Cratering due to surface defects in the Gaussian model®
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Surface defects on freshly applied liquid films like the phenomenon of cratering are characterized by almost
discontinuous interfacial profiles. Our purpose is to model the effect of surface inhomogeneities and

impurities that influence the equilibrium configuration of the surface film. We therefore employ the Gaussian
model which is known to provide a simple equilibrium statistical thermodynamics description of the

liquid-vapor interface. By modifying previous work by Weeks, we allow for additional external forces acting
on the interface and discuss the resulting shape of the surface profile. Even local application of external forces
leads to deviation from the plane surface decaying on a macroscopic length scale. This does not accurately
model the cratering phenomenon. In systems, which can be described by our Gaussian model, surface tension

forces will always lead to a smooth interfacial profile.

I. INTRODUCTION

Surface defects of freshly applied liquid films are a
familiar problem; for instance, in paint technology.
One of these defects is the phenomenon of cratering,
which is characterized by scattered depressions in the
film surface.! The present work was initiated by the
question of whether such well-localized depressions and
the almost steplike behavior of the surface profile can
be explained in the framework of a simple equilibrium
statistical thermodynamics model.

Our calculations are based on a discussion of the
structure and the thermodynamics of the liquid vapor
interface by Weeks,? who employed a so-called contin-
uous (or unweighted) Gaussian model, In this model,
the entire volume is divided into an array of columns
whose width ! is of the order of the bulk correlation
length. Changes in the number of particles in a particu-
lar column are related to changes in the local Gibbs sur-~
face. The free energy associated with such distortions
of the Gibbs surface can be expressed in terms of the oc-
cupation numbers of the columns including effects of
surface tension and gravity.

In this paper, we shall discuss the effect of additional
external forces acting on the interface. OQur purpose is
to model the effect of surface inhomogeneities or impur-
ities that influence the equilibrium configuration of the
surface film, For instance, one might think of electro-
magnetic forces on a surface covered by charges or a
dipole layer due to charged impurities,

We therefore allow for contributions from an addition-
al potential in the expression for the free energy. For
sufficiently small deviations from a planar interface,
this potential energy can be linearized in these deviations
and we obtain what we will call a modified Gaussian
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model, It is presented in detail in the next section, In
Sec, III we give some examples discussing particular
forms of the external forces.

Since one might feel that a model using only the linear
terms in the external potential is more appropriate for
discussing small perturbations of a plane interface than
a phenomenon like cratering, we brieffy discuss more
general forms for the external potential, In Sec, IV
we show that the shape of the interface calculated in a
model allowing for quadratic terms in the potential ex-
hibits the same general features as the one calculated
in our modified Gaussian model,

We summarize our results in the last section which
contains some conclusions for the equilibrium shape of a
liquid—vapor interface subject to external forces.

il. THE MODIFIED GAUSSIAN MODEL

Our model is a modification of the model introduced
by Weeks, we first briefly describe his model essen-
tially using the notation of Ref, 2.

The particles are contained in a cube of volume L? and
a rectangular coordinate system is located at the center
of the bottom plane of the box., The whole volume V is
divided into a square array of M? columns extending
from the top to the bottom of the box, Each column has
width [ in both the x and y directions, There are period-
ic boundary conditions at the faces of the box in the x
and y directions. We fix the particle number N such that
the average Gibbs surface is at Z=H, i.e.,

_ N _H L-H
p—V—L [ s I Pe (2.1)
where p; and p, are the bulk density of the liquid phase
and the coexisting vapor phase, respectively. If column
i contains »n, particles we can define a corresponding

position Z; + H of the local Gibbs surface according to
ng=p 12(H+Z)+p, 3L -H~2,) , (2.2)

which yields
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z,=(ﬂ/—"i‘—"ﬁ£-£>-1,. (2.3)

