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The diffusion coefficient of clusters & formed by cluster—cluster aggregation is
computed according to the Kirkwood—Riseman Theory. In three dimensions one
finds 2 proportional to s* where s is the number of particles in the cluster and
y = — 0.544+0.014. This relationship is employed to simulate the time evolution of
the cluster size distribution N, {¢) which is found to exhibit simple scaling behavior

N, (t) ~s°gls/t*)withz ~ 1.1,

INTRODUCTION

Interest in nonequilibrium growth and aggregation pro-
cesses has recently been stimulated by the discovery of Wit-
ten and Sander that a simple diffusion limited aggregation
model leads to structures with well defined scaling and uni-
versality properties."? In particular, aggregates generated by
the Witten—Sander model have a fractal dimensionality®
which is distinctly smaller than the dimensionality of the
space or lattice in which the aggregate is formed. In the Wit-
ten—Sander model, particles are added one at a time to a
growing cluster or aggregate via Brownian (random walk)
trajectories. As originally formulated, the Witten-Sander
model generates a time ordered sequence of growth events,
but time is not defined in the growth process. However, mod-
els very closely related to the original Witten—Sander model
in which “time” is a well defined parameter have been devel-
oped and the rate of growth of Witten—Sander aggregates has
been invesigated theoretically*® by computer simulation”*
and experimentally.®

More recently a cluster—cluster aggregation model has
been developed'®!! which provides a more realistic descrip-
tion of the aggregation processes which occur in colloidal
systems. This model resembles an earlier model of Suther-
land and Goodarz-Nia'? in that particle—particle and clus-
ter—cluster aggregation as well as particle-cluster aggrega-
tion processes are included. However, it differs from the
Sutherland—Goodarz-Nia model because aggregation pro-
ceeds via random walk rather than linear trajectories and
because time is specified in the model.

Computer simulations carried out using this model gen-
erate fractal-like structures which closely resemble those ob-
served in metal particle aggregates.'*'* In particular, the
fractal dimensionality of the simulated aggregates (D~1.8)
in three dimensions'’ is in good agreement with that found
for the metal particle aggregates which are formed under
conditions similar to those which the simulations are intend-
ed to represent.

We have shown, in earlier computer simulation stud-
ies,'® that the structure of cluster—luster aggregates is insen-
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sitive to the way in which the cluster diffusion coefficient
D (s) depends on the number of particles in the cluster (s).
However, the cluster size distribution at intermediate stages
during the aggregation process is sensitive to how the cluster
diffusion coefficient depends on the cluster size (and other
characteristics as well). The cluster diffusion coefficients are
also needed to specify the time scale in the aggregation mod-
els.

The purpose of this paper is to determine the transla-
tional friction coefficient of three dimensional cluster—clus-
ter aggregates of various sizes and shapes using the Kirk-
wood-Riseman theory'’ including hydrodynamic inter-
actions. These results enable us to establish an approximate
relationship between cluster size (s) and the diffusion coeffi-
cient which is employed to obtain time dependent cluster
size distributions'®?° for cluster—cluster aggregation with
translational but no rotational diffusion.

SIMULATIONS AND CALCULATIONS

Three dimensional cluster—cluster aggregates were sim-
ulated using a three dimensional, zero concentration, off lat-
tice model which has been described previously.?"?? In this
model we start out with a list of particles (single particle
clusters). Pairs of clusters are randomly selected from the
list, rotated to random orientations and allowed to aggre-
gate, via a random walk without further rotation. After ag-
gregation, the new cluster is returned to the list which is now
shortened, and the process is repeated until the list consists
of a single cluster containing all of the particles. Clusters
containing 50-350 particles were generated in this way. Ear-
lier work using this model*"*? had led to an estimated value
of about D~1.8 for the fractal dimensionality of aggregates.

