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A theory of diffusion controlled reactions with randomly distributed penetrable sinks is presented. The model
considered includes a reversible reaction between a diffusing species, and a fixed reactive sink. For low
reactivity, both steady state and initial value problems are discussed. The dependence on the sink

concentration of the rate coefficients and the diffusion coefficients is found. By considering the limit of fast

irreversible reaction, the connection is made with previous work.

. INTRODUCTION

Recently there has been considerable interest in con-
centration effects on diffusion controlled reactions.'™®
The problem of central concern is the determination of
the effective rate and diffusion coefficients for solute
species that react with statistically distributed sinks.

Up to the present attention has been restricted to per-
fectly absorbing sinks, where reaction takes place in-
stantaneously upon contact of the solute species with the
stationary sink. There will be many cases where this
perfectly absorbing, irreversible behavior may not be
an adequate representation. In particular, one would
like to describe reverse reactions and the attainment
of kinetic equilibrium within the framework of the dif-
fusion controlled reaction model.

In this paper we develop a new formalism for attack-
ing this problem and discuss several new aspects.
First, we present a simple model of diffusion controlled
reactions in a homogeneous medium containing many
“reaction centers” (they are no longer perfect “sinks”)
where the reversible reaction

A=B (1.1)

takes place within the fixed reaction centers. For a
steady-state situation, we discuss how diffusional ef-
fects can modify the observed rate coefficients and how
reaction effects can modify the observed diffusion coef-
ficients. We also examine the long time properties of
the corresponding initial value problem. For an irre-
versible reaction, we discuss the modification of ex-
isting results due to penetrable sinks, and demonstrate
that the results for inpenetrable sinks can be obtained
within our formalism, when the absorption rate is made
very large. We close with a brief recapitulation of our
results and a discussion of the relevant experimental
situations.

Il. FORMALISM AND CALCULATION OF THE
GREEN’S FUNCTION

We consider kinetic equations of the general form

8C ,

a0 =DaVECA = 2A(r) Co+25(r) Cp+Su(r, )

2gupported in part by the Defense Advanced Research Pro-
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at

=Dy V23Cy + Aa(r) C 4 = A5(r) Cp + Sp(r, 1) . (2.1
The two chemical species A and B are diffusing through
a medium. The chemical reaction

A=B
occurs locally with forward rate A, and reverse rate Ap.
Additional (external) sources of species A and B are in-

troduced by the source terms S,(r, ) and Sg(r, 1), re-
spectively.

Several problems may be treated using this descrip-
tion. For example, setting A5 =0, reduces Eq. (2.1) to
the irreversible removal of particles of type A at the
sinks. Specification of A4, A5, and the source terms de-
termine the physical model. In the model we will in-
vestigate, the reaction will be allowed to proceed only
within one or more spherical reaction sinks which are
in fixed locations. Assuming the reaction rate is uni-
form within the sink and the same for all sinks, we have

N

Aalr) =2y Zl: 8(|r-r,| -a),

. .

Ap(r) =2 2 0(r-1,| —a), (2.2)
121

where r, is the location of the center of the ith sink,

6(lr —r;l —a) is the Heaviside step function, and all

sinks are taken to have equal radius.

We shall consider the case of reaction centers ran-
domly distributed in space and we define the average
{f(r)) as an ensemble average over all possible center
configurations. The quantities we will determine are
(CA(r; t)) and (CB(I', t))‘

We introduce the notation

)
%
D

p-[P4 O ]
0 D
? (2.3)
A= [ M) =g (r):‘
- 7\,4(1') Ap (r)
S- l:SA(r, t)]
Sp(r, t)
© 1983 American Institute of Physics 203

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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so that ¢(r, f) obeys

acC

2
at—V D-C-A-C+S. (2.4)

It is convenient to Laplace—Fourier transform this equa-

tion. Defining

-

f =f e"’f e'®r f(r,)d’rdt (2.5)
0 14

Eq. (2.4) becomes

z2C(k,z) - Clk, ¢ =0)

=-kD- c-zﬁfx(k-k')-é(k’,z)dak'+§(k,z).

