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The kinetics of diffusion limited aggregation have been explored in two and three dimensions
using Monte Carlo simulations. If the initial particle concentration is very low, our model is
equivalent to the Witten—Sander mode! of diffusion limited aggregation, and the resulting cluster
has 2 Hausdorff dimensionality (D ) substantially lower than the ordinary Euclidean
dimensionality {d } {(D~5d /6). Under these conditions, the radius of gyration {R, } of the clusters
grows according to the rate law R, (r)~11"/®* 2~} obtained previously. If the initial particle
concentration is large, the radius of gyration increases linearly with time, and the clusters are
uniform (D = d ) on all but very short length scales. In general, the clusters grow like Witten—
Sander clusters during the early stages of growth. As the clusters grow larger and larger, they
become less and less dense until their density approaches that of the surrounding medium. At this
stage of growth, there is a crossover from a growth exponent of 1/(2 + D — d) for R, to linear
growth, and the dependence of the radius of gyration on cluster size crosses aver from R, ~ NP
(B~6/5d)to R, ~NP (B’ = 1/d). The structure of the cluster is Witten—Sander-like on short
lenigth scales but uniform on long leagth scales. At no stage does the cluster growth fallow the
classical? /> behavior. Intwo dimensional space, the rate of increase of massis givenby N {t )~ for

Monte Carlo simulation of diffusion controlled colloid growth rates in two and
three dimensions

diffusion limited aggregation in the easly stages of growth.

I. INTRODUCTION

Witten and Sander' have recently developed a model
for diffusion limited aggregation which leads to complex
random dendritic structures. Numerical simulations using
the Witten—Sander (WS) madel indicate that these structures
possess interesting scaling and universality properties.’
These results and recent work on other models*™ have sti-
mulated considerable theoretical® ! and experimental inter-
est'? in the relationship(s) between growth mechanisms and
morphology particularly in those cases where the resulting
structures have a fractal'® geometry.

It has recently been shown that WS clusters develop in
time according to the growth law

R(t)~t“/(2+D_d”, (1)
where R (¢ ) is the mean radius of the cluster at time r, 4 is the
(ordinary) Euclidean dimensionality of the cluster, and D is
the Hausdocff'* (fractal'} dimensionality of the cluster.
We'® have derived Eq. (1) subjéct 10 the conditions 433 and
({d — D) < 2. Similar results have been obtained by Witten for
d = 3." The easiest way"’ to derive Eq. {1} is 10 determine
the flux of material entering the cluster from the stcady state
concentration profile using the diffusion equation

1 ir"“ dCir, t) — dC(r, t) -0
ri=' dr dr dt
(at steady state), (2)
where C (r, 1) is the concentration profile at time ¢. For d<2,
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the concentration profile does not reach a steady state, and
this approach cannot be used.

For the case of three dimensional clusters, we have
found from numerical simulations? that the Hausdorff di-
mensionality (D ) has a value of ~2.5. For an aggregate with
a Hausdorff dimenstanality of 2.5 growing under diffusion
limited conditions, Eq. {1) gives

Rg(z}_'{l?/))’ ‘3)

where R, is the radius of gyration at time £, Since N ~ R 2, we
also expect that

Nt)~2573), (4)

Similarly, for diffusion limited aggregation in two di-
mensions"? D= 5/3. If D is exactly 5/3 and if Eq. (1) is ap-
plied in 4 = 2, we expect that

R, (t)~10 (5)
and

N(t)~t'c. {6}

The main objective of this paper is to test Egs. (3)«6).

The simulations {described below) were carried out for
finite systems with a nonzero (small in most cases) concen-
tration of particles. After an initial transient, we expect the
clusters to grow according to Egs. {(3) and (4) for d =3 or
Eqgs. (5) and (6) for d = 2. As the clusters grow larger and
larger, their density becomes smaller and smaller until the
density of the cluster approaches the average density of the
particles in the medium. During the early stages of growth,
the clusters should be very similar to those grown according
tothe WS method.’ Cansequently, weexpect that R, ~N'/?
and Ci{r}~r” ~ ¢ where C{r) is the density—density correla-
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tion function. Density—density correlation functions ob-
tained from the model used in this paper (for d = 2) have
been described previously. '’

As the density of the clusters approaches the density of
the particle bath, both the rate of growth of the radius of
gyration and the morphology of the clusters will change.
After passing through a “‘crossover” region, we expect to
find that

R (t)~t (foralld) (7)

and
N(t)~t¢ (foralld). (8)

In the final stage, the cluster growth will deplete the particles
and growth will slow down rapidly.

