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We consider models, based on a master equation, for the motion of bound clusters of adatoms, over a
crystalline surface or along one-dimensional channels on such a surface. In particular, we outline efficient
methods for determining the diffusion tensor and other quantities that characterize the motion of such

clusters for long times.

I. INTRODUCTION

Recent advances in experimental techniques, especial-
Iy field ion microscopy, ! have made it possible to per-
form detailed experiments on the migration of clusters
of adatoms on crystal surfaces. These experiments
open the possibility of determining the rates for the
various single -adatom jumps through which the cluster
migration proceeds. Accordingly, a number of theo-
retical treatments of this problem have appeared. In
particular, Reed and Ehrlich? and Wrigley, Reed, and
Ehrlich® have given an exhaustive theoretical treatment
of a number of models for the one -dimensional motion
of dimers and trimers, based on a master equation de-
scription., Landman and Shlesinger * presented a gen~
eral framework for problems of this type, based on the
continuous-time random walk formalism,® as well as
some case studies.

The aim of the present paper is not to formulate an
alternative general treatment, but rather to point out
some simple ways in which more limited information
about cluster diffusion can be extracted from a stochastic
model. For example, the diffusion coefficient, or diffu-
sion tensor, can be determined with minimal calcula-
tional effort by exploiting the analogy with an equivalent
electrical network of capacitors and resistors.® Simi-
larly, when the available experimental information con-
cerns only the long-time behavior of certain average
moments of the distance traveled by the center of mass
of the cluster, the only information needed from the
theoretical model is the behavior of the lowest, “acousti-
cal” branch of the spectrum of relaxation times of the
master equation describing the system, We hope that by
concentrating on the most economical way of obtaining
certain partial information, our treatment may be of
some assistance in facilitating the analysis of experi-
mental data.

In Sec. II, we formulate the basic underlying master
equation that constitutes our theoretical description.
We choose a parametrization of the transition rates that
brings out clearly the symmetry inhereat in the detailed
balance requirement, In addition, it separates those
parameters that are relevant for determining the effec-
tive diffusion coefficient from those that can only be
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provided by more refined measurements. A similar
parametrization proved useful in an earlier study of
diffusion in random chains.” In the remainder of Sec,
II, we reduce the solution of the master equation to that
of a wave vector dependent matrix eigenvalue problem,

In Sec, III, we point out the relation between the
asymptotic growth rate of certain averaged moments of
the distance traveled by the center of mass of the cluster
and the secular determinant of the matrix introduced in
Sec. II. In Sec, IV, we discuss in particular the diffu-
sion coefficient and several independent ways of mea-
suring and calculating it.

In Secs. V and VI, we present a few case studies of
dimer and trimer diffusion, For a symmetric dimer,
the diffusion coefficient is equal to the short-fime rate
of increase of the averaged square of the distance tra-
veled by the cluster center of mass. For a three-state
symmetric dimer, the asymptotic growth rate of the
fourth order cumulant of this distance is also a simple
function of the system parameters. The use of the elec-
tric network analogy to calculate the diffusion coeffi-
cient is demonstrated for models of an asymmetric
three-state dimer and a nine -state trimer, The final
section contains a few concluding remarks,

1. BASIC EQUATIONS

Consider a cluster of » particles, each of which may
occupy points on a regular Bravais lattice in d dimen-
sions, Our interest is in motion over surfaces (d=2),
but one -dimensional models may be used to describe
diffusion on surfaces with highly anisotropic mobility
or diffusion of clusters bound to a step discontinuity on
the surface, We assume the cluster can exist in S inter-
nal configurations, labeled by the index s=1,2, ..., S,
with characteristic energies E,. (In many situations it
will be more appropriate to use configurational free
energies; in such cases E, denotes this iree energy.)
The energies E, enter our equations via the statistical
weights o' defined by