0y = P; L
As a matter of convenience we introduce a set of “height
variables” (k;) by
N
hy=ny =2z =Flo,-p) Z, . (2.4)
Weeks has shown that then the interfacial properties of

the system can be described in terms of the model par-
tition function

Z=2 exp{- %ﬁl"[z D (1 =Ry +2G2 Y hf]}e (2.5)
{r} i o i

5 is a nearest neighbor vector to site i, and the prime
on the sum signifies that the constraint

Zhi=0
1

must be obeyed since the total number of particles is
fixed. In Eq. (2.5), g is the inverse of Boltzmann’s
constant times temperature,

(2.6)

Y
= 2. ki
4ll(P1 _p’s! ’ ( )
where vy is the surface tension, and
1
Gz=;2mgl2(p,—p,), (2.8)

where g is the gravitational constant,

For the theory to be internally consistent, the column
width I should be of the order of the bulk correlation
length in the liquid.

Since in most practieal situations AT and G? are small
(e.g., for liquid argon near the triple point gI" ~ 1073,
G2~10"1) the summation over the (k,) may be replaced
by an integral, Because of the Gaussian nature of the
integrand the range of integration may be extended to +,

One of Weeks’ main results is the existence of very
long-ranged correlations parallel to the interface, If
S, denotes a dimensionless lattice vector in the Z=0
plane giving the location of the center of column ¢ (then
the distance between the centers of columns i and § is
I(1S; -=8,)) and thermodynamic averages are denoted by
brackets {-- ) (subscript 0 refers to the system de-
scribed by Z,), he obtains

(R kYo = (Yo (hyYo = Blf Vs, -8,), (2.9)

where

expliq-S}

1
v(s) = MR Z 4-2cosq,~2cosgq,+G* (2.10)
@0

The reciprocal lattice vectors q obey the constraints
a.=(21/M)a,
q,=@2n/M)b ,

where ¢ and b are integers.

~tM=a<iM,

~tM=Sb<3iM,

Weeks has shown that in the thermodynamic limit
(L - =) a good approximation for V(S) is given by

<L q

vS)= 4 fo dq Lz Ias) (2.11)
-{(1/47)InG for S=0 , (2.12)
(1/47)Ky(GS) for §>0, (2.13)

where J; and K, are an ordinary and a modified Bessel
function, respectively. K, diverges logarithmically for
small arguments, hence including gravity is crucial in
order to get finite fluctuations.

As K,(Z)~ e ? for Z - =, correlations are very long
ranged, decaying on a length scale

A=1/G (2.14)

which is usually of the order of 1 mm,

Here our purpose is to discuss the effect of additional
external forces acting on the interface. Accordingly,
we modify the model described above by introducing into
the partition function a contribution from an external
potential energy ®. We assume that & can be written as
a sum of contributions from all columns

o= olis, +(H+Z)e,], (2.15)

i

where e, is the unit vector in the Z direction. If the re-
sulting deviations from a plane interface are sufficiently
small we may linearize in Z; or k; respectively, and ob-
tain

=g+ fi by, (2.16)

i

where f, is proportional to the force on the top of column
i for the unperturbed interface. As the constant term &,
is unimportant for the following considerations we may
set =0,

The perturbed system can now be discussed in terms
of the partition function of a “modified” Gaussian model

zZ= Z)' exv{— %BF[ZZ (n; - hm)z+2622h§]
[E1] i 8 1
-BZ{Jﬂ hf}.