Il. SIMULATION METHODS

The simulations used in connection with the work de-
scribed in this paper were carried out using two dimensional
or three dimensional lattice models. The simulation starts
with a single stationary occupied site or “‘seed” at the center
of a square or simple cubic lattice. A large number of mobile
sites or “particles” are then added at random to unoccupied
sites of the lattice. Diffusion of the particles is represented by
a series of jumps to nearest neighbor sites. One of the parti-
cles is selected at random and an attempt is made to move it
to one of its nearest neighbor sites (also selected at random).
If the particle moves to a site which is adjacent to the seed or
adjacent to a particle which is attached to the seed by a series
of occupied lattice sites (i.e., a particle which is part of a
growing cluster), it remains stationary and becomes part of
the cluster. If the attempted move would transfer the particle
to a site already occupied by a particle, the move is not made
and another particle is selected (we do not allow more than
one particle to occupy a single lattice site). Once a particle
has been incorporated into the cluster, all other particles
which are in its nearest neighbor sites and all other particles
which are connected to it via a series of nearest neighbor sites
also become part of the cluster. Periodic boundary condi-
tions are used in these simulations.

A running sum of successful and unsuccessful moves
per particle is kept as a measure of ““time” in these simula-
tions. Most of our calculations have been carried out with a
single seed particle, but some results were also obtained with
either an ordered or random array of multiple growth sites.

lll. RESULTS

A. Two dimensional simulations

Figure 1 shows some of the results of a simulation
which was started with a single stationary seed particle and
20 000 mobile particles on a 400X 400 lattice [i.e., initial
particle concentration (p) of 0.125 particles per lattice site].
During the initial stages of growth, the cluster closely resem-
bles clusters obtained using the WS model. For example,
Figs. 1{a) and 1(b) show the cluster after 1000 and 5000 parti-
cles have been added. Even after 10 000 particles have been
added [Figure 1(c)], the cluster still resembles a Witten—
Sander cluster. However, at this stage the cluster is signifi-
cantly denser than a WS cluster of the same size. In most of
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the simulations we have carried out using the WS model, the
cluster has approached very close to the edges of a 400 X 400
lattice or reached beyond the edges after 10 000 particles
have been added. After 20 000 particles have been added
[Figure 1(d)], the cluster has grown beyond the edges of the
400 % 400 lattice. Figure 2 shows the results of a similar sim-
ulation in which 40 000 mobile particles were added to a
single seed on a 400400 lattice (p = 0.25). Figure 2(a)
shows the cluster after 1000 particles have been added. It is
quite similar to that shown in Fig. 1(a) and also similar to a
WS cluster of 1000 particles. In Figure 2(b), 5000 of the
40 000 particles have been added to the cluster. At this stage,
the cluster is noticeably more compact than the cluster
shown in Fig. 1{b) and also more compact than a WS cluster
of 5000 particles. By the time cluster has grown to a size of
10 000 particles [Figure 2(c}], it has become apparent that
the structure is quite uniform on all but small length scales.
Figure 2(d) shows the cluster after 20 000 (50%) of the mo-
bile particles have been added to the cluster.

