5180 Letters to the Editor

the relative GOS sums for L +M electrons and for K +L
+M electrons are then, respectively, S,, =S, +5] and
8§=8,+S,+S5. From the Bethe sum rule, the absolute
value of the latter is the total number N =18 of Ar elec-
trons, so that an effective number of electrons N, of
the L +M shells can be defined as N, =NxS,, /S, and
effective number of electrons of the K shell is then Ny
=N ~N_,. From our 20 measurements {ten angles and
their symmetrics) the mean value of N, obtained to-
gether with its standard deviation is Ny=1.54+0.06. A
plot of N, (K) versus K has shown no significant varia-
tion in Ny versus K.

This value, obtained for the generalized oscillator
strengths of Ar, is similar to the values previously de-
termined from x-ray absorption experiments by
Woernle® (N, =1.61) and by Wuilleumier'®!* (¥, =1,46
+0,05) and with the linear interpolation to the calcula-
tions by Wheeler and Bearden® (N, =1.465).

It thus follows that, for the normalization procedure
of relative energy loss spectra obtained by electron im-
pact, the Bethe sum rule can be replaced by the partial
sum involving the effective number of L +M shell elec-
trons N,;,, as long as the scattering angle is small
enough to allow the asymptotic behaviour of the GOS to
be reached befcre the energy loss E,. Using N-2

rather than N, as it was previously reported® introduces
a 3% error for the normalization in the case of Ar.

Our results are important for experiments where the
investigated energy loss range is not large enough to
make use of the Bethe sum rule.

Such a separation into partial contributions to the sum
rule is not possible for Ne because the K shell ionization
energy is substantially lower than for Ar, andthe valence
shell GOS does not reach its asymptotic form at this en-
ergy loss,
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Explosions are an important part of combustion. !?
The simplest model for an explosive reaction is based
upon the chain reaction®

£
x'—LB,

A+ox Fay (1)

This deterministic reaction mechanism has a discrete
transition to explosive behavior. Our purpose here is
to investigate the influence of fluctuations on this tran-
sition. We employ a simple, approximate method that
illustrates how composition fluctuations blur the tran-
sition between stable and unstable behavior.

In dimensionless form the kinetic equation is

% =—k(x -5, x=[x"6A/4], (2)

and the system is open to an infinite reservoir of A.
The exact solution of Eq. (2), for x{0)=x,,
x(t) = xp expl - #;£] {1 + x;[exp(—#,1) =111 (3)

predicts that for x,>1, x diverges as ¢ approaches the
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finite time ¢, =#7' In[xy(x, -~ 1)™!]. This deterministic be-
havior is lost when fluctuations are present; for x;<1,
there is a chance that a fluctuation can drive the system
into the region x>1,

Fluctuations in concentration may be included through
the Langevin equation?s®

d
== kilx =) AW (4)
where g(t) is chosen to be a Gaussian stochastic vari-

able.

If A(x), the amplitude of the fluctuations, is constant
[A(x) = (% )/?] then Eq. (4) can be transformed®’ into a
Fokker—Planck equation of the form

3P(x, t) f,’; B _ %D[————BP ;;‘ D | gy (x)Plx, t)]
9 .
= - a](x, N, (5)

where D=% is the relevant diffusion constant and
Bib(x) = (4, x%) (k)™ [% — x/3] is the “potential.”
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FIG. 1, Probability of transition to explosive behavior U vs

initial concentration x; for various values of the ratio of po-
tential height #; to magnitude of fluctuation &,

An analytic solution of this Fokker-Planck equation is
not possible,

There is a simple method® for determining the mean
passage time 7 which may be used to calculate U, the
total flux across the maximum of potential 8y(x). As-
suming absorbing boundary conditions at x=0 and x =1,
and a §-function initial condition P(x, 0) =6(x —x,), we
obtain the set of coupled equations for the total flux U
=[5 dtj(1, t) disappearing across the maximum and L
=[5 dt4(0, {) the total flux disappearing into the origin;
clearly U-L =1:

1 x X 1
_ dy 0 dx
T= Ujo‘ dxpo(x)fo Ebo») +_/(; kpo(x)j; dy po(y) ,

1 1 dy 1 dx
T:Lj; dxpo(x)_[ e + . T

JRETEOR
(6)
The above equations are solved by

%0 dx Y oax
o= ["305 /1

todx Uodx
L(xo)—-j;o po(x) o Po(x) . (7)
In these equations pq(x) = exp[— By(x)]/{/b dx exp[ - Bv(x)1}.
Thus, we arrive at a simple approximate expression for
U(x,) that describes the probability that fluctuations will
drive the system from a region of stability x,<1 into
explosive behavior. The description is approximate
since recrossing across the barrier is not permitted.*!°

In order to illustrate this effect, Fig. 1 plots U(x,)
versus x, for various values of #;/k. As expected, one
finds that the transition region of appreciable U is quite
narrow for #,/k large, when the magnitude of the fluc-
tuations k'/? is small compared to the height of the po-
tential #,.

1t is amusing to note that the point x;,;, where U(x,,)
=+ may be approximated with little error by assuming
Ul(x,) is linear near x,=1,

1- [ dx exp[Bi(x)] . )

2 exp|#;/6k]

In summary we have shown how a simple mean first
passage time calculation may be employed to define ap-
proximately the influence of fluctuations in a model
chemical reaction that exhibits explosive behavior. We
shall report a more exact treatment of more complex
models elsewhere.
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