Elementary algebra, which is outlined in Appendix A,
leads to

VA =exp{%ﬁl‘ [Z; (Ty =T, ¥ +2G? Z‘: T%]}
x Z , exp {— %ﬁl“[gzo: (hy =Ty =y + Ty F

(rg)
+2G% Y (h -T,)Z]},
i

where

(2.17

(2.18)

11 explia(s; -8,)]
Ti=-T o7 ;; 4 -2cosq,-2co8q,+G" fi - (2.19)

By introducing new variables }-z, = h; =Ty, (besides a con-
stant factor) (2.18) resembles the form of the partition
function (2.5) of the original model. The constraint J,

Y hy =0 leads to
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~ 1
= 2.20
k= greds i (2.20)
and so it is more convenient to define variables
s o 1
b=k e 2.
2.21)

1
=hi+ 7 2 VISi-8)
i

which fulfill the same constraint as the k;:

Z = e@{%r[zzj: (T, —Tm)z+2GZZ T%] }
3 exp{-%BP[ZZ(ﬁf i + 2670 fz%]}(z.zz)
{ ]

{rg}
can be evaluated by exactly the same methods used for
the calculation of Z,., One immediately obtains {%,)=0
and therefore

() =~ %—; VS, =S, f; - (2.23)

Quite generally, averages for the modified system can
be expressed in terms of averages for the unperturbed
system. As shown in Appendix B we have for any func-
tion F of the height variables h,,

(F({R}) = F({h; +Ri)o Do

Hence, introducing a potential energy of form (2, 16)
does not lead to any additional correlation, e.g.,

(hyhy) = (B R

(2.24)

=(hyhydo = o Shyo = EIF V(S -8S,) . (2.25)
Qur result
(hy)= - IFZ Vs, -8, f,
7
=-p Zj:{<h, hyYo = (oo (o } £ (2.26)

resembles a result from linear theory, but it is an exact
and rigorous result for the model,

As the new interfacial profile is a convolution of the
f; with a correlation function of the unperturbed system,
which is known to be very long ranged, even a well-lo~
calized external force will lead to a rather smooth and
long ranged perturbation of the previously planar pro-

file. For example, if ;=0 for {S,;|>d we obtain
__2ifi ”
(hy = - IrpT /ZGS,. exp{~GS,} for s, >»d ., (2.27)

The following section gives examples for interfacial pro-
files for special forms of the potential energy. For
practical calculations it is convenient to introduce

fla)= % > fiexp(-iq- 8)) . (2.28)
i
Then,
fy = 2 S F@expia- S,) . (2.29)

For potentials with axial symmetry f, = f(|S,|) and f(q)

=f(lql). Using Weeks’ approximation for V(8) [Eq.
(2.11)] the interfacial profile is then given, in the ther-
modynamic limit, by

_ M P -p) (" q_ 5
(zpy =~ 20200 [ dg Lo Fa)das,) . (2.50)

g

. EXAMPLES

This section involves some special functions and non-
trivial integrals. For the definitions and properties of
these functions the reader is referred to Gradshteyn and
Ryzhik, 3 where all integrals can be found as well.

A. Quasi-one-dimensional situations

In this case, the system is translationally invariant
in one direction, which we choose to be the y direction,
hence,

fi=r8)= s,
and we immediately obtain from the general result (2.23),
(re) = (R(SE?))

(3.1

1 o
= - F; V(s‘(x) _S(jx))f(s;x)) , (3.2)
where
T B S (3.3)
“2M & 2(1-cosq)+GE )
a #0
In the thermodynamic limit,
- w_ 1 (" €os ¢S
vis)= o o 431 —cosq) +G?
_1 3 1-vT-%2 \S
R pce % , (3.4)
where
3xl=1+4G% . (3.5)

An asymptotic expansion! shows that, for large S,

cosqgS _ 1

1 7T 67 T 16 exp(-G|S]) .

pve (3.6)

- 1
v(s) P
But this exponential decay is even a good approximation,
for small values of §. This can be seen by expanding
the exact result (3.4),

\/'[%CTz _ b];[l +0(G?)], 3.7
l—VIJC—:}C =1—G+%02+O(G3)' (3.8)

As G is very small, we may use Eq. (3.6) for an
arbitrary value of S,

In order to show how a discontinuity in the force pro-
file affects the shape of the interface, we examine the
case

) {f for |s¥|=d,
(x)y _
A= 0 for |S¥| >d .