Figure 3 shows the dependence of In(R, ) on In(V) dur-
ing simulations in which 10 000 (curve A, 20 000 (B), 40 000
(C), and 50 000 (D) particles were added to a single growth
site on a 400 X 400 square lattice. The corresponding initial
concentrations p are 0.0625, 0.125, 0.25, and 0.3125 parti-
cles per lattice site. At an initial concentration of 0.0625, the
cluster resembles a WS cluster throughout its entire growth,
and we find that R, ~ N’ (8=0.6). For the simulation start-
ing at a concentration of 0.125 (B ), the initial growth is very
much like that of a WS cluster, but there are noticeable de-
viations towards the later stages. The dependence of In(R, )
on In(V) is not completely linear. Part of the nonlinearity
may be because of the folding about the edges of the lattice to
represent the growth into adjacent lattice images which is
not taken into account in calculating R, . At larger concen-
trations (curves C and D), the transition from WS growth to
a more uniform growth process occurs at much earlier
stages, and we find that R, ~N 172 for large clusters. The
curves C and D clearly exhibit crossover behavior from the
nonclassical WS growth to classical growth of a compact
structure as the concentration difference between the cluster
and the medium decreases. In our opinion, there as yet is not
an adequate theoretical explanation for this crossover be-
havior.

The main objective of our simulations was to explore
growth rates in diffusion limited aggregation. Figure 4
shows the dependence of R, on “time” (number of Monte
Carlo steps per particle) for simulations carried out under
the same conditions which were used to obtain the results
shown in Fig. 3. To facilitate comparison with Eqgs. (5) and
(7), dashed lines with slopes of 3/5 and 1.0 have been drawn
in Fig. 4. For curve 4 (p = 0.0625), the growth of the radius
of gyration is described quite well by Eq. (5) throughout most
of the simulation (i.e., R, ~>/°). For curve B(p = 0.125), the
growth of the radius of gyration also has an exponent of
about 5/3 throughout most of the simulation. However, in
this case the slope increases as the cluster density approaches
the density of the growth medium and decreases quite sharp-
ly as the particles are depleted. For the simulation carried
out at an initial density of p = 0.25 (curve C), there is a clear
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FIG. 1. Growth of a two-dimensional cluster from an initial state containing one seed or growth site and 20 000 mobile sites or particles on a 400 X 400 lattice.
(a) At this stage in the simulation 1000 particles have been added to the original seed. This cluster closely resembles a typical cluster of 1000 particles grown
using the WS model for diffusion limited aggregation. (b) Five thousand particles have now been added to the cluster which still closely resembles a WS cluster
of the same size (number of particles). (c) This figure shows a cluster of 10 000 particles. The cluster still resembles a Witten—Sander cluster but is substantially
denser. (d) All 20 000 mobile particles have now been added. The cluster has grown into the periodic lattice images and growth from adjacent lattice images

can be seen in this figure.

crossover from ¢ */> to t ! behavior. Curve D is the average of
the results of six simulations. The density is quite high
(p = 0.3125). Consequently, some quite large “temporary”
clusters exist during the simulation and statistical fluctu-
ations become much larger than in simulations carried out at
lower densities. However, curves C and D together provide
quite strong support for ¢ ! growth of the radius of gyration at
large cluster sizes.

Figure 5 shows the growth of the mass (number of parti-
cles) obtained from the simulations which were used to pro-
duce Fig. 4. Curves A and B, obtained at relatively low con-
centrations, agree with the ¢! growth predicted by Eq. (6).
Similarly, curves C and D show a crossover to ¢ 2behavior for
higher concentrations and/or large cluster sizes. Again, the
crossover is seen most clearly in curve C (40 000 particles,
p=0.25).

Simulations have also been carried out using more than

one seed or growth site. Figure 6 shows the dependence of N

" (the number of particles added to any of the seeds) as a func-

tion of time during four simulations at four different concen-
trations with 50 seeds on a 400 400 lattice. Curves A and B
correspond to relatively low concentrations (p = 0.062 and
0.125 particles per lattice site, respectively). The dependence
of N and ¢ can be described approximately by a power law
with an exponent slightly larger than the theoretical value of
1.0 at intermediate times. At larger concentrations (p = 0.25
for curve C and 0.3125 for curve D), the slope in the plots of
In(V) vs In (¢ ) is larger but does not approach the theoretical
value of 2.0. One reason for this is that the clusters are rela-
tively small and “interfere” with each other’s growth.!” As
clusters approach each other, the effective concentration at
the cluster/medium interface is reduced below that which
would be found if the clusters were very far from each other.
A similar competitive phenomenon occurs in classical diffu-
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FIG. 2. This figure shows some of the resuits of a two-dimensional simulation in which 40 000 particles were added to a 400 X 400 lattice containing a single
growth site at the center. (a) At the early stages of growth (1000 particles have been added in this figure) the cluster closely resembles a WS cluster. (b) At this
stage 5000 particles have been added and the cluster is already considerably more compact than a WS cluster of 5000 particles. The average density of the
cluster is now similar to the average concentration of the particles {0.25 particles per lattice site). (c) Ten thousand particles have now been added to the cluster
which is uniform on all but quite short length scales. (d) Now 20 000 particles have been added (50% of the original 40 000 particles). The cluster is denser and

