Dynamical scaling and the growth of diffusion-limited aggregates
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The validity of dynamical scaling for the growth of aggregates in a bath of particles of
concentration ¢, is investigated. A length scale £ ~c,~ ' ~ 2 is introduced which governs the
crossover from a fractal of dimension D to compact aggregate behavior. For static scaling a
variable x = R /£ is introduced where R is the radius of gyration of the aggregate. The cluster size
Nisfound to vary as N (co,R ) = (€ /a)Px"g(x), where a is the particle size and the static structure
function is well represented by g{x) = (4 + Bx)*— . To consider dynamical scaling the
asymptotic dynamics are first examined. For R<£ the radius of gyration and cluster size are
respectively found to grow with time as R (co,t ) ~(cof )/?+ 2~ 9 and N (co,t ) ~(cot P2+ P~ 2,
While for R»£ one finds R (c,t ) ~co""® =P and N (¢t ) ~co' + 97~ P4 If a scaled time
variable 7 = Dyt /£ ?isintroduced where D, is a microscopic diffusion constant, then the previous
asymptotic results can beincorporated into dynamical scaling forms for R (c,,¢ )and N (c,,¢ ). These

are R (c,,t )/€ = x = 1/@+ P~ ?)f, (1) where f,(7) is well represented by the form

filr) = [4, + B,7]' ~ VP +2=9) while N (co,t ) = (£ /a)PrP 7 + P~ 9)f (1) where f,() can be
written [4, + B,r]¢~ 272+ 2—9) Using these results all concentration c, and time ¢ regimes can
be investigated. Dynamical scaling is found to hold within the errors inherent in computer

simulations due to depletion effects of finite lattices.

I. INTRODUCTION

Recently Witten and Sander! introduced a model for
the growth of aggregates. A seed particle is placed at a lattice
site and a random walk is released isotropically from a long
distance off. If it reaches a nearest-neighbor site, it becomes
part of the growing cluster; if not, it is killed off and a new
particle released. Computer simulations® have shown that
the aggregates so formed have a complex random dendritic
structure with interesting scaling properties—they are frac-
tals.> The fractal objects can be categorized by the relation-
ship N~(R /a)*“), where N is the number of particles in the
growing cluster, R is its radius of gyration, a is the length
scale of the diffusing single particles, and D (d ) is the fractal
dimension of the cluster grown in a d dimensional space.
Computer simulations® suggest D~ 5d /6 while different as-
sumptions about the structure of this aggregate lead theore-
tically,*®toD(d)=(d*+ 1)/(d + 1)or D(d) = (8 + 5d %)/
(6 4+ 5d).

However, while the Witten—Sander model provides
valuable insights into the structure of diffusion-limited ag-
gregates; as a model for growth and morphology one would
expect to have to modify the model in one of two crucial
ways.

First, if one wants a model for colloidal flocculation or
coagulation, the aggregates do not grow on a single seed
particle, but rather from an initial concentration ¢, of parti-
cles in a medium. In the medium, all particles, or clusters can
collide and become irreversibly joined. Thus aggregates do
not in general grow by the diffusion of particles to a single
growing cluster but rather by cluster—cluster aggregation. In
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fact, computer simulations’™ suggest that the aggregates so
formed are much more “stringy” than those found in the
case of single cluster aggregation and their fractal dimen-
sions are considerably lower. Theoretically’® one would ex-
pect these aggregates to belong to a different universality
class from those formed by single particle aggregation with
D{d)=d(4d + 3)/(9d — 2) for d <8, and D(d)=d /2 for
d>8.