We define the convolution operation by (29
tx9 =0 )3ff(k k') - 9(k’) @’k (2.7
and formally express Eq. (2.8) as
26 -Gk, 1=0)= ~#2 D+ € -x* G+ 5(k, 2) (2.8)

or
[21+D%%] - G=-axC+ [k, 1=0)+Clk,t=0)] . (2.9)

To derive an equation for {c(r,?#)), we introduce the
projection operators P and ¢ where

Pf =(f) (2.10)
and

Qf=(1-P)f=f-(f) (2.11)
and the “unperturbed Green’s function”

G°(k, z) =[z1+ £*D]™? (2.12)

We consider, initially, the case that the sources, and
initial conditions, are uancorrelated with the reaction
center locations. This implies

Ps’'=(s")=8',
QS’ =0,
where 8’ = §(k, 1) +ék, t=0).

Applying the projection operators to Eq. (2.9), we
obtain

[z1+£2D]PE = - PA*[PE.Qc]+s’ (2.13)
and

[21+ 2% D] Q¢ =~ QA * [QE + PE) (2.14)
which may be written as

Q&=-G° - Ax[Q&+PE] , (2.15)
where

G° =[z1+£%D]! (2.16)
Accordingly one finds

Qé=-[|+c°-QM]“G°Qh*P3 . (2.17)

The “inverse convolution” formally indicated in Eq.

(2.17) is defined

f[A*]"(k—k’) A -k % = 6%k -k . (2.18)
We may combine Egs. (2.13) and (2. 17) to obtain

[z1+£%D]- Pé=—Prx*{I —[1+G° QA*]. G° - @A} PC+s’

=PA*[1+G° @r*]PE+s’ . (2.19)
We define the operator I' ; by
w=M*[1+6° - @]
=<n 2 (-6°- Qx*)"> (2.20)
n=0
-(3 (-reer oy y
n=0

so that

’ 37
R f<Z( x-G° Q) > @K', 2))d%
f Ik, k') - (3 (K, 2))d%K’
where the matrix Tis
Tk, k)= 2, (~21*6°Q)- 1) . (2.21)
n=0
If the reaction centers are uniformly distributed in
space, i.e., overlap is permitted, the quantity I'(k, k')
will simplify to

Ik, k') = (27 83(k - k') T (k) (2.22)

which yields
<@ =T(k) - &, 2) .

This result permits us to write a simple formal expres-
sion for the Green’s function for the averaged concen-
tration

Gk, z) =[z1+ D+ T (K)] (2.23)
with
TR = 2 {-1*G°QrA) . (2.24)

n=0

Equation (2. 24) is exact, subject only to the condi-
tions that the reaction centers be uniformly distributed
in space and the sources and initial conditions be uncor-
related from the location of the centers. We discuss
relaxing the second assumption later.

For our model for the reaction center, A(r) will be

i

- A'A KB
(2.25)
or
i=z R sin(ka) }:aka costka) [ Ax  —Xg
‘ -z M
=2 ™K (2.26)
[
where
A - i -
k) =| 4 ) 4y [sm(/’ea)k3 ka cos(ka)'J )
- 7\_4 XB
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it turns out to be convenient, at this stage, to discuss
the quantity T'(k,k’). The first term in the summation

L,
W
))_>r
—_
1z
]
=
-

kv in Eq. (2.21) is
"o = . k) & Ak - k")
n 7 i = [ Mok Golk) -, k) Bk, Ak - K)) | | |
kK ok, k' For randomly distributed sinks one finds

Ak - k') =<Zz: exp(ik - r; ~ ik’ - r,)>ll(k -k’

<&
"
S——
n-
—
rx
1
=
by
o
—_
=
»_>’
iz
T
1z
v;:'

=278 % 5%k - k') 11(0)

d) 2 :: since
N
ixory _ irr 33
2‘ e _er d’r . (2.27)

FIG. 1. Diagrammatic representation of the terms in Eq.

(2.24). Thus, the first term is
Ndama® [ x -2
Mk - k")) = (20)° 6%k = K) T 4% [ 4 B] . (2.28)
-2 A
Although we have already noted that the convolution 4 B
contained in I'; is not necessary for uniform systems, The second term in Eq. (2.21) is
1
—A*G° QM) =-[(A*G" - 1) - W) * 6°* V)]
- (‘21—)3 f Ok -Kk") - 6°(k, 2) - A(K' —K))d%"" — (—2?1)3 [ -k 67 &, 2 O ~R)dH (2.29)
i
We evaluate the first term as the right-hand side of Eq. (2.29):
Ak -k")-G° (%, 2) - AM(K'' -K'))
=D (explilk —k"') - ] expli(k’’ k") - r,)T(k k') - 6 ° ("', 2) - TI(E"" - k') (2. 30)
ij

=l:N(NV— 1) (2m)8 83(k — k’’) 63(k’’ — k') + (27)° % 5%(k —k')] STk k) GO, 2) IR —R') .