considerably more uniform than the cluster of 20 000 particles shown in Fig. 1(d).
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FIG. 3. Dependence of radius of gyra-
tion (R, } on cluster size (V) for two-di-
mensional lattice models of diffusion
limited aggregation in the form of log-
log plots. The simulations were carried
out on a 400X 400 square lattice with
one “seed” and a variable number of
particles which were present at all
times as either mobile particles or as
part of the cluster grown from the
seed. Curve A shows the results for
10 000 particles (p = 0.0625 particles
per lattice site). For curve B, p = 0.125
{20000 particles), for curve C,
p=0.25 (40000 particles) and for
curve D, p = 0.3125 (50 000 particles).
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FIG. 4. This figure shows how the radius
of gyration (R,) increases with time.
Curves A, B, C, and D were obtained us-
ing 10000, 20 000, 40 000, and 50 000
particles, respectively, in the simulation.
All simulations were carried out using a
400 400 square lattice. Curve D was
obtained by averaging results from six
simulations. “Time” is in units of Monte
Carlo trials per particle.

sion controlled reacting systems when the concentration of
reacting sinks is finite.'®

B. Three dimensional simulations

Similar simulations have been carried out on a three
dimensional lattice. The qualitative dependence of the radi-
us of gyration on the cluster size is similar to that observed in
two dimensional simulations. If the system is started out
with a small particle concentration, the WS behavior persists
until the late stages of the simulation, and we find that
R, ~N? (B=0.4). If the initial concentration of particles is
large, there is a crossover from $=0.4 to f=~1/3 during the
early stages of growth.

Figure 7 shows the dependence of cluster size (N) on
time (¢ ) for simulations carried out on a 60X 60X 60 cubic
lattice with a single seed or growth site. To obtain curve D,
40 000 particles were added at the start of the simulation
(p = 0.185). To obtain curves C, B, and A, the initial densi-
ties were set to 0.0926, 0.0463, and 0.0231 particles per lat-
tice site, respectively. The results shown in curves B, C, and
Din Fig. 7 are each taken from a single simulation, and curve

—
—

A is the average of five simulations. The two dashed lines
shown in Fig. 7 have slopes of 3.0 and 5/3 corresponding to
Eqgs. (4) and (8). At low particle concentrations, the clusters
grow with the structure of three dimensional WS clusters
and N~¢® (§=5/3). At high particle concentrations, the
clusters have a uniform density distribution on all but very
small length scales and § = 3. At intermediate densities, we
would expect to see a crossover from § ~5/3 to 8= 3. There
is some evidence for this behavior, but we have not been able
to carry out simulations on a large enough system to see
N~t3? and N~t? behavior at different stages in the same
simulation.

The time dependence of the radius of gyration obtained
from these simulations is shown in Fig. 8. For an initial con-
centration of 0.0231 particles per lattice site (curve A), we
find that R, ~ 1" (7=2/3) throughout much of the simula-
tion, in good agreement with Eq. (3). In the case of a high
initial particle concentration in the medium (p = 0.185 par-
ticles per lattice site for curve D), we find that R, ~¢"
{(7=1.0) in accord with Eq. (7). At intermediate concentra-
tions (curves B and C), we observe intermediate behavior.
The finite size of our simulations and statistical uncertainties

2d

o
T

SLOPE=2.0

tn (N)

FIG. 5. Time dependence of the radius of
gyration (R, ) for the two dimensional sim-
ulations used to obtain Figs. 3 and 4.
Curve D was again obtained by averaging
results from six simulations using 50 000
particles on a 400400 Ilattice
(p = 0.3128). The initial particle densities
in the other simulations were 0.0625 for
curve A, 0.125 for curve B, and 0.25 for
curve C.