To calculate the translational friction coefficient of
these aggregates, we used the same methods which were em-
ployed to obtain the translational friction coefficient for
three dimensional Witten—Sander aggregates.?® The hydro-
dynamic interactions between the particles in the cluster
were calculated using the modified Oseen®® interaction ten-
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sor proposed by Rotne and Prager”® and Yamakawa.?® The
fundamental equation of this work is

N
F+63 T, F =tou, i=1.08, i)

i=t
%9
where T is the hydrodynamic interaction tensor, F; is the
force exerted by the ith particle on the solvent, §, = 6/In,x
is the friction coefficient of each particle of radius ¢, and u; is
the velocity of the solvent at the ith particle; 7, is the solvent
viscosity.
Equation (1) was solved using the numerical procedure
of McCammon and Deutch.?” Our results are expressed in
terms of the hydrodynamic radius R, which is given by

R, =f/6lIn,, (2)

where fis the friction coefficient. The friction coefficient fis
the constant of proportionality between the total force on the
cluster and the velocity with 1, = u.

A three dimensional lattice model?? was used to obtain
the time dependent cluster size distributions. In this model,
clusters are selected at random and the selected cluster is
moved in one of six equally probable directions (also selected
at random) on the lattice by one lattice unit. In order to
decide if the attempted move is successful or not, a random
~ number (x) uniformly distributed over the range 0 <x < 1 is
generated and the move is made if x < &/, where & is
the cluster diffusion coefficient and &, is the diffusion coef-
ficient for a single particle. This procedure leads to a natural
measure of time in units of attempted moves per cluster.

The simulations were carried out using (133)* lattices
with periodic boundary conditions. Since the time depen-
dent cluster size distributions are sensitive to finite concen-
tration effects,?® our simulations were carried out at very low
concentrations (0.0034 and 0.0021 particles per lattice site).
It was necessary to average results from a number of simula-
tions to obtain reasonably small statistical uncertainties.

'RESULTS

Clusters of seven different sizes from 50 to 350 particles
per cluster at intervals of 50 particles per cluster were gener-
ated. Figure 1 shows a projection of a randomly selected
cluster containing 250 particles. The radii of gyration (R,)
and hydrodynamic radii (R, ) were obtained for all of the
clusters. By least square fitting straight lines to the coordi-
nates [In(R,), In(s)] a radius of gyration exponent (8) of
0.554 + 0.038 was obtained assuming that R, ~s?. This
value of B corresponds to an effective fractal dimensionality
(Dg) of 1.81 4- 0.13 in good agreement with our earlier re-
sults obtained from much larger scale simulations.

The dependence of the hydrodynamic radius on cluster
size can also be fitted to a power law relationship of the form
R, ~s~7, where the exponent —y has a value of
0.544 + 0.014. Figure 2 shows the dependence of In(R,,) on
In(s) for the 133 clusters used in this work.

At the outset of this work we anticipated that the statis-
tical uncertainties in the exponent ¥ would be quite large and
that it might be better to seek a relationship between R, and
R, of theformR, ~R g. However, a linear regression analy-
sis leads to the result & = 0.895 + 0.395. The uncertainties
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FIG. 1. A projection on a plane of a typical three dimensional cluster of 250
particles generated using the off lattice, zero concentration cluster—cluster
aggregation model. The figure illustrates the very open structure of these
aggregates.

given for the exponents 3, ¥, and § are two times the standard
error. Consequently, we conclude that R, is much more
strongly correlated with s than with R, . The uncertainties in
the numerical results do not allow us to attribute any signifi-
cance to the observation that R, increases with the number
of particles in a cluster s more slowly than R, [( — ¥) <B]. It
is likely that the difference in the apparent exponents for
these two quantities is attributable to the slow approach of
R, (compared to R, ) to the asymptotic regime s — oo. Inthe
asymptotic regime we expect ( — ¢) = 8. The reasons for the
difference in the approach of R, and R, to asymptotic re-
gime for cluster—cluster or diffusion limited aggregates is
likely to be similar to the reason given by Weill and Des
Cloizeaux?® for the same behavior seen with linear polymer.

To calculate the hydrodynamic radius for a cluster of
350 particles requires about 30 min of computer time on an
IBM 3081 computer. Clearly it is not practical to calculate
the hydrodynamic radius for all of the clusters formed in a
simulation of cluster—cluster aggregation. Consequently, we
use the result R;, ~s~7 or Z(s)~s? {=~ — 0.545) for the sim-
ulation of the estimated time evolution of cluster size distri-
butions.