Inserting Eq. (3.86) in Eq, (3.2) yields

(3.9)
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(x)

I 2 3 5 /d
T I
1
(x)
<h(sj)>/<h(0)>
FIG. 1. Shape of the interface: quasi-one-dimensional situa-

tion with a discontinuity in the force profile at S(") =d, Gd=1,

1 —exp(-Gd)coshGS® for |Si?|<d,

(SN = - g d{exp( GS™) sinh Gd

(3.10)

Regarded as a function of the continuous variable S(")
g=((s) and its first derivative are both contmuous
while there is a jump in the second derivative at the lo-
cation of the jump in the force profile

g''ld+e)-g"d~¢) 1 1

lim P == I Trexp(=2GA)

A graph of g is presented in Fig. 1.

(3.11)

This example clearly shows that even discontinuities
in the external forces still lead to a smooth surface pro-
file, In accordance with our general results, perturba-
tions of the planar interface are long ranged, decaying
exponentially on a length scale 1 [Eq. (2.14)] although
the forces are extremely localized.

B. Two-dimensional situations

In order to give more realistic examples, we discuss
the case of a point charge located at the bottom of the
liquid layer (e.g., a charged impurity) whose electric
field acts on the liquid -vapor interface.

1. Surface covered by charges

If the surface is covered by a layer of charges with
surface charge density ¢, the potential energy due to a
point charge at the origin of the coordinate system is

for [S¥|=d .

=(1/DH. (3.14)

In order to find the Fourier transform fq we start from
1 z .
= 72 fl@emliq-s)
L

~ 2]‘_141 L‘ dgqJolqS,) flq) . (3.15)

Using a result of Ref, 3, this immediately leads to

flg )——" 9 _ (3.16)

-D,

To calculate the surface profile, we must evaluate

<Z>

1
7 exp{- % q}.

-2a f dg -,——z exp{- 3 q} JolgS,) , (3.17)
where « is the ratio
2
=(Ely—‘192/—’ﬂ , (3.18)

which is a measure of the strength of the electromag-
netic compared to surface tension forces.

The result for S,, =0 can be given in terms of sine and
cosine integrals

1 (29 =2a{e1(6%) cos(6 %) +51(G 30 sin(G 30}

=2alnGJC=2aln%, for G3c <1, (3.19)
The case of small S, (i.e., S,G < 1) can be treated by
regarding W(S,,)=(1/H){Z,) as a function of the contin~

uous variable §,, and approximating the derivative

_2a (% 3 S2.G?
S, J‘o dqexP{— Sm q}J‘(q)<l - qz+§nGz)

— Jm dq exp{— S£ q}Jl(q)
0 m

w'(s,,)

2a 3
'_s:(l' fS_?FW> (3.20)
Elementary integration yields
1
F(<Z,,,>—(Zo>)=20tln{%(l+\/1 +S2 )} . (3.21)

The asymptotic behavior for S, > 3C can also easily be
calculated

(Z >——2aj dq—z—g?-exp< S£ )Jo(q)

~ ° q -
~~2a fo 40 g o) =~ 20 Ko(GS,)
(3.22)
An analytic expression for (Z,), which is valid for all
values of S,, can be given in the limiting case of a very
shallow liquid layer, i.e., %G = H/A <« 1, as

(3.23)

B=—0l2Q ) {2SE+(H+Z,)2 V2 . (3.12)
i
Linearization in Z; leads to
= ﬂrz (S2+3c2)/2 | (3.13)
where
|
i 20 3 ° 1
wis) =32 3 [ dgem(- E )@ -6 [ da g JlacS)exe(- %6
Sm " Sa 0 g +1
. 2a
o »

« 1 1
{ j dq exp( sﬂq)Jl(q)—c J, 27 Jl(qcsn} =2a{GK1(csm)—§ W} :
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which yields

533

—III—(Zm)=2a{ln(GJC)+ln[§(1 +V +82/32)] ~In(5GS,,) -Ko(GS,)} =2a In(1+ V1 +82/32) -In(S,,/3¢) —=K,(GS,) }.  (3.24)

A graph of this function, is presented in Fig. 2. The
surface profile is well behaved, smooth and deviations
from the plane interface are long ranged.