Second, in those cases where aggregates can only grow
from some unique site one would still not expect particles to
be introduced one at a time. Rather the simplest physical
assumption would be that there exists a bath of particles of
concentration ¢, which can diffuse into the growing aggre-
gate, and whose volume is so large that one can neglect de-
pletion effects. This model introduced by Meakin and Wit-
ten!' is fundamentally different from the Witten-Sander
model in so far as it has.a dynamics associated with it. Name-
ly, in this case, the aggregate grows at a rate determined by
the absorbtion of the flux of particles created by the gradient
in the particle bath concentration due to the existence of the
absorbing aggregate. In the original Witten—Sander model,
in contrast, it does not matter how long a diffusing particle
takes to reach a nearest-neighbor site of the aggregate, or
even if it does so. In fact, the Witten—Sander is actually an
algorithm for the probability of a given configuration of
joined particles.

The time dependence of the above mentioned general-
ization has been investigated numerically by Meakin and
Deutch'? with the result for the growth law'? of the radius of
gyration

R(t)~t[l/(2+D—-d)] (11)
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for short enough times which depend on the concentration ¢,
of the particle bath. At long times one finds from computer
simulations'! R (¢ )~¢ for all dimensions d.

To account for this crossover behavior and find both
the time ¢ and concentration ¢, dependence for the growth
rates of the radius of gyration R (¢, ) and the number of parti-
cles in the cluster N (cg,t) in all time and concentration re-
gimes is the object of this paper. We accomplish this by not-
ing that there exists a unique length side £ ~a(c,a?) =/~ 2
associated with this model. We derive this length scale in
Sec. IT and consider the validity of static scaling by a com-
parison with the earlier computer simulations.'* A form for
the static structure function is suggested, which agrees well
with the computer data, by the use of Padé approximants.

In Sec. III we consider the asymptotic time dependence
of the radius of gyration R (c,,? ) and the cluster size NV (c,,? ) in
the regimes R €& and R>£. We note that these are consistent
with dynamical scaling and this hypothesis is investigated by
a comparison with computer simulations.'? The forms of the
relevant dynamic structures function can be found by fitting
their logarithmic derivatives by Padé approximants as their
asymptotic behavior is known. The agreement with comput-
er simulations is satisfactory.

Finally, in Sec. IV we summarize our results and offer
some concluding remarks.

Il. STATIC SCALING

We consider an initiating seed in a bath of particles of
concentration ¢,. The growth of the aggregate occurs by the
diffusion of particles from the bath which irreversibly stick
to the aggregate on contact. Initially the concentration of
particles in the aggregate satisfies the condition N /R >c,
which is essentially the conditions of growth of the Witten~
Sander model.! Thus, if a is the length scale of the diffusing
particles, then we expect

N~(R /a)?, (2.1)

where ~ means “scales-like” and D is the fractal dimension
of the aggregate in the Witten-Sander model.

However, the behavior given by Eq. (2.1) cannot contin-
ue forever in any bath of finite concentration c,. This is be-
cause apart from aggregate growth by the irreversibly stick-
ing of single particles which will create a Witten—Sander
cluster, a second mechanism for aggregate growth always
exists at finite bath concentration ¢,. When one particle be-
comes the nearest neighbor of the growing aggregate and
sticks irreversibly, so do its nearest-neighbor bath particles
which now in turn have suddenly also become nearest neigh-
bors of the aggregate. In addition regions of density ¢, can be
caged by the growing arms of the aggregate thus ensuring
their whole scale incorporation into the aggregate. Thus
whole regions of density c, become part of the growing ag-
gregate and consequently N /R X ¢c,. When N /R? >, this
effect is insignificant and Witten—Sander growth N~ R? re-
sults. However, as D <d this relationship cannot continue
forever and for large R in contrast with Eq. (2.1), we would
expect the aggregation of density ¢, to dominate resulting in
a compact structure obeying

N~coR?. (2.2)

The crossover between these two limiting cases occurs at a
unique length scale & which occurs when the concentration
of the aggregate reduces to the external concentration N,/

& ~cyor
(& /a)P6 ~%~cy, (2.3a)
&~alcpa®) =19 P), (2.3b)