S

al =exp(—E,/kpT) ;1 exp(-E /kyT),

(2.1)

with 7 the substrate temperature and k., Boltzmann’s
constant, The state of the cluster is described com-
pletely by its configuration s and the position of its cen-
ter of mass r,; the possible values of r, are R;+p, with
R; a vector from the substrate lattice and p, a vector
inside its unit cell, A jump from configuration s to con-
figuration ¢ causes a shift p,, of the center of mass. If
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we assume that only jumps changing the position of one
of the cluster particles are allowed, then there is a
unique p,, for each jump for clusters of three or more
particles. Furthermore, we must have p,, =-p,,. For
dimers, the same configuration change can be caused by
two distinct transitions, either by the leading or by the
trailing particle, They have, in general, different rates
and always different p,,. differing by a lattice vector.
For a symmetric dimer the rates are equal when de-
tailed balance holds and the two p,, are equal in magni-
tude and opposite in direction, The difference between
dimers and larger clusters indicated above stems from
the fact that the ‘parallel” translation of a cluster of n
particles towards a state with the same internal config-
uration but a different position of the center of mass
may be carried out in » jumps, one for each constituent
particle., Specific examples will be given in Secs. V
and VI,

We shall assume that the probability P,(r,, 1) of find-
ing the cluster at time r in configuration s with center
of mass at r, changes according to the master equation

d
Zi; Ps(rsy T) = Z [atBst Pt(rs =~ Pst, T) - aths Ps(rs, t)] ’

ttg
{2.2)
where we write the transition rate from configuration s
to configuration ¢ in the form a,B,,.

{For dimers there are two terms for each ¢ corre-
sponding to the two different p .} When the microscopic
dynamics underlying the mesoscopic description in Eq.
(2.2) is invariant under time reversal, then the master
Eq. (2.2) fulfills detailed balance, which, for the
parametrization of transition rates chosen in Eq. (2.2),
is expressed by the relation

Bst =Bis - (2.3)

In view of the translational invariance of the substrate,
the B;, do not depend on the center-of-mass position.

We can exploit this translational invariance further
by introducing Fourier transforms via

Pr,, 1)=exp(~ik* r ) P,(1); (2.4)
the Py (r) then obey the equation
d
_d_?—' Psk(T) =§; [at Bst exp(i k- pst)Ptk(T) - aths Psl(T)]
2.5)

for general clusters. For dimers one has two terms

for each ¢, For the special case of symmetric dimers
one obtains

d

ir Pgulr)= ;s (20,8, cosk * ) Pylr) - 20, Bes Bal)] .

(2.6)
Any solution of Eq. (2.2) can be abtained by combining
solutions of type Eq. (2.4) with P4(7) obeying Eq. (2.5)
and k taken from the first Brillouin zone of the sub-~
strate lattice,

Associated with the evolution problem Eqs. (2.5) or
(2.8) one has the eigenvalue problem
s

- Py = Z: M, (K)Py 2.7
t=

473

where A,(k) and P!, denote the eigenvalues and the eigen-
vectors belonging to them, and

M, &) =qa,B,, explik- p,,) (t#5);

Mss(k)="'as Zﬁts (2-8)

t#s

for clusters with n= 3; for symmetric dimers one has

Mg,(k)=20,8,, coslk- p,);

M (K)=—20, ) B, . (2.9)
t¥s
When the detailed balance condition in Eq. (2.3) is ful-
filled, it follows from the general properties of the
master equation that all A,(k) are real and non-negative.
The eigenvalue zero occurs at k=0, The corresponding
right and left eigenvectors are Ply=a ' and Pig=1, re-
spectively, as one sees from the identities

Z M, (0)a =0,
$

D M, (0)=0, (2.10)
¢

that follow directly from Egs. (2.8) or (2.9). The ma-

trix M(k) may be symmetrized by means of a similarity

transformation; the matrix M(k) defined by

M, (&) = a¥2 1, (&) a2 (2.11)

is Hermitian and moreover analytic in k, Hence,? its
eigenvalues A;(k), which are just those of M(k), are
also analytic functions of k (except possibly at points of
degeneracy; even there they are analytic functions of
each component of k separately). Since M, (k)= M7, (~k)
all A;(k) must be even functions of k:

rEK) =2, (<K) . (2.12)

The branches - X,(k) of the spectrum of relaxation
times of the master Eq. (2.2) resemble those of the
phonon frequency spectrum of an harmonic crystal with
S atoms per unit cell, If we assume that the master
Eq. (2.2) is irreducible, i.e., any configuration can be
reached from any other one via a sequence of possible
transitions and cluster migrations is possible, then
there is only one acoustical branch A, (k) with »,(0) =0,
irrespective of dimensionality, and S -1 “optical”
branches that stay finite at all k, Moreover, any mini-
ma in A,(k) other than that at k =0 occur at finite A, We
will denote by A, the minimum of all 3 (k) with i #1 and
of all minima in A, (k) at nonzero k. All A, (k)< A, lie on
the acoustical branch A, (k) near k=0,