2. Surface covered by a dipole layer

Next we discuss the case of the point charge acting on
a surfaee covered by a dipole layer. Denoting the sur-
face dipole density by p and assuming that the dipoles
orient parallel to the electric field, the potential energy
is

d=-plQY {PS+(H+Z R}, (3.25)
1
hence,
2uQx 2y-2
- 3.26
fi W(Sﬁﬁ 2YE ( )
which leads to
2 yo 2T pe
=20 3.27
@) 7 qul(JCq) ( )
and
(Zp _ o= I“ q°
-—I_I— ==2q X dq mKl(JCq)JO(qu) . (3.28)
The ratio
2
&= E%?—z /yza (3.29)

is again a measure of the relative strength of electro-
magnetic and surface tension forces.

Z, can be expressed in terms of the Lommel’s func-
tion S_, ;:

<Z—E°—> =-2aGS.,,,(Gx)

= _25:-5-1C In{($Gx) for Gac «1, {3.30)
By analysis completely analogous to the one used in
the preceding example, we obtain

:7((Zm>—<zo))= % In <1+ f‘c—z';) for S,G <1, (3.31)

1 248

T (Z= = Ky(GS,) for §,> X (3.32)
For the limiting case of a very shallow film, i.e., for

XG=H/» <1,

%(Zm>=%{ln\/1+%’" —ln%% _K(,(cs,,,)}. (3.33)

The general properties of the profile, which is depicted
in Fig. 3, are very similar to the one discussed before.
Due to the stronger decay of the forces in the dipole case,
deviations from the plane interface decay faster: for

S, > 3 we get a leading term ~ (3¢/S,)? in Eq. (3.33)
compared to a leading term ~ (3¢/S,) in Eq. (3.24).

IV. OTHER FORMS OF THE EXTERNAL POTENTIAL

The results of the preceding sections show that our
modified Gaussian model always yields a smooth shape
of the interface and therfore cannot accurately describe
the cratering phenomenon. One might think that this is
a consequence of our approximation (2, 16) for the ex-
ternal potential, which includes only the terms linear
in the (k;), and that using a potential of the form
‘I’=‘I’({hto})+%z,:ki(hi —ho¥, k=0 4.1
would be more appropriate. In order to model a crater-
ing defect, one would choose the %, which clearly
represent the minimum in &, so that they correspond to
a film thickness much less than the average thickness
in the region where the impurities are located, In addi-
tion, one has to take the %, sufficiently large at impur-
ity sites, while %2,=0 at all other sites.

We, therefore, discuss the model partition function

z:exp{—ﬁ(; R Myhy+ 2 f,h,)}, 4.2)
y i
where
M=MO D (4.3)
M =(4T + G*I)5,; = GT ), 61y, (4.4)
" (vnv)
M} =%ki8y;, (4.5)
fi==kihy, (4.6)

and again an irrelevant constant term in & has been
dropped.

<Zy>
<Zp>

FIG, 2. Shape of the interface: surface covered by charges
in the field of a point charge, 3¢G =0.1,
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<zm>

By an elementary calculation analogous to the one in
Appendix A, one obtains

== 3 2 (MY, .7
and hence
(b)) = () ()
1 8 1,
='F5'f7(h‘>= M (4.8)

So the matrix M'! is the quantity of main interest. As
M@ ig known, i.e.,

(MO, = % Vs, -8,), (4.9)
it is convenient to write M™! as

M1=MO MO T MO (4.10)
where we have introduced the “T matrix”

T=(1+ MOMOyL g (4.11)

M,‘}) and therefore T, are only different from zero if ¢
and j refer to sites where an impurity is located.
Hence, when writing Eq. (4.7) in the form