The fact that crossover to constant density occurs in baths of
finite concentrations has already been observed in the con-
text of continuum models of DLA.'*!> These models have
not been shown to create Witten-Sander-like structures, but
the spherically symmetric solutions of the nonlinear partial
differential equations which represent the model do behave
in certain respects like fractals with D = d — 1. A divergent
boundary layer with width £ ~c, % where 8 = 1 exists in
this model and gives the crossover to constant density. This
result is consistent with Eq. (2.3b) where 8 = 1/(d — D).
We introduce the static scaling hypothesis that £ is the
only relevant length scale for this model, in which case

NicoR)=(R/a)’gR/E)= (£ /)’ G(R/E),  (2.4)

where g(x) contains the deviation from the Witten—Sander
model while G (x) = xPg{x) describes the behavior of the
cluster size with the radius of gyration. The limiting forms
for NV are given, respectively, by Eq. (2.1) for R ¢£ and by Eq.
(2.2) for R»¢ so that g(x) must have the asymptotic forms
g(x)~ constant as x—0 and g{x)~x* ~? as x—c0.

To test this hypothesis we show in Fig. 1(a) the original
computer simulations'? of the dependence of the radius of
gyration R on cluster size N for two-dimensional lattice
models of the diffusion-limited aggregation in the form of
log-log plots, where curves A,B,C, and D represent, respec-
tively, concentrations per lattice site p = (ca®) of 0.0625,
0.125, 0.25, and 0.3125. Four distinct curves can be seen. In
Fig. 1{b) we have replotted the data using the scaling varia-
bles N /(R /a)” vs (R /a)p ~ '/~ P) again in the form of log-
log plots. The exponent 1/(d — D) is very sensitive to the
value chosen for D[when d=2, D=1.67 then 1/
(d — D) =3; whileif D 1.75 is chosen then 1/(d — D) = 4].
Thus, if scaling is valid, then accurate simulation data could
be used to distinguish between different theoretical possibili-
ties for D. However, as real computer simulations suffer
from depletion effects (when the majority of the reservoir
particles are incorporated into the growing aggregate), this
approach is not open to us and instead we shall use the best
values from computer simulations® D (2) = 1.67,D (3) = 2.50
in our comparison of scaling predictions with computer
data. When we use this value for D (2) in Fig. 1(b), all the data
lie on a single curve within experimental error, confirming
the static scaling hypothesis. A specific form for g(x) is also
included in Fig. 1(b). This form is determined as follows: We
know the asymptotic form for g(x), namely, g{x}—>constant
as x—0 and g(x) ~x* ~ © as x— oo . Therefore, we might try to
approximate the function g(x) by 4 + Bx®~ 2 over the whole
range of x. However, this cannot be correct as it suggests that
g(x) has singular behavior at x = 0, while there is no reason
to believe that g{x) is anything but analytic as x—0, the sin-
gularities occurring as x— o . Neither can g{x) be represent-
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FIG. 1. (a) Dependence of radius of gyration (R /a) on cluster size N for two
dimensional lattice models of diffusion limited aggregation in the form of
log-log plots. The simulations were carried out on a 400 X 400 square lattice
with one seed and a variable number of particles which were present at all
times as either mobile particles or as part of the cluster grown from the seed.
Curve A shows the results for 10 000 particles (p = 0.0625); curve B for
p = 0.125 (20 000 particles); curve C for p = 0.25 (40 000 particles); and
curve D for p = 0.3125 (50 000 particles). The straight lines with slopes 0.6
and 0.5 show the limiting behaviors of R with N. (b) Data from the four
curves in Fig. 1(a) have been taken and replotted in Fig. 1(b} in a log—log
form using the scaling variables N/(R /a)® vs x=(R/ajp~ ¥~ D),
Points from the curves A,B,C,D are represented respectively by the symbols
X, A, @]} The data should fall on a universal curve. The theoretical form
of this curve is In g{x) where g{x) = [4 + Bx]"/>. This curve is also drawn
with 4 = 70, B = 185. (c) The same data which appears in Fig. 1(b) has been
replotted in a different form. [N /(R /a}” ]/~ P has been plotted against
x=(R /ap "~ P)(with d = 2, D = 5/3). The ordinate should theoreti-
cally be g{x)'/“~ 2 = [4 + Bx] while the abscissa is x. Thus the data
should line on a universal straight line. The line [70 + 185x] has been drawn
for comparison.
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ed by a Padé approximant. However, such functions which
exhibit nonanalytic singularities also appear in the theory of
critical phenomena, but as is well known, ' in general, their
logarithmic derivatives can be analytically represented.
Thus as dIng/dx—constant as x—0 and dlng/
dx—{d — D )/x as x— o, the simplest Padé approximant we
could choose would be d In g/dx = (d — D)/(a, + x) or

