In our next paper, we will address the microscopic prob-
lem of N particles arranged randomly in space in order to
determine how the reaction rate depends on the density of
these sinks.
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