Lattice model simulations of cluster—cluster aggrega-
tion were carried out using 5000 and 8000 particles or occu-
pied lattice sites orf (133)? lattices with periodic boundary
conditions. Figure 3(a) shows the time dependent cluster size
distribution obtained from the simulations carried out using
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FIG. 2. The dependence of hydrodynamic radius (R, ) on cluster size (s) for
133 clusters in the size range 50 < s < 350 particles.
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8000 particles on (133)* lattices ( p = 0.0021 particles per lat-
tice site). The results from 60 simulations were averaged to
obtain the results shown in Fig. 3(a). It has recently been
shown'®2° that the time dependent cluster size distribution
exhibits simple scaling behavior of the form

N, (t)~s"gls/F), (3)

where g is a scaling function which depends on the diffusion
exponent ¥.

The quantity s~ on the right-hand side of Eq. (3) and
the common tangent with a slope of — 2 in Fig. 3(a) are a
direct consequence of mass conservation in the simula-
tions.'®2° To better illustrate the scaling behavior for N, (t),
the results shown in Fig. 3(a) are replotted in Fig. 3(b). From
Fig. 3(b), it is clear that the scaling relationship given in Eq.
(3)is obeyed at long times and that the scaling exponent z has
a value of about 1.1. Similar results were obtained from the
simulations carried out at a higher density (0.0034 particles
per lattice site).

DISCUSSION

We have calculated the translational friction coeffi-
cients for three dimensional aggregates formed by diffusion
limited cluster—cluster aggregation and employed the re-
sults of these calculations to obtain a relationship between
cluster diffusivity and cluster size [ Z(s)~s"; ¥ = — 0.544

+ 0.014]. This relationship has been used to obtain the time
dependent cluster size distribution, ¥, {¢ ) from lattice model
simulations of cluster—cluster aggregation. Because the lat-
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FIG. 3.(a) This figure shows the time dependent cluster size distributions
obtained from the three dimensional lattice model simulations carried out
using 5000 particles on (133)* lattices. NV, (¢) is the average number of cluster
containing s particles at time ¢. The units is in units of average number of
attempted moves per cluster. The curves were determined at the times 2.75,
8.44,25.9,79.7,245, 752, 2311, 7100, and 21 800 attempted moves per clus-
ter. (b) In this figure, the application of the scaling relationship given in (a) is
demonstrated. At long times, the results fall on a common curve. The clus-
ter size distribution does not scale at short times.

tice models do not allow cluster to rotate, our procedure is

self-consistent.
In real colloidal systems, rotational diffusion may play

an important role. Recent results of computer simulations
and theory have shown that rotational diffusion can have
important effects on the structure of aggregates formed by
cluster—cluster aggregation.?®*° Our treatment also ignores
hydrodynamic interactions between the aggregating clusters
and the effects of attractive and repulsive interactions.

Despite these deficiencies, the results presented in this
paper are a step towards obtaining a better understanding of
coagulation when diffusional encounters are rate limiting.

The value obtained for the diffusion coefficient expo-
nent (y) is quite close to the critical value (y, ) of about — 0.5
found recently for three dimensional cluster—cluster aggre-
gation.?® For values of y larger than ., the cluster size distri-
bution function N, (¢ ) decreases monotonically with increas-
ing cluster size. For y < 7., there is a maximum in the cluster
size distribution. In our case, y is slightly smaller then ¥, and
a broad maximum is found.

Our results can be understood in terms of the mean
field, Smoluchowski equation®! in which the time evolution
of the concentration of clusters containing & particles {C}, ) is
given by

dC,/dt=1/2 ¥ K;C.C, —C, ¥ K,;C;. (4)
i¥j=k i=1
In this equation K; is the rate constant for addition of
monomers of size i to monomers of sizej. Since the structures
formed by cluster—cluster aggregation cannot interpenetrate
each other the reaction constant K; (in three dimensions)
will be given by**

K;~R, +R)D, + D). (5)
Here R; is an appropriately averaged radius for clusters con-
taining / particles.

In the asymptotic (large cluster size) limit Eq. (5) be-
comes

Ky ~(i2 +JP ™7 +j77). (6)
For the case y = 1/D we have
Kij ~(i1/D +j1/D )(l——- 1/D + J- 1/D ) (7)

Recent computer simulations®® have shown that Eq. {6)
is at least a good approximation for cluster—cluster aggrega-
tion in three dimensions (even for quite small clusters).