glx)=[4 + Bx]“—?), (2.5)
G(x) =x"[A4 + Bx]¥ D),

where 4 and B are constants which must be found experi-
mentally.

To check the form (2.5) in the two dimensional case we
have replotted the data in Fig. 1(b) in the form of g°(x) vs x in
Fig. I{c) [since (d — D)= 1/3 for d = 2]. The points should
fall on the straight line [4 + Bx] and this appears to be the
case within experimental accuracy with 4 =70 and
B = 185. These values are used in Fig. 1{b) for the theoretical
curve. Clearly static scaling holds and this encourages us to
investigate the validity of dynamical scaling for the growing
clusters.

lll. DYNAMIC SCALING

Before we introduce the dynamic scaling hypothesis,
consider the asymptotic time and concentration dependence
of the radius of gyration R (c,,? ) and the cluster size N (¢t ) in
the regimes R<£ and R>£.

A. The R¢¢ regime

The dynamics in this regime have been considered by
Deutch and Meakin."' Here the concentration of the aggre-
gate particles N /R? »c, and particles from the medium do
not penetrate the cluster. One expects the flux J, of particles
entering through a conceptual spherical surface R surround-
ing the aggregate to be absorbed on the surface

dN /dt = J,. (3.1)
The steady-state spherically symmetric flux J, has been cal-
culated'? from the concentration gradient that is set up by
this absorption. This concentration gradient can be obtained

from the steady state solution of the 4 dimensional diffusion
equation

1 d ré-! de =0
ré-ldr dr
subject to the boundary conditions ¢(R) =0, c{r}—>c, as

r—oo. The result is
Ji~Dse,R472, 3.3)

where D, is the diffusion constant (for a jump model where
particles hop at random by a distance « in time 7, we would
have D, = a*/7,). On substituting Eq. (3.3) in Eq. (3.1) and
using the fact that in this regime N ~ (R /a)® one finds for the
growth of the radius of gyration'

(3.2)

R (cort ) ~(Dseoa@® )2+ 2= ) (3.4)

and for the cluster size

Nlcot)~a~P(Dpega®t)P/2+ 2=, (3.5)
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FIG. 2. {a) This figure shows how the radius of gyration, in the two dimen-
sional case, increases with time measured in units of Monte Carlo trials per
particle 7,. The bath concentration per lattice site p is the same as in Fig.
1(a). The straight line with slopes 1 and 3/5 show the limiting growth laws
for the cluster at long and short times. (b} Data points from the four curves
A(X), B(a), C(@), D{i]) have been replotted here using the scaling varia-
bles (R /a)/(pt)/?+P~4) vs 7=1p*"“~D)in alog-log form. The data
should lie on a universal curve f;(r), where f}(7) = [4, + B,7]*/°. This curve
has also been drawn. (c) The data points from Fig. 2(b) have been replotted
here using new scaling variables. Specifically
[(R /a)/(pt) /2 + D= D]iP+2—-dViD+1-d) hag been plotted against 7. The
data should lie on the straight line 4, + B,7. For comparison the line
(0.625 + 68.27) has been drawn. These values have also been used in Fig.
1(b).
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Equations (3.4) and (3.5) can only be valid in this asymp-
totic regime under the conditionsd — D <2 andd > 2. For, if
d — D> 2 the cluster would become transparent to the diffu-
sion, while if d = 2 no steady state solution of Eq. (3.2) exists.
Theoretically one expects d — D < 2 to be obeyed for all d so
this condition is not constraining. On the other hand, the
case d = 2 presents a problem though the prediction in the
limit d—2 of Eqs. (3.4) and (3.5) appears to work in practice
and when compared to computer simulations. Thus we shall
apply our results to the case d = 2 although strictly speaking
the analysis is not valid for this limit. Further discussion of
this point can be found in Ref. 12.