When the second term on the right-hand side of Eq. (2.29) is evaluated there is a cancellation so that

N 1
Vv (2n)?

The projection operator removes contributions due to two uncorrelated reaction centers.

—(x GO = fn(k-k') G (%', 2) - (K’ —¥)dk’ . (2.31)

It is convenient to introduce a diagrammatic notation for the terms in Eq. (2.21). The notation we use is based
on that used in studies of electronic structure in disordered systems.® Examples are shown in Fig. 1. A diagram
is read from left to right, with the horizontal line representing 6°. The vertices above the line represent the traps
and a vertical line connecting a vertex 7 to the horizontal line indicates a factor of A;. We have labeled the vertices
and shown the corresponding wave vectors in 6°, to aid in understanding the representation.

The averaging process and the presence of the projection operator @ in the summation reduce greatly the number
of diagrams that are included. The averaging process can be summarized by the following rules for evaluating
diagrams,

(1) Sum all K’s entering any vertex, subtract all k’s leaving a vertex.

(2) Replace all x;(k) by II(k) and the average by a product of delta functions of the sums from step 1 and multiply
each delta function by (2m)%.

For example, the diagram labeled d shown in Fig. 1 will be

(21313 _[ff Mylko —ky) - 6°(ky, 2) Ay — Ky) - 6° (kg 2) Aalksy — Ky) + 6°(ky, 2) - Ak, — K,))d®k, d%k,d3k,

2
“ oo S J [ Mo =K 6200, 2) - Ty —Kg) - 6° (g, 2) - Tk — )
- 6° (kg 2) - T(k; — k) 6%(ky ~ ky + kg — k) 6%(k, —k;) d°k, d*k,d’k, (2. 32)

2
= —(29_5)8 63(k0 —k4) ff H(ko — kl) . Go(kl, Z) . H{kl - kz) . GO(ka, Z) * n(kz -kl) . Go{ki, Z) . H(kj "k4) d3k1d3k2 .
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A A

FIG. 2. Diagrams to fourth order in scattering.
sible diagrams. (b) Nonadmissible diagrams.

(2) Admis-

We now need to sum all admissible diagrams. Due to
the presence of the projection operator, it is necessary
to sum only those diagrams where no vertical line can
be drawn through the diagrams such that all the vertices
on the right of the line are disconnected from all the
vertices on the left of the line. Figure 2(a) shows ex-
amples of diagrams that are allowed; Fig. 2(b) shows
diagrams that are not allowed.

From the rules for evaluating diagrams, we can im-
mediately see that the incoming k on the left-most ver-
text must equal the outgoing k on the right-most vertex.
This is simply a restatement of our previous point that
the homogeneity of the reaction center distribution al-
lows us to remove the convolution in I';,. For evalua-
tion of the diagrams, it is convenient to retain the dis-
tinction.

The quantities of interest are the observed rate coef-
ficient matrix and the observed diffusion coefficient ma-
trix. These quantities are determined according to

Mg, = limI'(k, 2) , (2. 33)
-0
o
Dou:D+1im%V§r(k, Z) . (2. 34)
k-0
20

It has been pointed out by Felderhof, Deutch, and
Titulaer that this definition of the effective diffusion
coefficient will contain contributions that may be more
properly included as a k* contribution to the rate coef-
ficient.

11}, RESULTS FOR SYSTEMS WITH LOW REACTIVITY

The expression we have derived is an expansion with
the reaction rate as the expansion parameter. This
formalism is hence convenient for situations where 2
is small. We will consider three cases: (1) steady
state; (2) the long time behavior of an initial value prob-
lem; and (3) the effect of correlation between the initial
conditions and the location of the reaction center.