(il ASYMPTOTIC GROWTH OF THE CUMULANTS

Typically, the experimental information about cluster
diffusion concerns the asymptotic growth of certain mo-
ments of the configuration averaged position of the cen-
ter of mass of the cluster. From the consideration in
Sec. II it is clear that for 7 > ! only the components
of the general solution corresponding to the branch
A, (k) in the spectrum of relaxation times survive, and,
moreover, only those which have in addition a k near
the origin., These correspond to solutions of the Chap-
man ~Enskog type®
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PSE(r, 7)=n(R,, Nal+P* r, 7) (3.1)

that are to leading order the product of ¢! and a func-
tion n(r, 7) that varies slowly compared to lattice dis-
tances, taken at the center R, of the lattice cell contain-
ing r,. The correction term P is a linear combination
of eigenvectors of M,,(0) other than o', hence it obeys

13
2 P, =0,
rs

(3.2)

where the sum runs over all r, in any lattice cell. The
Fourier transform n(k, 7) of (R, 7) decays, for values
of k inside the first Briliouin zone, aceording to

Zonlle, 7)== 2, )l 7) . (3.3)
Extending this equation of motion to all k yields, after
an inverse Fourier transform, a continuous function
n(r, ) with an integral over the jth cell equal to (R, 1)
(values of k in higher Brillouin zones affect only the
mass distribution inside the cells). The “smoothed
density” #z(r, t) obeys the differential equation

—a—ﬁ(r,r)z—xxé’ ;}) e, 7) (3.4)

oT
with A, [i(8/0r)] defined by its power series. Since A, (k)
is analytic, this operator power series is well defined
for smooth #(r, 7). The expansion coefficients D| ;”
in

wigy

d
2. DEhkkkgk e, (3.5)

i,f,k1=1

(k) = Z D{VE R, -
f,7=1

where £, 7, k, and ! denote Cartesian components of
vectors and tensors, are simply related to the growth

rates of the cumulants of the position vector r. For
example, one easily derives by partial integration ,

(rﬂ,) 2D}, (3.6a)

§—<<y> 3(3¥) =410, (3.60)
with

(fa)= [ 2@ F@ar . (3.6¢)

To determine the coefficients D‘;’ ’ ..i,, it is not neces-

sary to solve the full eigenvalue problem (2.7), Instead,
it suffices to calculate the secular determinant
Alk, A) =det] M(k) - 11] ; (3.7
in the equation
S
Alk, V)= D Calk) A" =0, (3.8)

n=0

one substitutes the power series Eq. (3.6) for 1, (k)
and equates terms containing the same powers of the
Cartesian components of k.

The terms encountered in evaluating the determinant
Eq. (3.7) correspond to all possible permutations of
the indices (1,2, ...,$). Any such permutation can be
decomposed'® into a product of cyclic permutations of
subsets of the set (1,2,...,5). Corresponding to each

cyclic permutation one has a factor
1
(sl, Sy c0as S,)‘—’ (" 1)“1 Z {CY;:'"
m=1
)1}.(3.9)

The product of cyclic permutation factors has to be mul-
tiplied with a diagonal element of M - Al for each index
left in place by the permutation. The important point in
all this is that the vectors p,, occur only in sums over
“closed walks” around the configurations; such sums
over p,; are either zero or equal to a lattice vector

R (51 0nersy)” The “mirror image” permutation (s;,...,s;)
carmes w1th it a factor that is the complex conjugate

of Eq. (3.9); the determinant A(k, 1) contains the sum of
these terms, hence, it depends on k only via factors
cosk * R, in each of its terms, with R, a small lattice
vector,[For /=2, the mirror permutation is equal to

the original one, but, except for dimers, permutations
with =2 carry k-independent factors in view of

Pst = ~P;s. For dimers the form (3.9) must be modified
but the conclusion about the k dependence of A(k, A) re-
mains valid. For further details see Sec. V.]

leszﬁsz LRRERE B"z"l explik - (psl“z p’z’s +ote +p“1"1

{V. THE DIFFUSION COEFFICIENT; THE
ELECTRICAL NETWORK ANALOGY

The simplest measurement in cluster diffusion con-
cerns the diffusion tensor, defined by