B. The Ry £ regime

Here the density of the bath and aggregate particles are
both the same ~c¢,. Thus one does not expect a concentra-
tion gradient of the type observed in the R €& regime to exist.
Rather the flux of particles must be due to the short-range
drop in concentration of the bath particles at the surface of
the aggregate. If we assume there is only one relevant length
scale £, then ¢(r) must change from a value of ¢(R )~¢, to
¢(R — £)~0. If this is the case, then the total flux is

Jy~R%='Dycy/€ (3.6)

while N ~c,R? . Substituting these values of Nand J, in dN /
dt = J, leads to the result for the radius of gyration

Rleot )~ 2L (e} 4= ~Dyt . (3.7)
Equation (3.7) gives the correct asymptotic time dependence
seen in computer simulations for R and predicts the strong
concentration dependence ~cy'?~P). For the cluster size

we have

N (copt )~(eqa)! + 4714~ P, (3.8)

C. Dynamic scaling hypothesis

To introduce dynamic scaling, we make use of the two
dimensionless variables x = R /£ and 7 = Dt /& . Then we
note that we can rewrite the equations for the asymptotic
time dependence of the radius of gyration R (c,,t) given by
Eqgs. (3.4) and (3.7) as

1/2+D—d)
b

x<l, {3.93)

{3.9b)

We make the dynamic scaling hypothesis that for all 7:
R(cot) =& (Dst /€72 +P =9 (Dt 167

=§F(Dst/87),

X~T

X~T, x>1.

(3.10a)
or
x=7Ye+D=dif () F(p), {3.10b)

where f,(7) shows the deviation from the short time behavior
while F (7) gives the complete time dependence of the growth
of the radius of gyration. A form for f,(r) may be found in
two different ways.

First, we may assume that the growth of the aggregate
at all times including the crossover regime can be treated as
due to the absorption of the sum of the fluxes J; and J, given
by Eqgs. (3.3) and (3.6), respectively;
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dN
—dT =Jl +J2=k’DfC
where k, and k, are dimensionless constants. In terms of the

scaling variables x and 7 and Eq. (2.4) for the cluster size N:

dG dx

__=kxd—2 k d—l.

dx dr ! k¥
This equation can be integrated to yield an implicit equation

for the dynamical structure function F:

J‘F"’ dG /dx

dx =
o {klxd—2+k2xd—1]
in terms of the static structure function G. If the form given
by Eq. (2.5) is substituted in expression (3.13), then the inte-
gral can be numerically integrated to determine F (7).

A second and simpler approach for determining the
dynamical structure factor is simply to fit the logarithmic
derivative of f; to a Padé approximant. Since

dinfi/dr—[1 —1/(D+2 —d)}/T,
we choose the simplest Padé

dinfy/dr=[1-1/(D+2—d))/(a+7)
which leads to

Flr) = (A, + Byr) =0+,

F(T)=TV(D+2—‘“(A1+BIT)I_I/(D+2-'”. (314)
The constants 4, and B, can be found from computer simu-
lations or by comparing the asymptotic forms of Egs.
(3.13) and (3.14). In this latter case, in terms of the constants
appearing in Eq. (2.5) one finds A4,=[D+2

—d)k,/DA?|P+2-d/D+1=d) and B, =[ky

dBd—D](D+2—d)/(D+l—d).