A. Steady state

In this case we are interested in results for the limit
2=0. We need to evaluate all the all the admissible
diagram with

1

—_— 0
° D
P , (3.1)
0
Do

Our objective is to evaluate the sum displayed formally
in Eq. (2.21). Inthe limit z -0 certain classes of dia-
grams are divergent. These are shown in Fig. 3. Or-
dering the diagrams by powers of A, the first diagram
in each row of Fig. 3 are found to be the most strongly
divergent. This class of diagrams can, however, be
resummed to yield a convergent result:

T (k) =pA(k) — (—zﬁ—)s f nk-q - 6°(Q

- [1+p1(0) - 6°(a)]™ - (g - k) d’q . (3.2
Because the series summed is similar to the summation
used in the Debye—Huckel theory of electrolytes, !* we
have used the subscript DH. Muthukumar and Cukier*
have found a similar series of divergent contributions

in their treatment of the perfectly absorbing case.

Combining Eq. (3.2) with Eq. (2. 39) leads to the fol-
lowing expression for the rate coefficient

. [ 2a —Ag
1’!1_1%1 Tpy (k) = |: ]

_KA A’B
w g 2

xd & _ 8np’ zf (sinZ -1Icosl) 1 .

{¢> 8pa’y A 7 o ary, (3.3)
where

A A

2_2{ %A B

v=a (DA +DB> (3.4)
and

4 3
¢=p 7Tsa (3.5)

Performing the integration, we find

AN
111 A

FIG. 3. Divergent diagrams.

1yt
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r = {¢_[1+3[1 exp(= 2y ] =2y V'$ exp(-2yV§) = 7*¢[ 1+ exp(~ 27\’_)1]} (3.6)
- by 2 ¢
A B
For low densities, the rate per reaction center is
L rpa(0)= [ ta ‘A”] (129244 Fy24.00) (3.7)
p 3
-y Ap

This rate coefficient depends, to leading order, on the square root of the occupied volume fraction. Studies'™ of
perfectly absorbing sinks have also found a square root dependence.

The diffusion coefficient matrix, obtained from Egs. (3.2} and (2. 34), is

- -2 .
Dox =D+ 4"3%" { Mo P }r[ ] 8pa5y2f (=24 162+ ) cos(20) + (61° - 21D) sin(2) + § 3.8)
S T I+ ¢v°)
—A.q? An al 1
=D+ Al B d x(f)0+3¢y {g(blg+¢ [-5v% — 29V p+ B
Aya® - a? 4
+exp(— 21V ¢) (- p%t - 60 %® - 16¢7°%+ 21yf$+?g)]}).
For small ¥*¢ one finds
2( ¢ 2 ... 2@ 2, ...
. Dy-Nya <10+9¢y + ) Aga <10+9¢7 + )
Doy = 0 o . (3.9)
a — 2 . 0. — - o
Aa <1O+9¢7 + ) Dy -2pa® (10+9d)‘y + )
f
The effective diffusion coefficient matrix contains off pole structure of I’(0, z).
diagonal terms, and these off diagonal terms are not In the limit at long times, or small values of z, the
equal. In the extreme case that the reaction is irre- diagrams considered in the previous section remain
versible, Az =0, and to first order only one off diagonal divergent and hence, still dominate the sum in Eq.

term will be nonzero. The effective diffusion coefficient (2 21), We need then to evaluate

matrix then reflects the fact that a particle diffuses as

a reactant molecule until it becomes a product molecule Tou(k=0, 2) =pr(0) - Laf AMg) - 6°(g, 2)
at some point in space. (2m

p o -
B. Initial value problem ) [H (2n)° MO0 - & (q,z)] ‘Ma)d% 23 19)
Some situations are more accurately modeled by an where 1
initial value problem, rather than the steady state situa- m 0
tion considered in the previous section. Here we con- 6°(q,2) = . (3. 15)
sider the situation where the initial condition for the 0 _1_!
spatial arrangement of the concentration is uncorrelated z2+Dpq