M ZDE}), 4.1)

o
with the r, (1) the ith component of the center -of-mass
position at time T of a cluster that was near the origin
at 7=0. One may expand the coefficient functions C,(k)
of the secular determinant A(k, A) in Eq. (3.8) as

Colk) = Zcf,’k{k O CER R B Ry e, (4.2a)

tjkl

Cy(k) = ‘°’+ Z Clik b+ (4.2b)
(note that Co(k) has no constant term, since A(k, A) must
vanish for k=0). Substitution of Eq. (4.2) into Eq.
(3.5) and comparison of terms of the same order in k
yields

Di=cl /¢, (4.3)

Another way to measure the diffusion tensor is via
the drift velocity in a weak external field that acts on the
mass of the particles, hence effectively on their center
of mass. The transition rates in an external field must
obey the relation

Bst(F)/B:s(F) =exp[f‘ ‘ psg]

with F=F/kpT in order to remain consistent with de-
tailed balance, If we assume that 8, (F) depends analyt-
ically on F, the linear term in F is fixed by Eq. (4.4),

(4.4)

B (P =8, 01+ F p g+ 0(FH], (4.5)
but the higher terms are model dependent, For con-
venience, we will presently choose

Bst(F):Bstexp[%f‘ * pst] 3 (4'6}

but the result will only be used to calculate the linear
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response, If Eq. (4,6) is substituted for 8,, in Eqs.
(2.8) and (2, 9) the result is that in all off-diagonal terms
one makes the substitution

explik - p,;] = exp[(ik +1F) - p,,] (4.72)

or

k~k ~LiF. (4.7p)
In addition, there are changes in the diagonal terms of
no further concern to us. As a result, one has for the
coefficients in Eq. (4.2):

Colk, F)= = £ 7 Ciile, Fy+ Bk + 0F%, ), (4.8a)
i3
Cik, F)=C{ + o(F2, #?) ; (4.8b)

the latter expression follows from the fact that for k=0
the determinant A, a scalar, can only depend quadrati-
cally on F. From Eq. (4.8) we conclude that

NE, F)==i 9 DV, F + olF2 1?) @“.9
14

where we used the symmetry of C{’ , and hence of Df}’.
This oscillatory time dependence of a plane ~wavelike
disturbance contained in Eq. (4.9) is readily explained:
the disturbance is carried along by a uniform drift in
the uniform force F with drift velocity v, given by

vp=DY. Fley 7)., (4.10)

Evidently, drift experiments are simply another way of
measuring the diffusion tensor, as one would expect
from the fluctuation-dissipation theorem.

Our discussion of this point is motivated by the recent
article by Landman and Schlesinger, * where it is ar-
gued that experiments in an external field may provide
new information about the zero-field transition rates
for clusters, Closer scrutiny of their argument shows
that this is brought about by the assumption that all
transition rates depend on F via a single universal func-
tion of ¥ - Pst- In a model where all transition rates
B: are treated as arbitrary parameters, to be deter-
mined eventually by experiment, it seems reasonable
to treat the “saturation terms,” i.e., the terms of
quadratic and higher order in F in Eq. (4.6), also as
adjustable parameters, to be determined for each tran-
sition separately. If we choose our model in such a way,
the field dependence of the asymptotic growth of cumu-~
lants involves many new, undetermined parameters, and
it cannot be exploited to obtain additional information
about the zero-field transition rates.

We conclude this section by pointing out an analogy
with electrical network theory which may be useful in
calculating the diffusion tensor, Equation (2.2) can also
be read® as the equation for the time evolution of the
charge P(r,, 7) on a capacitor of capacity a;! at r, that
is connected to other capacitors at r, via resxstances
854 [note that a, P,(r,, ) is the potential of the capacitor].
The problem addressed in this paper is therefore equiv-
alent to determining the properties of an infinite period-
ic array of capacitors and resistances. The eigenvalues
A;(k) are the typical relaxation times of the free net-
work. By a reasoning completely analogous to the one

475

used in this section one sees that the coefficient D‘“

A, (k) can also be determined by calculating the statlonary
response of this network to an externally imposed poten-
tial drop per lattice cell. More specifically, the drift
velocity v, corresponds to the net flow of current from
one cellin this periodic array of capacitors to the next
one for a given potential difference F - R, between cor-
responding capacitors in different cells of the array
separated by a lattice vector R,. Especially in one-
dimensional problems this “effective resistance” per
unit lattice cell can often be read off immediately from
the network diagram, using the simple rules for resis-
tors connnected in parallel or in series., We shall en~
counter examples of this in the next two sections.

