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A lattice model for binary mixtures of prolate and oblate molecules is studied, by a mapping onto
a 13-state Potts-Ising model, followed by an approximate renormalization-group analysis. Four dif-
ferent types of phase diagram are obtained, exhibiting prolate uniaxial, biaxial, and oblate uniaxial
phases. Local disorder has the nonordering property of an effective vacancy and is thus included
into our mapping. Such effective vacancies can cause first-order phase transitions. Thus the biaxial
phase can disorder either directly through a ridge of first-order transitions, or via an intermediate
uniaxial phase which vanishes at a multicritical point. In the biaxial region, the system is shown to
be related to the six-state clock model, so that the latter point may be replaced by a segment of alge-
braic (Kosterlitz-Thouless) order in films. Similar considerations are applied to one-component sys-

tems of biaxially shaped molecules.

I. INTRODUCTION

The preferential orientation of the microscopic consti-
tuents of a system along two orthogonal directions is a
subject of both experimental and theoretical interest.
Such a possibility, within the context of liquid-crystal sys-
tems, was studied some time ago by Alben and others.!™
More recently, experimental realization was achieved in
the amphiphilic systems composed of potassium laurate
or sodium decylsulfate, decanol, and water.” The delicate
equilibrium involved in such a phase is apparent from
qualitative microscopic considerations: For a system of
identically shaped molecules, preferential orientation
along one direction results in energy stability and
delegates entropy gains to fluctuations in the transverse
directions, thus hindering the possibility of alignment
along any of the latter. For systems of multishaped mole-
cules, the orientational order of one species requires a net-
work of the corresporiding molecules which not only per-
colates, but also maintains a strong connectivity. For a
second species to order, a similar network is required,
with the added spatial hindrance that each network would
have to permeate the other.

We have studied biaxial ordering by generalizations of
the lattice model for uniaxial ordering introduced by
Zwanzig. In Zwanzig’s model, a single species of mole-
cules with one distinguishable axis lies at the sites of a cu-
bic lattice. Each molecular axis can align along one of the
three lattice axes. The intermolecular interactions induce
uniaxial order. In Sec. II we present a generalization
which includes two uniaxial species, prolate and oblate
particles. The lattice model for the binary mixture of pro-
late and oblate molecules is prefaced”® onto a 13-state
Potts-Ising model. This model, in turn, is subjected to the
renormalization-group analysis of a Migdal-Kadanoff
procedure.”’ The renormalization-group flows of 21 dif-
ferent interaction constants are included in the analysis.
Although these prefacing and renormalization procedures
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involve uncontrolled approximations, they can be expect-
ed, on phenomenological grounds, to provide qualitative
indications of the true system behavior (Sec. III). Another
generalization, involving a single species of biaxially
shaped molecules, maps onto a subspace of our Potts-
Ising model and yields similar phase diagrams (Sec. V).

Our study also illustrates the role of effective vacan-
cies,'® namely, regions of local disorder which, by con-
densing, precipitate a first-order phase transition with la-
tent heat. Depending on the preponderance of such effec-
tive vacancy regions, one of four types of phase diagram
is found to occur (Sec. III). These are distinguished by (i)
no biaxial phase, (ii) a biaxial phase which, upon increas-
ing temperature, disorders across a ridge of first-order
transitions, (ili) and (iv) a biaxial phase which disorders
via an intermediate uniaxial phase, except for a direct dis-
ordering through a single multicritical point or a segment
of algebraic order.!! In connection with the latter, we
show that the biaxial degrees of freedom of this lattice
model reproduce a six-state clock model.!*> Thus, in two
dimensions, the model should exhibit a temperature range
of algebraic biaxial order (Sec. IV). The first-order transi-
tions disordering the uniaxial phases are characterized by
very narrow coexistence regions and small latent heats, as
is observed experimentally with nematic liquid-crystal
transitions.!:?