N Wb O N OO

In (1)
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FIG. 6. Dependence of cluster mass (¥ } on
—  Monte Carlo time for simulations in
which 10 000 particles (curve A), 20 000
-} particles (curve B), 40 000 particles (curve
C), and 50 000 particles were added to 50
growth sites randomly placed on a
400400 lattice. The straight lines with
slopes of 1.0 and 2.0 represent the limiting
low and high concentration growth law
for large isolated clusters.

L
0 | 2 3 4 5 6
ln (t)

make it difficult to draw conclusions from curves B and C,
but in the region where statistical errors are smallest (large
cluster sizes), the slope of curve B is closer to 2/3 and the
slope of curve C is closer to 1.0.

The data presented in Fig. 8 indicate that 7 =~ 1.0 at high
concentrations (o = 0.185) and 5=~ 2/3 at relatively low con-
centrations {0.0231). It is possible that 17 would become even
smaller at smaller concentrations. Consequently, similar
simulations have been carried out at lower concentrations.
Figure 9 shows the results obtained using 5000 mobile parti-
cles on 70X 70 X 70 lattices (p = 0.0146) and on 80X 80X 80
lattices (p = 0.00 977). The results shown in Figure 9 indi-
cate that the limiting {p—0) value for the exponent 7 is close
to 2/3.

V. DISCUSSION

Diffusion limited aggregation has been simulated under
conditions where all of the particles are present either as
mobile particles or as part of a growing cluster. In early
stages of the cluster growth when the cluster density is less
than the medium density, this model is equivalent to the
Witten-Sander model for diffusion limited aggregation.’
Under these conditions, we find that the radius of gyration

grows according to the growth law
V2+D—d)
R, ~tV+P-), o)

in agreement with our earlier results. Equation (9) implies
that the time dependence of the number of particles in the
cluster will be given by a power law relationship of the form

N~tD/(2+D~d). (10)

Our simulations are in good agreement with Eq. (10) in two
and three dimensions if D~5/3 for d = 2 and D~5/2 for
d=3.

At later stages of cluster growth when the cluster den-
sity has approached the medium density (below the percola-
tion threshold), we find that

R, ~t (11)

for d = 2 and 3. In this limit, the clusters have a uniform
structure on all but very short length scales.

Under most circumstances (i.e., at intermediate concen-
trations), the initial stages produce WS clusters which grow
according to Egs. (9) and (10). As the clusters grow larger and
larger, they become less and less dense until the density of
the cluster approaches the density of the particles in the sur-
rounding medium. At this stage there is a crossover from a

Iln (N)

FIG. 7. Time dependence of tatal cluster
size {N¥)during simulations in which par-
ticles were added to a single growth site
on a 60 X 60 60 lattice. The initial con-
ditions were 5000 particles ( p = 0.0231)
for curve A, 10000 particles
(p = 0.0463) for curve B, 20 000 parti-
cles (p=0.0926) for curve C, and
P s 40000 mobile particles (p = 0.185) for
curve D. The limiting low concentration

/ \ N~1¢5/3 and high concentration N ~73°
behavior can be clearly seen in this fig-

SLOPE=5/3 | ur

i 1 { !

in{t)

7 8
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FIG. 8. This figure shows the time de-
pendence of the radius of gyration cal-
culated during the simulations used to
obtain the results shown in Fig. 7. The
concentrations used in these simula-
tions were 0.0231 (curve A}, 0.0463
(curve B), 0.0926 (curve C), and 0.185
(curve D) particles per lattice site.

.50

in (t)

growth exponent of 1/(2 + D — d) (for R,) to 1.0, and the
Hausdorff dimensionality of the cluster crosses over from
D~5d /6 to D~d.