to the positions of the reaction centers: One finds the resuit,

c(r,t=0)=c¢, I‘(k=0,t)=[ Aa _)‘B]
or (3. 10) A M
&k £=0) = 0°() . x {¢, _ 2% (" [singa) - ga cos(ga)"
m q
If this initial value is completely uncorrelated with the
location of the reaction centers, we must solve M(Z +ng %) +25(z + D,g%) —dg
. . ) (z+DAq ) (z+Dpq )+ ¢[Ma(2+Dg) + Ag(z + Dyg?]
[z1+D K2+ (R, 2)] - €k, 2) =E(R, t=0) (3.11) (3. 16)
or This expression can be evaluated in the same manner
2 . g . as used in the previous section. For simplicity, we will
clk,z) =[z1+D k®+ T(k, )] - &(k,t=0) . (8.12) consider the case D, =Dy in which case
Since ¢, is uniform Cpg(k=0, 1) = A -2
elr,2)=[z1+T(k=0,2)]" - ¢, (3.13) X4 A
and ¢(r, z) =c(z) is uniform in space. In this case c(¢) xdo -2 2 2, (1-e®) -2y _1¥(1+e™®)
will decay uniformly because we have averaged our re- 2% 5? Y ’
action center locations, with time scales related to the (3.17)

J. Chem. Phys., Vol. 79, No. 1, 1 July 1983

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where
Z+O(A 4+ A
y(Z) = | == ¢’§/4;2 B) and yU:y(O) . (3.18)
For small y, one finds
Ty = KA = Ag
DH—[_M N }(fb—%y%ﬁwﬁw--). (3.19)
B

The observed relaxation is found by the matrix inversion

Alg
Z+AN,

(3.20)

[21+T'(k=0,2)]"

B 1 zZ+ANg
T z[z+A( +25)] [

AN,

where
A=(0-555+3y95+ ).

In this expression y, and hence A, is still a function of
z. To obtain the time evolution we must invert the
Laplace transform.

The denominator in Eq. (3.20) is, for small A4, Ag,
and z,

z[z+A0,+25)]
2
ﬁz[z+(7\_,,+>\8) —%%qﬁ
1 (0 +25)2 Z+d(A,+Ag5)
T Do ] (3.21)

To lowest order in 2z, there are two important contri-
butions. First, there is a simple pole at z =0 which is
the equilibrium concentration of the two species

1 Ag  Ap
Aa+ g ‘M
There is also a contribution from the pole at
z=-¢{rs+2z). Because of the nonanalytic behavior
of A (or y) as a function of z, this contribution is com-

plicated. For very long times, where only the small
z behavior needs to be considered, and we find

- P (oD exp[— ¢\, +A5)t] D (25Y 5
|: ’ y :| [‘P(’m*‘{a)]s?z a® <12>t 32 (3.23)
Ory - DA

This behavior is different than would be expected from
a uniform medium with rate coefficients ¢, and ¢Ap at
all points in space. In such a system the medium,
where decay would be given by

S YR Y exp[;¢>(7;\A+’\B)t] . (3.24)
Gy — A Ate

The difference in behavior is due to screening. The
screening effects manifest themselves by speeding the
approach to equilibrium. The nonexponential decay will
only appear for times much greater than ¢(XA4 +2z) so in
the limit of very small ¢, this “diffusive tail” will not
be observable,

(3.22)

Kirkpatrick® has obtained results similar to Eq. (3.22)
for the case of perfectly absorbing spheres. He has,
however, argued that the expression is valid only for
small values of z (for long times) and that the square
root term should be expanded to yield (for our problem)

2[z+A(g+2p)] NZ{“(*A”BW ‘% (AD+/ZE)2 v

3/2
+ % (YA + )’B) [—Q—(KADJF/ZB )(b:l } .
(3.25)

This corresponds to simple exponential decay in time,
with the decay rate given by

Megr=Ma+25) 91 -392+3V 9y +...]. (3.26)

This expression has the same lowest order y and ¢ de-
pendence as the steady state rate [Eq. (3.7)]. A recent
scaling analysis by Tokuyama and Cukier® of perfectly
absorbing spheres supports the interpretation repre-
sented by Eq. (3.26). However, the true nature of the
long time behavior is far from settled. The complicated,
nonanalytic dependence of the various averaged quanti-
ties on the Laplace transform variable and the parame-
ters (e.g., Felderhof and Deutch! find corrections of
order ¢ In¢) suggests the true time dependence will be
considerably more complicated than simple exponential
decay, and that nonperturbative methods of analysis
should be applied to this problem. A recent step in this
direction has been made by Grassberger and Procaccia.’

C. Initial conditions correlated to the positions of the
reaction centers

In the derivation of Eq. (2.19), we have assumed that
the sources or the initial values were uncorrelated with
the reaction centers so that

P{s"y=s' . (3.27)

If we relax that requirement we find that the source (or
initial value) term in Eq. (2.19) is replaced by

3.,,(k, 2) =<f6 [-A+G°QT - s'>.