II. THE LATTICE MODEL AND ITS TREATMENT
A. The lattice model

We begin with the case of binary mixtures, since it
leads to the most general Potts-Ising model that we have
considered. The starting lattice model is a straightfor-
ward generalization of the one presented by Zwanzig:®
Each site of a hypercubic lattice is occupied by a uniaxial-
ly shaped molecule which is either prolate (referred to as a
rod) or oblate (plate). The axis of each molecule so
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TABLE I. Interaction energies between nearest-neighbor cells in configurations C; and C,.

G
C z X VA X zX XY
z 0 4Jr 4Jx 0 0 2Jg
xXZ 2Jr +2Jx 0 0 2Jx+2Jp Jr+2Jx+Jp Jp

described aligns with one of three lattice axes. Overlap of
neighboring molecules is energetically disfavored, so that
the nearest-neighbor interaction energy depends on the
molecular alignments, differently, of course, for rod-rod,
rod-plate, and plate-plate pairs.

Let the variables s; =x,y,z or §;=X,7,Z denote the oc-
cupation of site i by a rod (unbarred) or a plate (barred)
aligned with each of the lattice axes. Then a simple Ham-
iltonian for the system is

= { Jrtit;[fr —8(sis;)]
(ij)

+JTx[£:2;8(s:,5; )+1:;8(57,5;)]

+th,'tj[fp—8(s_ias_j)]}+#2(ti_ti) ’ (1)
1

where (t;,£;)=(1,0) or (0,1) for rod or plate occupation of
site i, 8 equals 1 (0) if its arguments refer to the same (dif-
ferent) lattice axis, {ij) denotes summation over nearest-
neighbor' pairs of sites, and the coupling constants J,
are non-negative. The final term introduces the chemical
potential difference which controls the rod and plate con-
centrations. The above Hamiltonian involves a simplify-
ing approximation in that the interaction energy of a pair
of molecules has been averaged over the six possible lat-
tice directions between such nearest-neighbor molecules,
which is reasonable for modeling a liquid system. As Eq.
(1) is now, the first and third terms are ferromagnetic
Potts'* couplings, while the second term is an antifer-
romagnetic Potts coupling.!* We shall report here results
for fr=fp=1, applicable to systems in which favorably
aligned pairs have essentially equivalent interaction ener-
gies, irrespective of the constituent species.

B. Prefacing transformation

In a renormalization-group treatment of this micro-
scopic model, the first few rescaling transformations
could be of considerable importance to yield biaxial order.
This is because these rescalings would generate further-
neighbor interactions which could maintain the connec-
tivity of two interpenetrating, orthogonally oriented net-
works, as mentioned above. On the other hand,
renormalization-group transformations that directly in-
clude further-neighbor interactions are cumbersome. This
technical difficulty can be avoided by considering the
nearest-neighbor interaction between small regions of the
system, thereby, in effect, including further-neighbor in-
teractions of the molecular level.”

The small regions that we use are 2X2X2 cells, and
can reflect the following local properties: aligned rod
(X,_Y, or Z), aligned plate (X, ¥, or Z), biaxially aligned
(XY, XZ, YZ, YX, ZX, or ZY), or disordered (0). The
latter is the effective vacancy state. The cell Hamiltonian

should in principle be determined by partially summing
all of the partition function, over the molecular degrees of
freedom consistent with fixed cell states. This is done
here in a simple approximation. The chemical potential
for each of the above cell states (C =X,Y,Z,X,...) is ob-
tained from a single-cell summation:

2%2X Ze —pre ’
{t,1,5,5)

e

where ¢ is the part of the molecular Hamiltonian
which is contained in one cell. For the aligned-rod cell
state, for example C =Z, the sum includes all molecular
configurations with at least six rods aligned with the z
axis. The corresponding requirement of at least six
aligned plates is used in obtaining the chemical potential
of an aligned-plate cell state. For the biaxially aligned cell
state, such as C =ZX, the single-cell sum includes all
molecular configurations with at least three rods and
three plates aligned respectively with the z and x axes.
Finally, the effective-vacancy cell state is assigned all
molecular configurations of the cell which are not as-
signed to the uniaxially or biaxially aligned cell states.

