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We consider particles diffusing in a uniform medium and being absorbed by statistically distributed spherical
sinks. We study the average diffusion-absorption equation, as derived to first order in the sink density by
multiple-scattering theory. We show that for perfect sinks this equation must be modified to take proper
account of instantaneous absorption of particles created inside the sinks.

. INTRODUCTION

In the theory of diffusion-controlled reactions one
considers particles diffusing in a medium and being ab-
sorbed by randomly distributed sinks. If the sink sys-
tem is sufficiently dilute, the average absorption rate
is proportional to the sink density and the rate coeffi-
cient can be calculated from the properties of a single
sink, In this calculation, first performed by Smolu-
chowski, ! one considers the steady rate of absorption by

the sink when particles are supplied uniformly at infinity.

Smoluchowski also considered the initial-value problem,
and displayed the long-time effects that are present in
time-dependent situations. In earlier articles we stud-
ied higher order density corrections to the rate coeffi-
cient in the steady state,? as well as in the time-depen-
dent case.’ We pointed out® that in the average diffu-
sion—absorption equation the diffusion coefficient is also
modified by the presence of sinks. To first order in the
sink density one can perform a calculation similar to
Smoluchowski’s and consider a single sink placed in a
uniform gradient of particle density.

Our work®'?® was based on a local field method. The
density field acting on any chosen sink satisfies the free
field equation in the absence of the sink. One then uses
a hierarchy of conditionally averaged equations to es-
tablish the average response of the sink., The method
precludes the possibility that particles are created in-
side the sinks. Alternatively, one may use the formal-
ism of multiple scattering theory, *-% in which case the
source density may overlap with the sinks. To linear
order in the sink density this theory is a direct general-
ization of work by Foldy' and by Lax.®

In this article we point out a difficulty with the
straightforward application of the Foldy—-Lax scheme
which is highlighted for the case of perfect sinks. Par-
ticles produced inside a perfect sink are absorbed in-
stantaneously. We argue that the average diffusion—
absorption equation must be modified in such a way that
the effects of instantaneous absorption are clearly iden-
tifiable.
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We derive the average equation and its proposed
modification in Secs. II-V. In Sec. VI we apply a
multipole expansion to both equations and hence derive
macroscopic equations by retaining only terms to sec-
ond order in the spatial gradients. In Sec. VII we dis-
cuss the modified macroscopic equation and in Sec. VIII
we compare our results with the recent results of Bixon
and Zwanzig.®

Il. ABSORBING SINK

We first consider the problem of pointlike particles
diffusing in a uniform medium and being absorbed by a
single spherical sink. The diffusion-absorption equa-
tion for the particle number density c(r, f) in the pres-
ence of a single sink centered at the origin reads

ac

— =DV%c =Ar)c +s(r, 1),

a7 (2.1)

where D, is the diffusion coefficient, A(r) is the local
absorption coefficient, and s(r, {) is the source density.
For simplicity we assume the local absorption coeffi-
cient to be given by

Mr)=xr, for |r|<a,

=0, for |r|>a, (2.2)
where a is the radius of the sink. More complicated
models can be envisaged. The source density s(r, {)
supplies new particles to the system and is a given func-
tion of space and time. To familiarize the reader with
the problem we consider some simple situations.

In case there is a constant and isotropic source at in-
finity, the stationary solution of Eq. (2.1) reads

c(r)=c. A r<a

>

B
ZCa(-,_r_>7 T>ay

where v=vVA/D,. The coefficients A and B follow from
continuity of ¢(#) and ¢'(r) at » =a. One finds

tanh ua)
va '

sinhvy
r ’

(2.3)

A =(eoshva)!, B:a(l— (2.4)

The total absorption rate for the sphere is given by
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J=f>»(’r)c('r)dr =4nD,Bc, , (2.5)
corresponding to the rate coefficient
k=41D¢B . (2.86)

In the limit A~ < the sink becomes perfectly absorbing
and the rate approaches J = 4nDyac,, with the Smolu~
chowski rate coefficient &, =47Da.