This implies that even if there are no external sources,
s’ =¢&(k, #=0), correlations may build up and introduce
an effective source in the averaged equation with some
complicated time (or z) dependence.

(3. 28)

To examine the importance of these terms, we con-
sidered a system where all the reactants are initially
located within the reaction centers. For the slow reac-
tion case, it can be demonstrated that the corrections
to the long time behavior are an order of magnitude (in
terms of v) smaller than the leading order contribution
determined in Sec. III B.

IV. HIGHLY REACTIVE SYSTEMS

Our previous results are valid only for slowly reacting
systems; the quantity ¥ must be small. In this section
we discuss the extension of our model to more reactive
systems. Specifically we consider a single irreversible
reaction at steady state in the limit of large v.

Because we will be interested in the limit of large ¥
we must consider a different and larger set of diagrams.
Direct evaluation of the diagrams is mathematically dif-
ficult and also unproductive since large numbers of the
diagrams are divergent.
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1= 3+ A+ A+ A+ N+

FIG. 4. The renormalized vertex is the sum of all interac-
tions with a single site.

W

We begin, instead, by defining a new, “renormalized”
vertex v(q,q’). This vertex is the summation of all dia-
grams that include only a single sink as shown in Fig.
4. We will demonstrate shortly that the new vertex is
well behaved in the limit oflarge A and that it is nonzero
as ¢ and g’ go to zero. The allowed diagrams are shown
in Fig. 5. There are again divergent diagrams and we
must resum a series of divergent diagrams (now ex-
pressed in terms of the modified vertex) to obtain a
finite result. The series of diagrams is shown in Fig.
5(b). The diagrams included in this sum are the most
strongly divergent to a given order in the sink density.
The series is again similar to the Debye-Huckel sum
[cf. Eq. (3.2)]. The result is

Tpulg) =pv(q,q’)

_ P f v(9,4°) Gy(a’) v{q’, 4) Glg) vlg’, @) &
(2n)® 1+pGilg") vig’,q")

(4.1)
To proceed with the calculation we need an expression
for v{g,q"). We find such an expression by considering
a single sink problem. For a single sink

[z+Dg¥&,=-2%¢,+8 (4.2)
which has the solution

Ce=[1+GoM*]"1G, 5 (4.3)
or

[z +Dg* ¢ Z (A% Gor'$ (4.4)
or

—AxE,48= D (=A* Gy} (4.5)

n=0

The new vertex will be defined as the sum of all interac-
tions with a single sink,

v(q,q") = Zo (= 2% Gy A (4.6)

If we solve the single sink problem with a source term
given by

s(r)=28(| r| —a)e'vr (4.7
the new vertex is simply Eq. (4.8),
v(q,q’) =[-r%C,+5] . (4.8)

The quantity c(r), will obey the inverse Fourier trans-
form of Eq. (4.2}, together with Eq. {4.7) which is

Dv3c,(r) - re,(r) =reier
vic,(r)=0,

r<a,
(4.9)
r>a.

Our renormalized vertex is the single body ¢ matrix
for this problem. Ghosh, Zhao, and Huber, ' and
Huber and Ghosh'? have also calculated this # matrix in
modeling fluorescence in solids. They considered the

average f-matrix approximation (ATA), which corre-
sponds to including only the first term in Eq. (4.1).
ATA does not contain the resummed divergent terms,
and hence does not show any nonanalytic dependence on
the density.

The

It is interesting to note that the problem has sources
within the sinks. Previous calculations that have used
a T-matrix formalism and perfectly absorbings inks
have had difficulties that appear to arise from the pos-
sibility of the sources overlapping the sinks.>? Qur
approach avoids such problems.