V. SOME EXAMPLES OF DIMER DIFFUSION

The simplest case of cluster diffusion is that of a
symmetric dimer. The simplifying feature is that the
matrix M(k) contains no terms linear in k, Expanding
Eq. (2.9) one finds

Mk) =M+ MPUK) + (%), (5.1)
with
MO =20,8,, (s#1), (5.2a)
MO =-2a, ) B, (5.2b)
s
ME) =~ Bk - p)? (s#), (5.3a)
ME =0, (5.3b)

Due to the absence of terms linear in k, the quadratic
term of A;(k) can be obtained by ordinary first order
perturbation theory, i.e., by determining the expecta-
tion value of M’ between left and right eigenvectors of
M@ with A=0:

- E Dy k)= }: M)t
i s, t
= - Z Bst(k * pst)z ) (5-4)
8,1
and hence
(“ Z Bstpstpst y (5.5)

where the superscripts denote Cartesian components of
the jump distance p,,.

It is worth noting that the diffusion tensor D{}’, which
describes the asymptotic growth of (r,7,) coincides in
this case with the second moment of the transition ma-
trix, that describes the short-time evolution of
([7(7) =7 (0] [r,(r) ~7,(0)]) for any initial condition in
which there is “local equilibrium,” i.e., when the prob-
ability to find the configuration s, summed over all po-
sitions of the center of mass, equals the equilibrium
probability a;!. For intermediate times correlations
between r(7) ~r(0) and the internal configuration of the
dimer may develop, causing an instantaneous growth
rate for {[r,(r) =7,(0)] [r,(7) = ,(0)]) different from
2D{Y, but for long times the correlations disappear and
the growth rate 2D ¢’ takes over again, The inter-
mediate regime is absent in some simple models, such
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as the one-dimensional two-state dimer model dis-
cussed in Sec, IV A of Ref, 3. Equation (5.5) can also
be read off directly from the equivalent electrical net-
work, a method we shall discuss later in this section in
our discussion of the asymmetric dimer,

The determination of the diffusion constant did not re-
quire the full formalism of Secs, IV and V., We shall
now discuss the next coefficient D{2); in Eq. (3.5) for a
simple model of one-dimensional diffusion of a dimer,
first discussed by Reed and Ehrlich,? The dimer con-
sists of two atoms constrained to move in two adjacent
‘“channels” on the surface, The relative distance in the
channel direction may assume the values 0, +/, and
-1; the corresponding configurations are labeled 0, +1,
and -1, Configurations +1 and ~1 have the same ener-
gy, corresponding to a statistical weight a;l; the con-
figuration 0 has weight a;‘. Normalization requires

207 +ajt =1, (5.8)

Since all four possible transitions are equivalent, there
is only a single kinetic coefficient 8 and the matrix M(%)
assumes the form

-2a,8 20,8 cos(3%l) 0
M(z) = | 2a, B cos(3k]) ~4ayB 2a, Beos(irD) |,
0 2B cos(3kl) -2a,8

(5.7

where the rows correspond to the configurations -1,
0, and +1, respectively, The eigenvalues of this ma-
trix are easily determined by exploiting the symmetry
under exchange of configurations +1 and - 1; the three
eigenvalues are

}\l,z(k) =B{(al +2a0)
 [(0 + 204)? - 5a%ad sin®(3EDTV?,

2(R) =280, . (5.8)

By expansion of \,(k) or, alternatively, using the meth-
od of Sec, I, and application of Eq. (5.6) to simplify
the expressions, one finds

DW=pgr? (5.9)

@_gafl 1 1
D*’'=p1 (l—é—m+m> . (5.10)
Equation (5,9) is just a special case of Eq. (5.5) with
each of the four possible transitions contributing § g%,
The coefficient D’ contains information about the sta-
tistical weight o;® that does not enter into the expression
for D''’. The coefficient of gI* varies between the ex-
tremes 1/12 for 03! =0 or ag'=1 and 1/48 for og' =3.
Solving for ag' from D@’ yields two solutions with sum
1. To decide between them one might repeat the exper-
iment at a higher temperature, which would shift o' in
the direction of the equipartition value (ag'), =1/3.