To proceed with the analysis, the right side of Eq. (1)
must be converted into a polynomial in the four variables
e ® and eP*, so that this prefacing transformation can be
effected for any given molecular parameters. However,
even with our single-cell approximation, this leads to very
long polynomials, causing computer storage and comput-
ing time difficulties. Thus, as a further approximation,
the Boltzmann average

o ~PURFW) —BlIp—2)

+2JXe _NX+JP8
Z Z T )
e BJx +2ﬂ)+2e By +e B(Jp—2p)

is used for all the intracell molecular energies. The result-
ing polynomials, in the two variables e? and e,
manageably contain 1899 terms.

The intercell energies are estimated even more simply.
An effective-vacancy cell has zero interaction with any
neighboring cell. An aligned cell is pictured as composed
of two labels, e.g., ZZ=Z or Z Z=Z for uniaxially and
ZX for biaxially aligned cells. Two nearest-neighbor cells
interact via the interaction constants and & functions of
Eq. (1), with the cell labels as arguments (Table I). Note

Jr

J= (3)

FIG. 1. Migdal-Kadanoff renormalization procedure. In the
first, approximate, step, some of the bonds are moved. In the
second step, intermediate degrees of freedom are summed over.
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TABLE II. Exponentiated cell Hamiltonian w(C;,C,)=exp[ —B#(C,,C,)] per nearest-neighbor pair of cells.
G

C, 0 X Y VA Xy Xz YZ YX zX VAL X Y Z
0 wi wiy wiy Wiy Wiz Wiz Wiz Wiz Wiz Wiz w13 w3 Wwi3
X Wiy wy ws ws W4 Wis wis Wie Wie Wis Wiy Wi Wig
Y wi w3 w w3 Wie Wis Wig W4 Wis Wie Wig w17 Wig
Wiy w3 ws wy Wis Wie Wie Wis Wig Wia Wig Wi W7

Xy Wi Wig Wie wis Wy ws We wy We Wg Wig Wy Wo
X Wiz Wig Wis Wie Ws Wy wg We wy We Wig Wyo Wi
YZ wiz wis wi4 Wi6 we ws wy ws we wy wao wig wy)
YXx Wiz Wie Wig Wis wy We Wws Wy wg We Wiy Wi Wao
Z Wiz Wie Wis Wis We wy We Wg Wy Ws W31 Wao Wig
zy Wiz Wis Wie Wig wg We wy We Ws Wy Wio 155 Wig
X w13 wi7 Wig Wig Wig Wio Wo Wi Wi Wio Wy Wio Wio
Y Wwi3 Wig Wiy Wig w1 Wwio Wig Wig W0 Wiy Wio Wy Wio
Z wi3 wig wig wiy wao Wy Wy Wao Wwig Wig wio wio wy

that this provides four intercellular bonds for a pair of
cells, as in the original molecular model.

C. Renormalization-group transformation

The renormalization-group transformation, in the
Migdal-Kadanoff approximation,”’ is effected by moving
bonds and summing over the states of a subset of the cells
(Fig. 1). The corresponding algebraic statement is®

w'(Cy,Cy)=3[w(C;,Cw(C,Cy)]*, @)
C
where
w(cl’cz)___e—ﬂmcl,cz)