The solution to Eq. (4.9) can be written as

w i (ga) + 2 _ ilqa)
Mens 1) 7 9V Gy
c,(‘r):E Dg®+ 2 a
=P (ea)+ 5 i(ea)
n n+1 n
. a Aetier
X i,(ar)P,(cos 8 )+D—qm, r<a (4.10)
_ i AM2n+1) 7" qi (a)ji(qa) - ail(aa)j,(ga)
= z
A
w D+ in(aa)+mi;(aa)
2
r"' =<1 P,(cos8), v>a,

where a®= (/D) and cos(8’) =q - r, here j, and i, are the
spherical and modified spherical Bessel functions. !*
The renormalized vertex is found from Eqs. (4.8) and
(4.10) to be

)J,f(q a)

> inlg’a) +
v(a,q) =22 ). (—)"{(5" ++li ( > P,(cos 8)
0 77 iea)+ =iy ii(aa)

x—za—az[qajm(qa)i,,(aa) aaj,(qa) i .1(aa)]} (4.11)

q +
, g, aji(la-g'la)
Dg%+ 2 lq-qg’l ’

where cosf=q-q’.

1A AN

(a)
I A AN
(b)
FIG. 5. (a) Admissible diagrams with the renormalized ver-

tex; (b) diagrams included in Ipy.
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7=a\/§. (4.13)

The integral is too complicated to evaluate analytically.
To proceed, we make the “monopole approximation” for

SO TS N N TS SN (N ISR VOt vy N SN T I T |

kett " v(q,q) ,
Pko gl v(9,q)=limv(q, q) =4 [1 - @5(—)’1] ) (4.14)
- a-
6
- where
4
2_ y =l ko=4n1Da . (4.15)
s L | With this approximation, the rate coefficient is
1
o !l 2 3 4 5 6 7 8 910

¢. 8 9 A,,,:pko[l—tan:m]

FIG. 6. The rate coefficients as a function of volume fraction
of sinks for various values of v.

2(° ¥ [sin{)) tanh(y)]?
X<1+3¢ ;J; T [—l - cos(l) — ]

The expression for Ipy(q) is rather formidable. We % 1 dl (4.16)
will focus on the effective rate and diffusion coefficients 24 3¢ [1 _ tanh('y)] . .
in the low % limit as defined by Egs. (2.33). The rate ¥

coefficient is given by In the limit of high reactivity (A large), this reduces to

tanh(y) o 2
kyo=p4nDa [1 - ———] _ gf sinl 1 )
Y . Agrs =Pk 1+3¢7r A 7 T—l T30 dl (4.17)
2 2 0 Go
- (2€r)3 f L (1 :rqp)G"o(q()q 3(1;(:1(;;1) d*q , (4.12) which is equivalent to the expression given by

Muthukumar and Cukier? for the perfectly absorbing
where sinks with the monopole approximation.

(0, Q) = 4tDa A singa _ cos(qa) tanh()’)] We can perform the integration to obtain an expres-
'V =Dg%+x DF+x| qa a9 sion for the rate coefficient valid for all reactivities
1
tanh(y) 1-T(») ¥ - - -
)\“,:pko[l - 1+3¢ € 20 -3 [(1-e%) - 2¢T () e - T¥y)e¥(1+e7*)]
=¥T¥y)+e™® [1+ 2vT(y) +¥*T¥y) - T(y) = ¥T%()]
+ T % , (4.18)
2(e* -79)
where
t
=3¢ [1-T()] and T(y)= _an:& . (4.19)

This result is plotted in Fig. 6. In the limity == (A~=) we find

[1 - exp(-2V3¢)
A'eff=pk(l[2_ 3¢) ] ’ (4. 20)

for small ¢,
Mgge=Pko [1+V3+...]. (4.21)

This agrees with the results of Felderhof and Deutch, ! a5 well as later workers. The full expression for v(q,q")
should be introduced when diffusion and reaction can occur on the same time scale.

The effective diffusion coefficient has a similar structure. From Egs. (2.33) and (4.1) we find

1 d°
Dy =Do —limp EZFU(""’)

2p* / [av(q,q'>]z G°*¢")vlg’,q") 5 s, 20° f ovlg,q") _GNgN0aa") _ s (4.22)

. . 4 d
* 2n)? 1:3? 8q 1+pG°(@) vg,an * 1 * 2n)’ lql—%l 8¢° 1+pG°(gvlg’,q") 1

The first term is
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1

1[ a* ~ tanh(y) 12[, tanh(»)] 3[1 _ ]}
2[21717 v(q,q)]qx0 —D0¢{2+ T [1 - ]+ Y[‘/ coth(y) (4.23)

Using the monopole approximation for v(q’,q") [Eq. (4.14)], the integrals in Eq. (4. 22) reduce to