The simple model just discussed can be extended in
many ways, either by admitting more configurations or
by admitting a direct transition between states +1 and
-1 with rate @,y. From Eq. (5.5) we see that this
changes the diffusion coefficient D!’ into

s=0
s=1
R T -
- 1/2 0 1/2 1 3/2 /1
FIG. 1. Two unit cells of the equivalent periodic electrical

network for the asymmetric dimer, with model parameters as
in Eq. (5.12), The numbers in boxes near each node denote
the node potential divided by the lattice parameter I, The num-
bers near each connector are the inverse of the corresponding
resistances, and 7 is the position of the center of mass. The
drawings inside the circles representing the nodes depict the
corresponding cluster configurations.

DV=2(g+2y) ., (5.11)

For asymmetric dimers additional changes occur,
To illustrate some of them we next discuss a modifica-
tion of the Reed-Ehrlich model with different mobilities
for the two particles. The matrix M{k) becomes

- 01(161 +B+7 +7’g) oo{B £ + B £) 011(715*2 +Y2 Ez)

o, (By £+ By £%) ~204(By +B) 0y (BE* +B8) )
a(n 52 +%2 5*2) ao(ﬁl E+B; &) - 011(/31 +B,+7 +Yz)
(5.12a)
with
t=exp(gikl) . (5.12b)

Instead of determining the diffusion coefficient D'’
for this case from the determinant of M(k) - I, we
draw the equivalent electric network, shown in Fig. 1.
Each of the cluster gtates is a node in the network, and
each transition with rate g corresponds to a resistance
with value 8!, The diffusion coefficient is now equal to
the current through the network for a potential drop !
per unit cell in the network. Let the nodes with s=0,

7 =nl have potential nl and those with s=-1, r=(n+3)!
have potential (# +x)!. From the symmetry under 180°
rotation it follows that the nodes with s =+1, r=(n+3)!
have potential (z+1 -x)!. The undetermined quantity x
now follows from the current balance equation at the
node with potential x:

- B +2v,
By +2¥, +Ba+27
For the total current, hence for D‘*’, we find
DV =212[(B, +27,) 1+ (B + 27 . (5.14)

This differs from the short-time rate of growth D}’ of
{#(r) =#(0)]2) in local equilibrium, obtained by adding
the second moments of the jump rates 3, B,, 0%, as dis-
cussed after Eq. (5.5),

x (5.13)
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0 Y Yy 1 byt

FIG. 2. One and one third cell of the equivalent periodic elec~
trical network for the Reed~Ehrlich trimer, discussed in Sec.
VI. Configurations, voltages, and resistances are indicated as
in Fig. 1.

D= 112(B, +27, + By +275) . (5.15)

The way in which the various rates in Eq. (5.14) con-
tribute to the final result is intuitively appealing. The
B, and vy, rates are combined as resistances in parallel:
single and double jumps provide alternative means of
locomotion for the cluster. However, rates for the mo-
tion of each of the two particles are combined as resis-
tances in series: in order to move the cluster as a
whole each one of its components must be moved. For
equal mobilities of both component particles, both Egs.
(5.14) and (5.15) reduce to the earlier result (5,12),

Vi. A MODEL FOR TRIMER DIFFUSION

477

particles moving in three adjacent, parallel channels
on a surface, each of which may have a distance 0, -,
or +] paraliel to the channels with respect to its imme-
diate neighbor. This trimer can thus have nine internal
configurations, shown at the nodes of the electrical net-
work diagram in Fig, 2, If the two outer particles are
assumed to be identical, one expects four different sta-
tistical weights, corresponding to the vertical, the di-~
agonal, and the two bent configurations. If, moreover,
only those transitions are allowed in which one of the
particles moves a single step, the model is completely
specified by giving the five inequivalent kinetic coeffi-
cients By, Bs, Ps, Py, and Bs;, shown in Fig, 2 at the con-
necting resistances. Note that our parametrization, as
the one employed by Reed and Ehrlich, has nine model
parameters; ours, however, separates the five that are
relevant for the diffusion coefficient, the B;, from those
that do not enter there, the statistical weights o},