is the exponentiated cell Hamiltonian per nearest-neighbor
pair of cells. The sum is over the 13 states of the inter-
mediate cell. The symmetry of w(C,;,C,) as it recurs
under the renormalization group is given in Table II,
where the 1X 1 effective-vacancy, 3 X 3 rod-uniaxial, 6 X 6
biaxial, and 3 X 3 plate-uniaxial block structure is delineat-
ed. The rod-rod, plate-plate, and rod-plate blocks show
ferromagnetic and antiferromagnetic Potts couplings,
respectively. The effective-vacancy block introduces an
Ising degree of freedom. The biaxial block shows the cou-
plings of a clock model, to be discussed in Sec. IV below.
The phase diagrams are deduced by globally tracing the
renormalization-group flows, in the 21 distinct coupling
constants exponentiated in Table II, to the fixed
points.!®”® We have effected the Migdal-Kadanoff
transformation here in d =2 spatial dimensionality,
which enters only the bond-moving step. It is known that
the Migdal-Kadanoff approximation overrepresents spa-
tial dimensionality.!”!® Thus, for our present purposes, a
d =2 calculation should give qualitative indications for
the three-dimensional behavior.

III. PHASE DIAGRAMS FOR MIXTURES
OF PROLATE AND OBLATE MOLECULES

The phase diagram, calculated as described above, is
shown in Figs. 2(a) and 2(b) in the spaces of temperature
versus chemical potential and density, respectively. As
representative values, Jy=0.75Jz and Jp=0.5J; have
been adopted. Prolate and oblate uniaxially ordered
phases occur, respectively, in regions of high rod and plate
concentrations. They are separated from the isotropic
(disordered) phase by first-order boundaries. These first-
order transitions are characterized by extremely narrow
coexistence regions and small latent heats, as is observed
experimentally with nematic liquid-crystal transitions."?
At this stage, no biaxial phase is seen and the isotropic
phase extends to zero temperature at intermediate concen-
trations.

Previous work,!” on the other hand, has shown that the
Migdal-Kadanoff procedure may overestimate the role of
effective vacancies. We have investigated calculations
with such a role diminished, by artificially adding, after
the prefacing transformation, a chemical potential p 4 to
the effective-vacancy cell state. The inclusion of such an
adjustable parameter may be viewed either as exploring
possibilities admitted by the indeterminacy of an uncon-
trolled approximation, or as taking into account the
close-packed character of realistic systems (repressing ef-
fective vacancies in contrast to the open-packed cubic lat-
tice), or as mimicking a metastable system which is su-
perheated past the first-order transitions.

As the effective vacancies are repressed by making u 4
more negative, the first-order transitions recede to higher
temperatures. A biaxially ordered phase appears at com-
parable rod and plate concentrations [Figs. 2(c) and 2(d)].
It is flanked by prolate and oblate uniaxially ordered
phases. The transitions between the biaxial phase and
uniaxial phases of this model are second order and
governed by a fixed point of Ising criticality. All three



30 BIAXIAL ORDER IN LIQUID CRYSTALS AND THEIR . .. 2565

0.2
KT
Jr 0.l
0
0.8
KT
I 0.4
0
2
kT
Jr
0
4
kT
Jr 2
O 1 1 lB 1
10 5 (0] -5 -100 0.5 10

Chemical potential 1o Plate concentration (1;) ‘

FIG. 2. Calculated phase diagrams for rod-plate mixtures
with Jx=0.75Jx and Jp=0.50J3. In (a),(b); (c),(d); (e),(); and
(g),(h), py4=0; —8Jg; —20.8Jg; and — o, respectively. The
rod-uniaxial, biaxial, plate-uniaxial, and isotropic phases are la-
beled RU, B, PU, and I, respectively. The arrows point to the
coexistence regions, which are very narrow. Second-order
boundaries are indicated by the thick solid lines, while first-
order transitions are indicated by the dashed lines and by the
thin lines around the coexistence regions. The critical endpoints
(E and E), the multicritical point (M), and the six-state clock
multicritical point (S) are noted.