The crossover in the growth exponent is accompanied
by a crossover in the process whereby particles are added to
the growing cluster. The total flux of particles added to the
cluster contains two contributions; the first is the diffusive
flux (/)5 ).!* The second contribution comes from the advance
of the cluster “surface” into the surrounding medium (/¢ ). A
rough estimate o f the contribution J,, is given by '

Jp =Abp/R,, (12)
where 4 is the external area of the cluster and dp is the differ-
ence between the concentration of particles in the bath and in
the cluster. The second contribution to the flux of particles is
given by

Jx =VApo, (13)

where V is the velocity with which the surface is advancing
and p, is the particle concentration (average concentration at
long distances from the cluster). The total rate of growth of
the cluster is given by

dN

—=Jp +Jx. 14
2 = Jo Uk (14)

3.00 T T T 1 T

At early stages of the cluster growth J, »J, the diffusive
flux is dominant and the system is in the regime discussed
earlier.'> At later stages of the cluster growth §p~0 and
Jx >»Jp ~0so the cluster surface, or interface, advances into
the medium with a constant velocity.

The surprising success in two dimensions of the steady
state diffusional picture on which our model is based de-
serves comment. The result R () ~¢!/? for d = 2 appears to
explain the simulation despite the fact that in two dimen-
sions there is no steady state solution to the diffusion Eq. (2).
For absorbing boundary conditions at R, the exact result for
Jp is known to be

Dolt) =i 2)

m/Jo

X [Y3(kR) +J3(kR)] ", (15)

where Y, and J, are zeroth-order Bessel functions. In the

long-time limit Jj,(¢}—{ln ¢)~"! which, if employed in an

analysis, would vitiate the result presented in Eq. (1). How-
ever, the short time limit leads to

Iplt}opomDt) =12 4, (16)

% exp( — Dk *t)

which in the early stages of growth predicts for a compact

2.50

2.00

1.50

ln(Rg)

1.00

.50

FIG. 9. Time dependence of the radius
of gyration for clusters of 5000 parti-
cles each grown on 70X70X70
(p=00146) and 80 80x 80
(p=0.00977) cubic lattices. The
dashed line has a slope of 2/3 and rep-
resents our theoretical prediction.
Curve A is the average of four simula-
tions carried out on a 70X 70 X 70 lat-
tice and curve B is the average of two
simulations carried out on an
80< 80 80 lattice.

tn (t)
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cluster in two dimensions the rate law

dN _ 12 ,—1/2

” Jplt)~N"* ¢t . (17)
This short-time expression for d = 2 predicts N () ~¢. If we
apply the result to a cluster of Hausdorff dimensionality D,
we obtain R, (¢) ~¢ ~'/? in agreement with the d = 2 limit of
Eq. (1). While this argument is helpful in providing an expla-
nation for why our results work in two dimensions, it is far
from rigorous. We believe that further work on two dimen-
sional diffusion limited cluster growth is needed.

In this work, it has been assumed that the particles
forming the aggregate follow diffusional (Brownian) trajec-
tories with a Hausdorff dimensionality D of 2.0. However,
the analysis can be generalized to cases where the particle
trajectory has a Hausdorff dimensionality different from 2.
For example, if the particles follow random linear trajector-
ies (D = 1.0), we expect that the cluster growth rate will be
given by

dN (1) d—1

- ~R{ (18)
or

Rg(t)~tl/(l+D——d). (19)

Equations {15) and (16) are appropriate only ifd — D < 1. If
D — d > 1, the cluster is transparent to a linear trajectory.
However, for this reasond — D < 1 if the cluster is generated
by particles having linear trajectories. More generally if the
particle trajectory has a fractal dimensionality of D, the
growth law for the cluster will be given by

ﬂ~Rg““”T’ and R, ~t"(Pr+P-D (20)
dt

with the condition D, > (d — D).

P. Meakin and J. M. Deutch: Diffusion controlled colloid growth rates

A further generalization is possible if the medium in
which the diffusion limited growth is occurring is itself a
fractal structure. For example, for the case of diffusion limit-
ed aggregation on a random walk we have

N3(t)~t, R (N)~N'2, R ~t'/, (21)

Another example would be diffusion limited aggregation on
a percolation cluster.

We are in the process of carrying out simulations of
diffusion limited aggregation with fractal particle trajector-
ies and simulations of diffusion limited aggregation on frac-
tal substrates such as percolation clusters.'®
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