-0t [ (7 )z[(cosl{% [1—tanh(Y)]}—Sta;h(Y))+J'o(l)—21'3(1)][]'0(1)—tar;,h(w 0s0)] 7z a1

Y
54¢2f ( v? )2 sinl [1 (4.24
+Dy ) \F 7 " coth(y) | + 7,(D) T—zdl )
In order to compare our result to the perfectly absorbing case take the limit A~«, and we find
' 1 f‘* o) [7o(D) — 24,(D)] 1 f z?(l)
- _ahZ T 0 9 2 22
D.“_Do{1+2¢ 60 7 7430 dl+54¢ 7), 7+30 dl (4. 25)
This expression differs from that given by Muthukumar and Cukier* by the term
D, 12<§> f i (l) (l (4. 26)

For small volume fractions our result is

D, =Do[1+2¢ -V3¢¥ 2+ g%+ -], (4.27)
whereas Muthukumar and Cukier* find

Doy =Dy[14+2¢ —V3¢32+E¢%+...] . (4.28)

The difference between the two results is not significant since nondivergent terms of order ¢? were not completely
included in the calculation.

The result for all values of the reactivity is rather complicated. It is

6(‘}’)4»% (1-¢®
v PP

D, =D, [1 +2¢ +3T() - 1725 [1-T]+ SG(*/) + Z 0 qbz( z) {1 - 262 - 2¢[1 - 2G(y)] e

-e¥(l+e®))+ ;3(72-1_—}5 {e# [~ ¥ coth(y) + ¥ coth(y) — 2¥% coth(¥) — 2+¥ —¥?] +[1 =¥ coth(¥)] [coth(y) +7]})

—%y‘&(
1 1

+ [3(3F('}’) - 3(3 T(Y) - 6e — T('}’) 65] e-ai +6¢€ [T('}’) - 1] }+|:;Ii €z —‘)’2 - 27’4(521— _yz)a] 6 [T('}’) - 1])

5 [2-3T(H)+3F(y)] - @ 5{(3e +6)(1 -e®) +[3¢*F(y) - 6€*] T(y) (1 +7%)

. 1 2 .
— 32 {[ T - B @t D - B F) -2 T0) (L)
+e P [y F(y) =¥’ T(y) - 2y - 2yT(¥)]+ (zzf—y-z Z)l,—s) 2ry(1-e )+ 202+ 2) ]+ [4°F() -] T()(1+7®)

—2[AF() - 22T e + [32F(y) - 33 T(y) =2 - 2T (M) e @ + 2[¥° F(¥) =¥V’ T(¥) - 2y = 2y T(V)] ¥ }], (4.29)

—
where T T T T T T T 1
tanh 41 i 4
T() = =585 2 (4. 30) »220
Gly) = 1 _EQM (4.31) 3 7=5
Ty : 0 1
and D—'f1
2 [. tanh(y)] tanh ter )
F(y):—z[l— 2 ”]- anh(y) (4.32) A
Y Y
A plot of D, is given in Fig. 7 ! 7
V. SUMMARY AND DISCUSSION o 1 ] | ] [ R B ] )
0O I 2 3 4 5 6 7 8 9 10
We have shown that the penetrable sink model of dif- ¢
fusion controlled reactions can lead to interesting new FIG. 7. The diffusion coefficient as a function of volume
results. We have, for the first time, included back re- fraction of sinks for various values of y.
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action, and have seen a square-root dependence on the
concentration in the observed rate and an asymmetry
in the diffusion coefficient matrix which reflects cou-
pling between reaction and diffusion. We have also
shown that the long time behavior of this system is not
a purely exponential decay. Finally, we have demon-
strated that the impenetrable sink results* can be re-
covered as a limit to our theory.

We have also seen that both the rate and diffusion co-
efficients depend less strongly on the sink concentration
as their reactivity is decreased. This behavior has also
been reported by Cukier!* in a recent calculation of
properties of partially absorbing, impenetrable spheri-
cal sinks. .

Much of the behavior we have observed in our model
mirrors that found in the impenetrable sink calculations.
A recent reexamination of fluorescence quenching data
by Baird and Escott!® has given support for the square
root dependence in the observed rate. Our calculations
suggest these effects may be seen in other situations,
such as reaction-diffusion systems in micellar solu-
tions or microemulsions where reaction proceeds more
rapidly in one of the phases.
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