To determine the diffusion coefficient D’ for this

model, we again determine the resistance per unit
length of the equivalent network in Fig. 2. From the
symmetry of the network it is clear that the vertical
and diagonal configurations will have the same potential,
and that only two node voltages denoted by xI and yl have
to be determined; all the other then follow by symmetry
and translational invariance. The current balance condi-
tions at the two nodes yield two equations for x and y:

Bax =28(1 =y ~x), (6.1a)
(B +B5)y = B4(1 ~29)+ Bl = =) . (6. 1b)

The current for a voltage drop [ per lattice cell equals

I=l2[ﬁ'3x+2(ﬁl+ﬁz)y] . (6.1¢)
As an example of a cluster with » > 2 we consider the
trimer model introduced by Reed and Ehrlich?®: three Solving this simple set of equations results in
J
=pWrios (513354 + ByByBy + 2818385 + 2818485 + 2858385 + 2858485 + 5313435) ) (6.2)
B1B3 + BaBs + B3Bs +21B5 +2B5B5 +2B3By +4ByBs ’

The rather complicated result in Eq, (6.2) simplifies
in a few limiting cases. If we eliminate the vertical
configuration, as might be appropriate for large ad-
atoms, we obtain

(By=B3=0)~ DM =212(8' + 2851, (6.3)

as would be appropriate for the simple network then re-
maining, which has a ladder structure; the rungs of the
ladder containing two resistances £' cannot carry any
current, since they connect nodes at equal voltages. It
is therefore not surprising that the rate g; does not
occur in Eq. (6.3). If we eliminate the symmaetrically
bent configurations we obtain

(B3 =B5 =0)=~ DV =228 +2(8, +8) ], (6.4)

again readily understood in terms of the network that re-
mains after the 8, and B; connections have been removed,
Note that in cases where the symmetrically bent config-

-

uration is excluded (strong nearest-neighbor bonds) the
diagonal configuration should probably be excluded as
well; then 8, must also be put equal to zero in Eq. (6.4).

Finally, we consider the case where the rates p, and
85 are much larger than the other ones. In that case

(B, Bs = =)~ DV =13(B,) + B, + By/2) (6.5)

again reasonable since the three rate-limiting kinetic
coefficients correspond to resistances in parallel,

The results just given agree with those reported in
the literature, after the appropriate changes in nota-
tion, except for Eq. (6.5), which may be new. We pre-
sented them mainly to show the advantages of the equiv-
alent network method: we had to solve two simple linear
Egs. (6.2), instead of nine (or six when symmetry is
exploited) coupled equations for the occupation proba-
bilities of the cluster configurations. Of course our

J. Chem. Phys., Vol. 77, No. 1, 1 July 1982

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



478 U. M. Titulaer and J. M. Deutch: Cluster diffusion on surfaces

method is restricted to the calculation of D® ’; if one is
interested in the growth rates of higher cumulants, the
full complexity of the underlying dynamies must be con-
fronted., Even then the methods presented in Sec. III
are more economical than those thus far available in
the literature.

Vil. CONCLUDING REMARKS

The network analogy not only provides an efficient
method for calculating diffusion coefficients or tensors
for specific models; it also provides direct proof for two
general properties of the diffusion coefficient, First,
the resistance is determined by topology of the periodic
network, and by the dimensions of its unit cell; it does
not depend on the location of each of the nodes inside the
unit cell; i.e., on the individual p,;. This confirms the
result derived algebraically at the end of Sec, IV, Sec-
ondly, the diffusion constant depends on the “resis-
tances” B;!, but not on the “capacitances” o;'. This re-
sult can also be obtained algebraically from Eq. (4.3),
using the fact that the matrix of minors of M(0) — Al
approaches a constant times the projection A, = o' on
the ground state eigenvector for A approaching zero,
and the normalization requirement ¥ ;' =1 that follows
from Eq. (38.1). The proof using the network analogy
is certainly more transparent,

The calculation of the growth rates of higher cumu-
lants is simplified greatly for one-dimensional prob-

lems in which there is a unique sequence of steps
through which the diffusion must proceed, as for the
symmetric three-state dimer of Sec. V or the simpli-
fied trimer model of Eq. (6.3) or (6.4) with 3,=0. The
matrix M(2) then becomes tridiagonal and one may use
the methods expounded, e.g., in Ref, 7 to determine the
coefficient functions C,(%) discussed in Sec, 1.
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