<hi>=—';' ;(M(o’-l)” ﬁ:_%—; V(S,—S,)fj, (4.12)

where

fi= 71— ,:2, Ty (M@ 1)1‘1"f1“ ; (4.13)
"
the “effective forces” f, like the f; are only nonzero if
j refers to an impurity site. So, the result for the shape
of the interface [Eq. (4.12)] has exactly the same form
as the result for the modified Gaussian model equation
(2.83). It is a convolution of the very long-ranged func-
tion V(S; —8,) with the “forces” (f;), which are localized
at the impurity sites. So again, the resulting interfacial
profile will always be very smooth: choosing a potential
energy of the form (4. 1) will not lead to a considerably
more accurate description of cratering. For further

FIG. 3. Shape of the interface:
surface covered by a dipole
layer in the field of a point
charge3CG =0.1.

explanation, we give the results for the case of a single
impurity site:

M= 4kb,, ;0,0 . (4.14)

Then,
1/2)k

T“= 1 +(](-/2)k(M(°rl)00 6{,165,0 ’ (4. 15)

and using Eq. (2.12), we obtain
k/T

= hoo ﬁfi/% ) 4.17)
and
(hyhy) =B (R

21 B/T

=3F {V(s, -8;) - 75790 V(S,)V(S,)}. (4.18)

We note that only in the limit 2/I'>> 1 we have (ky) = k.
While the shape of the interface is the same as the one
calculated from a corresponding “modified Gaussian
model,” correlations are reduced in the vicinity of the
impurity,

V. SUMMARY

We have shown how the effect of external forces acting
on the liquid—vapor interface can be incorporated in an
existing statistical thermodynamic treatment of the inter-
face based on the Gaussian model.

In the modified Gaussian model presented above, the
only effect of external forces is a renormalization of the
position of the interface. Averages for the system sub-
ject to forces can directly be obtained from the averages
of the unperturbed system by merely replacing the height
variables k; by k; — ;).

The new interfacial profile is given by a convolution of
the external forces with a correlation function of the
unperturbed system. Due to the long range of this func-
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tion, even local application of external forces results This relation can easily be inverted by Fourier trans-
in deviations from the plane surface decaying on a macro- formation with the result

scopic length scale, Physically this results from the .

surface tension forces which smooth even discontinuities 7,=- 1 —12-2 Z expliq - (8, - S,)] x f; . (A5)
< < s ' 2M* 4 4 ~-2cosq,~2co8q,+G

in the force profile, thus establishing a smooth shape . 4
for the perturbed surface. These properties of the inter-

facial profile can also be found in another type of model APPENDIX B

allowing for quadratic terms in the potential, The The average value {F) of a function F of the height

Guassian model, which has proven to provide an appro- variables is defined by

priate description of the liquid ~vapor interface, does

not accurately describe the cratering phenomenon where (F) = f d{r}p({rRDF{n}, (B1)

apparently discontinuous surface layer profiles result

from impurities. where
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Defi
etine z exp{BZ T,((4r'+c;2r)r, - FZ: T,,,)}
H{r)D = ir Z‘:zo: (By =~y + FG*Z K2 ¥

. f‘ d{h;}exp{ - BHy({h; -T )} (B4)
=(4T+GET)_ K2 =T GO D  hyhy g . a1 -
f b =exp{BE T, 4r+G*nr, -rz T,,,)}e Zy .
Then : s
Hence,

Hy({r =T PD=@T+G* DV 13 =T, 3 hyhyg .
! e p(r})= Ze exp{-BHo{r, - T,})
+ z‘:hi {—2(4P+GZI‘)T¢ +2r; T“o} =p0({h’ —T‘ }) (B5)

S T,{(4I‘+GZI‘)T‘ -r). T,,,,} . (az) 2nd
! s (FUrD)Y=Fn+ T H) . (B6)
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