Exactly analytical solutions of the Smoluchowski equa-
tions do not exsit for reaction kernels of the form given in
Eqgs. (6) and (7). However, the rate constants (K, ) depend
only weakly on the cluster sizes / and j. In particular the
kinetic kernel X has the symmetry property K iy =K.
For this reason we are prepared to assume that the time
dependent cluster size distribution will exhibit the same
asymptotic scaling properties as that found for the Smolu-
chowski equation with size independent rate constants. In
this case the cluster size distribution is given by>!

N@)=e=1/1+¢)p*! (8)
which can be described by either of the two scaling forms
N (t)~t "gls/t) (9a)

or
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N (t)~s7fls/1), (9b)

indicating that the scaling exponent z has a value of 1.0. The
result z=1.1 is in quite good agreement with the expectation
that z should have a value of 1.0. The fact that the value we
obtain for z is slightly larger than 1.0 may be a result of the
finite size and finite concentration of our simulations which
prevent us from approaching the long time limit in which
Eq. (9b) is expected to be valid.

The values obtained for the exponents describing how
the radius of gyration and hydrodynamic radius grow with
increasing cluster size are equal within the accuracy of our
simulation results. However, the value used for — ¥ (0.545)
in our simulations of the time dependent cluster size distri-
butions is slightly smaller than our best estimate for the radi-
us of the gyration exponent from lattice model simulations of
cluster—cluster aggregation®® (8~0.57). This will slightly
increase the value of z. According to the recent theoretical
work of Botet and Jullien,** the exponent z is given by

z=1/( —y—B) (10)
or
z=103 fory= —0.545and B=0.57.

'T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981); Phys.
Rev. B 27, 5686 (1983).

ZP. Meakin, Phys. Rev. A 27, 604, 1495 (1983).

3B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francis-

co, 1982).

4J. M. Deutch and P. Meakin, J. Chem. Phys. 78, 2093 {(1983).

SH. G. E. Hentschel, J. M. Deutch, and P. Meakin, J. Chem. Phys. 81, 2496
(1984).

SM. Nauenberg, Phys. Rev. B 28, 449 (1983).

7P. Meakin and J. M. Deutch, J. Chem. Phys. 80, 2115 (1984).

8R. Voss (preprint).

R. M. Brady and R. C. Ball, Nature 304, 225 (1984).

19p. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

"'M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

2D. N. Sutherland and I. Goodarz-Nia, Chem. Eng. Sci. 26, 2071 (1971).

138. R. Forrest and T. A. Witten, J. Phys. A 12, L109 (1979).

“D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984).

5P, Meakin, Phys. Rev. A 29, 997 (1984).

16p. Meakin, Phys. Rev. B 29, 2930 (1984).

7], G. Kirkwod and J. Riseman, J. Chem. Phys. 16, 565 (1948).

18T, Vicsek and F. Family, Phys. Rev. Lett. 52, 1609 (1984).

M. Kolb, Phys. Rev. Lett. 53, 1653 (1984).

20P. Meakin, T. Vicsek, and F. Family, Phys. Rev. B 31, 564 (1985).

2!P. Meakin, Phys. Lett. (to be published).

22P. Meakin, J. Colloid Interface Sci. 102, 505 (1984).

#Z.Y. Chen, J. M. Deutch, and P. Meakin, J. Chem. Phys. 80, 2982 (1984).

2R. Zwanzig, J. Kiefer, and G. H. Weiss, Proc. Natl. Acad. Sci. U. S. A. 60,
381 (1968).

23], Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969).

26H. Yamakawa, J. Chem. Phys. 53, 436 (1970).

27§, A. McCammon and J. M. Deutch, Biopolymers 15, 1397 (1976).

28G. Weill and J. Des Cloizeaux, J. Phys. (Paris) 40, 99 (1979).

2°P. Meakin, J. Chem. Phys. 81, 4637 (1984).

*H. G. E. Hentschel, J. M. Deutch, and P. Meakin (to be published).

3IM. V. Smoluchowski, Phys. Z. 17, 557, 585 (1916).

328. K. Friedlander, Smoke, Dust and Haze Fundamentalis of Aerosol Behav-
ior (Wiley, New York, 1977).

R. M. Ziff, E. D. McGrady, and P. Meakin, J. Chem. Phys. (submitted).

34R. Botet and R. Jullien, J. Phys. A 17, 2517 (1984).

J. Chem. Phys., Vol. 82, No. 8, 15 April 1985

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