ordered phases disorder by first-order transition, again
characterized by narrow coexistence regions and small la-
tent heats. This is a new phase-diagram topology, also in-
dependently discovered in a Landau theory study* which
was communicated to us after this work was completed.
The isotropic, uniaxial, and biaxial phases meet at critical
endpoints - (E and E). As a technical curiosity it may be
noted that each uniaxial phase is realized, under renormal-
ization group, in two ways. For example, the rod-aligned
phase with the z axis is realized, to the left of the phase
diagrams, by the dominance of the Z cell state. More to
the center of the diagrams, this phase is realized by the
intermingled dominances of ZX and ZY. The two basins
are separated by a renormalization-group null line,® con-
trolled by an Ising infinite-temperature fixed point.
Figures 2(e) and 2(f) show u 4= —20.8J%, for which
value the two critical endpoints merge. The two critical

TABLE III. Multicritical fixed points. For both fixed points,
all x¥ that are not shown vanish. All y, that are not shown are
irrelevant (negative).

(a) M*
Location (x,=w,/ws)
(X1;X5=Xg,X¢,X7;X12)* =(0.775;0.484,0.202,0. 146;0.557)
Relevant eigenvalue exponents:
(¥1,¥2,93)=(1.444,0.619,0.533)

(b) S* (six-state clock)

Location -

(x5=x35,%¢,%7)* =(0.685,0.235,0.080)

Relevant eigenvalue exponents:
(y1,y2)=1(0.840,0.167)

lines meet on the first-order boundary at point M. Under
renormalization group, this point is controlled by its own
fixed point M* [Table III(a)] in the full space of the
flows. Thus the point M has its own distinctive scaling
exponents, three of which are relevant [y;_; in Table
III(a)]. This leads us to conclude that M is a novel mul-
ticritical point. The four phases thus meet at M, where
there is a direct, higher-order transition between the biax-
ial and isotropic phases. On each side of M, the disorder-
ing lines of the uniaxial phases are still weakly first order.
This phase diagram topology was previously obtained by
mean-field studies!™ and is hereby confirmed by renor-
malization group. It is consistent with the experimental
results to date.’

For more negative values of u 4, second-order segments
(of three-state Potts criticality) emanate from the four-
phase point onto the disordering boundaries. Such seg-
ments, also emanating from the two pure-system limits,
are bounded by tricritical points. The four-phase point [S
in Figs. 2(g) and 2(h)] becomes the confluence of four
second-order boundaries and changes multicritical charac-
ter. Its governing fixed point S* is given in Table III(b).
This multicritical point is more stable than M. It corre-
sponds to the six-state clock transition, which is again
direct between the biaxial and isotropic phases, discussed
in Sec. IV below. Figures 2(g) and 2(h) show the case of
14 =— 0, which totally represses effective vacancies and
the concomitant first-order transitions. This topology,
modified for algebraic order in the neighborhood of S, is
an interesting candidate for the behavior of experimental
thick films (see below). By contrast, the multicritical to-
pology of Figs. 2(e) and 2(f) may be associated with bulk
behavior.

IV. SIX-STATE CLOCK BEHAVIOR

In order to further understand the multicritical point .S,
first consider the case of Jg =Jy=Jp=J. The phase dia-
gram is then symmetric and the multi-critical point S
occurs on the symmetry line of =0 and of equal road
and plate concentrations. On this line, the biaxial cells are
dominant at low temperature. Consider such a cell in the
ZX state. Figure 3(a) shows the interaction energies due
to a neighboring cell in the various biaxial states. These
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FIG. 3. For a given cell in state ZX, interaction energies for
the various states of a nearest-neighbor cell. (a) The symmetric
Jr=Jx=Jp case leads manifestly to the six-state clock model:
The interaction is of the form 2J(1—cos6), 6;;=6; —6;, where
each cell state C; defines an angle 6; which is an integer multi-
ple of 7/3. (b) The asymmetric Jr#Jp case gives a “paired”
six-state clock model, which, from points of comparable concen-
trations, unpairs under renormalization. For large concentra-
tion differences, under renormalization group, pairwise coales-
cence of the six states yields the (threefold) uniaxial phases.

are the energy relationships of a six-state clock model.!?