4=2 4 k,D,cd /6, (3.10)

(3.12)

(3.13)

as T—r oo,

The scaling form of the cluster size N (c,,t ) with time
now follows immediately from the static scaling behavior of
the cluster size N (c,,R ) with radius of gyration R as given in
Eq. (2.4) and the dynamic scaling of the radius of gyration
with time as given by Eq. {3.10):

Nicut)/(€/a)° = G [F(r)] = P2+ P=9)f (7). (3.15)

If we substitute in Eq. (3.15) the expressions for the structure
functions G and F given by Eqs. (2.5) and (3.14), respectively,
we arrive at an expression albeit complicated, for the scaling
formof N (c,,t )/(£ /a)® . Asimplersatisfactory expressioncan
be found by again simply fitting the logarithmic derivatives
of f,(7) to a Padé approximant. As d In f,/dr—constant as
r—0anddInf,/dr—[d—D/2+ D —d)]/ras 7>, we
then have f,(r) = [4, + B,7]¢ P/ +P =~ or
N(Co,t )/(g/a)D —_ 7_D/(2 +D— d)[A2 + BzT]d_ D/2+D— d),
(3.16)

where 4, and B, can be related to the constants 4,B8,4,,B, by
fitting the asymptotic forms of expression (3.16) to that for
G [F (r)] with the result

A g—D/12+D—d)=Ad—DA lD[l—l/(2+D—d)]’

(3.17)

Bg—D/(2+D—d) =Bd_DBf“-V(2+D_d)].

Next, we compare the predictions of dynamical scaling
with computer simulations of these diffusion-limited frac-
tals.

Hentschel, Deutch, and Meakin: Growth of aggregates

In Fig. 2(a} the radius of gyration R is plotted against ¢
in a log-log form for two dimensions. Four clear slopes are
observed for the four different concentrations A,B,C,D. In
Fig. 2(b) we have replotted the data in the form
(R /a)/|pt)/?+P~4)  [with 1/2+D-—d)=06] vs
1p*“—P)[with 2/(d — D) = 6] in alog-log form. If dynami-
cal scaling holds, the data should fall on a universal curve.
This seems to be the case within experimental error. We have
also drawn the theoretical prediction for this universal curve
which is Infy(7), where f(r) = [4, + B,7]' ~/P+2~9)
where 1 — 1/(D +2 —d)=0.4. Tofind 4, and B, we have
taken the data in Fig. 2{b} to the (5/2)th power and again
plotted against 70>'“ ~ 2). In this case theory predicts that the
data should fall on the universal straight line (4, + B,7). The
result is presented in Fig. 2(c) together with the straight line
(0.625 + 68.27). These values for 4, and B, are also used in
Fig. 2(b).

Scaling should also apply to the cluster size N (¢! ). In
Fig. 3(a) can be seen an original computer simulation for the

(a)

in(N)

Fol by

O¥4L 1 ) | ) 1

0 008  0l6 0.24
5t

FIG. 3. (a) The time dependence of the cluster size N (co,? ). The time ¢ is
measured in units of Monte Carlo triads per particle 7o, and the data has
been plotted in a log-log form. The curves A,B,C, and D have the same
meaning asin Fig. 1(a). The straight lines with slopes of 1.0 and 2.0 represent
the limiting short and long time growth laws for the cluster. (b) Data from
the curves A(X), B{&), C(®), D{i) of Fig. 3(a) are replotted using the scal-
ing variables N /pt vs 7 = p®¢. Theoretically these should fall on a universal
straight line. This straight line f,(r) = 4, + B,7 hasbeen drawn with 4, and
B, given by Eq. (3.17).
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FIG. 4. (a) The growth of the radius of gyration R (c,,? ) with time on a three
dimensional cubic 60X 60 60 lattice. The data are plotted in a log-log
form. The initial conditions were 5000 particles for curve A (p = 0.0231),
10000 particles for curve B (p = 0.0463), 20 000 particles for curve C
(p = 0.0926), and 40 000 particles for curve D (p = 0.185). The straight lines
with slopes 2/3 and 1.0 represent the asymptotic short and long time slopes
expected. (b) Data from curves A(X), B(A), C(®), D) of Fig. 4(a) have
been replotted here in a log-log form using the scaling variables
R/(pt)/2+P—9) yg = 1p* The data should fall on a universal curve
In f;(7}, where fi(r) = [4, + B,7}'/?. Such a curve has been drawn with
A, = 1.0and B, = 1500.