For Jgrs~Jp, the six-state model is “paired,” as shown
in Fig. 3(b). The multi-critical point .S occurs at unequal
road and plate concentrations, which appear to compen-
sate the interaction pairing: Under rescaling, the mul-
ticritical point renormalizes to an unpaired six-state clock
model. Note that we define a general “paired” six-state
clock model by

J(ZX,ZX) < {J(ZX,YX)£J (ZX,ZY)}
<J(ZX, XY )=J(ZX,YZ )<J(ZX,XZ ). (5)

In all biaxial phases and biaxial-isotropic phase
boundaries of the present study, energies renormalize to
the general “unpaired” model, defined by modifying Eq.
(5) with ,

J(ZX,YX )=J(ZX,ZY ) . (6)

Of novel interest here is the two-dimensional version of
the model. This would have to be several layers thick, in
order to accommodate two percolating clusters and, there-
by, biaxial order. In that case, from the properties of the
six-state clock model,'?> and intermediate temperature
range of algebraic (Kosterlitz-Thouless!!) biaxial order
would be expected, followed by conventional biaxial order
at low temperatures. In fact, the phase diagram could
very much look like Figs. 2(g) and 2(h) with the region
where the two second-order boundaries stay together be-
ing in reality replaced by the segment of algebraic order,
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distinguished by continuously varying (nonuniversal) criti-
cal exponents.

The next question is whether such behavior could
emerge in experimental systems, where the three discrete
lattice axes are replaced by continuous rotational symme-
try. One analogous situation involves the two-
dimensional (continuous) XY model. A prefacing
transformation which projects the signs of the cosine and
sine of the local angle is indeed seen!® to connect approxi-
mately the Kosterlitz-Thouless phase to the nonuniversal
critical line of the (discrete) Ashkin-Teller model. Thus
this new possibility in the biaxial systems certainly

“deserves experimental and further theoretical considera-

tion.

V. SYSTEMS OF SINGLE-COMPONENT,
BIAXIAL MOLECULES

Consider the lattice model of a single species of biaxial
molecules. A molecule is represented by a rectangular
prism with edge lengths a > b >c¢. It can orient along the
lattice axes, thus being in one of six states labeled, for ex-
ample, by the alignments of the longest and shortest
edges. One simple Hamiltonian assigns energies to
nearest-neighbor pairs proportionally to their projected
area of overlap, thereby accounting for van der Waals at-
traction:

J(ZX,ZX)=—(ab +bc +ca)/3,
J(ZX,YX )=—(b>+2bc)/3 ,
J(ZX,YZ )=J(ZX,XZ )=J(ZX,XY )
=—(2bc +¢?) /3,
J(ZX,ZY )= —(2ac +c*)/3 .

As above, the pair interactions have been averaged over
the relative positions of the two molecules. It can be veri-
fied that the energies given by Egs. (7) satisfy?® Eq. (5), so
that the model maps onto the paired six-state clock
model, namely onto the 6 X 6 block of the preceding treat-
ment. The Migdal-Kadanoff renormalization-group pro-

066 068
1asF g/ 1T '
4.1, 17
30 .
kT Isotropic h
c2
20~ PU
S
10 —
RU Biaxial
o} 1 ! 1
(0} 0.5 fogoa/c=10
logypb/c

FIG. 4. Calculated phase diagram for a one-component sys-
tem of biaxial molecules, with edge lengths a >b >c¢. The case
a/c =10 is exhibited for varying b /c. The ordered phases are
characterized by the alignment of either the long axes (RU), or
the short axes (PU), or both (Biaxial).
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cedure can again be applied. At this point, it would be
appropriate to include effective vacancy fluctuations. We
have not done so, and therefore obtain the possible
second-order transitions. These are exhibited in Fig. 4, in
the space of temperature and aspect ratio. In this system,
either the long axes (RU), or the short axes (PU), or both
axes (Biaxial) of the molecules order at low temperatures.
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