cluster size N vs time ¢. Again four distinct curves can be seen
while in Fig. 3(b) we have plotted N /(pt ) against p*/¢ — D).
Theory makes three increasingly severe predictions about
the replotted data in Fig. 3(b). First, the data should lie on a
universal curve. Second, that curve should be a straight line
{for the two dimensional case, if the use of the simplest Padé
approximant is valid). Third, the intercept and slope of this
curve A, and B,, respectively, should be given by Eq. (3.17).
In Fig. 3(b) we have plotted this straight line
Jfolr) = [A, + B,7] with the values of 4, and B, given by Eq.
(3.17). The agreement is satisfactory.

Next, we consider three dimensions. In Fig. 4(a) the
radius of gyration R is plotted in a log-log form against line 7.
Four curves, A,B,C,D can be seen. Here curve A has a den-
sity per lattice site p = (c,a’) of 0.0231, curve B has
p =0.0463, curve C has p =0.0926, and curve D has
p = 0.185. Points from the four curves A(X), B(A), C(®),
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FIG. 5. (a) This figure shows the original computer simulations on a three
dimensional lattice of the growth of the cluster size N{c,,¢ ) with time. The
data are plotted in a log-log form, and the curves A,B,C, and D have the
same concentrations as in Fig. 4(a). The slopes of the limiting growth rates of
5/3 at short times and 3.0 at long times are also drawn. (b) Data points from
curves A(X), B(A), C(@), DI} of Fig. 5(a) have been replotted here in a
log-log form using the scaled variables N /f{pt )?/2+ P~ ) yg 7 = g9?/4 - D),
The data should fall on a universal curve Inf;(7), where fi(r)= (4,
+ B,7]*/2. The curve drawn for comparison has 4, = 2.1 and B, = 700.

D(Jjij) have been replotted in Fig. 4(b) using the scaling varia-
bles (R /a)/|pt)/?+2~-9) with 1/2+D—d)=2/3 vs
7= tp*¥—P) [with 2/(d — D) = 4] in a log-log form. The
data should again fall on a universal curve. In this case better
agreement with the theoretical curve also drawn in Fig. 4(b)
would be welcome for but scaling does appear to hold. The
theoretical curve in this case is Infj(r) where
fil)=1[A4, + B,7}"/* and 4, = 1.0, B, = 1500 were used in
Fig. 4(b).

In Fig. 5(a) the original computer simulation on the
cluster size N vs time ¢ is plotted in a log-log form for the
three dimensional case. In Fig. 5(b) the data has been replot-
ted using the scaled variables N /(pt)?/?+P—4) [with D/
24+D—d)=5/3) vs 7= tp*'¥~P) [with 2/(d — D) =4].
Again the data should fall on a universal curve. The theoreti-
cal prediction for this curve is In f5(7) and this has also been
drawn in Fig. 5(b) where we have used
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/(1) = [2.1 + 7007]*/3, The scaling is not good but it does
appear to exist.

IV. SUMMARY

In this paper we have investigated the growth of diffu-
sion limited clusters in a medium of particles of concentra-
tion ¢, We have employed the length scale £ ~c, =2 to
define a static scaling function for the cluster. A simple Padé
approximant for the static scaling function fits the computer
simulation data rather well [see Figs. 1(b) and 1(c)]. We have
also examined dynamic scaling in order to describe the kinet-
ics of cluster growth. While agreement between the dynamic
scaling predictions and the computer simulation is not ex-
ceptional (see Figs. 2-5), dynamical scaling appears to hold.
Further simulations may reveal new insights into the growth
of diffusion limited aggregates. For instance does dynamic
scaling breakdown at large enough bath concentrations
when & would become small?
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