In case there is a constant and uniform source inside
the sink, i.e., the source density is given by s(r) =sé(a
~7), where 8(a —7) is the step function, the stationary
solution of Eq. (2.1) reads

c(r)=%(1 -As—mEH) , r<a,
B
=%;—, r>a, 2.7

with coefficients A and B again given by Eqs. (2.4).
Clearly, the particles can diffuse outwards and some
finally escape to infinity. The escape rate is given by

E=41rDoB§- ) (2.8)
Hence, the rate of absorption by the sink is
J' =S-E, (2.9)

where S =(41/3)a’s is the total source strength. The

probability of escape is
pe=E/S=3DB/\a* . (2.10)

Expressing Eq. (2.10) in terms of the rate coefficient
k=4gyDyB, one finds

3 k
pe=4ﬂ;§x' (2.11)
From Eqs. (2.4) one finds
_ 3 ta.nhua)
Pe—;p;r(l-——ua , (2.12)

which exhibits the limiting behavior p,~ 0 for Dy—~0,
and p,—~ 1 for Dy—~ = at fixed A,

The above examples demongtrate that it is of interest
to distinguish between particles created inside the sink
and those created outside. We may visualize these par-
ticles as colored red and blue, respectively, and we can
follow their separate fates.

More generally, we shall consider time-dependent
situations. It is then convenient to take Fourier trans-
forms and to write

sir, )= [s,(r) e?“tdw , (2.13)

and similarly for c(r,f). We define the local absorption
rate a(r, {) by

a(r, t) =xr)elr, ?) . (2.14)

Since our basic equation (2.1) is linear and time-trans-
lation invariant, the local absorption is related by a lin-
ear operator ¥(r,r’, w) to the source density according
to
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a,(r) = f Yir, ¢, 0)s,(r)dr’ . (2.15)

We can distinguish between particles created inside and
outside the sink by writing

Y(w)=Y,,(w) + Yo (w) , (2.16)
with

Y, (r, ', w) =A1)G,(r, ', w)b(a-7") ,

Y. (r, ¢, w) =A(r)G (r, ', w)0(r' = a) , (2.17)

where G,(r, r', w) is the Green function in the presence
of the sink.

The operator Y(w) is closely related to the 7 matrix
for the problem. If the sink were absent, the diffusion
equation would read

8¢

s =DVic* +s(r, 1) . (2.18)
Fourier transforming Eqs. (2.1) and (2.18), one finds

= iwcy(r) = DyWlc, (1) = M7)cy(r) +s,(T) , (2.19a)

—iwc(r) =DgvicZ(r) +5,(r) . (2.19b)

The effect of the sink is expressed by the T matrix
T(r,r’, w) defined by

0@ =2xPeo(0) = T, ¥, W)l )ar' . (2.20)

A comparison with Eq. (2.15) shows that Y (w) and T(w)
are related by

Y(w) = T(w)Gy(w) ,

where G,(w) is the Green function for Eq. (2.19b). Ex-
plicitly,

(2.21)

1 exp(=plr-r'l)
41TD° lr—r’l

Golr, v, w) = , (2.22)
where p =V=iw/D,. Clearly, this is a symmetric ker-
nel. One can show that the T matrix T{r,r’,w) is also
symmetric. The decomposition (2.16) leads to a cor-
responding decomposition of the T matrix. In plane
wave representation

(k| Ty, (w) | k)= f exp(-ik* r)T, (r, ', w) exp(ik’ * r')dr dr’

=(k| ¥, (w) | K'Y= iw + Dek?) , (2.23)

with a corresponding expression for T,,(w).

(I, MANY SINKS

We now consider particles diffusing and being ab-
sorbed by a system of many identical sinks. The dif-
fusion—absorption equation for the particle density reads

)
a—tc— =Dyvle~A(1,...,N)c+s(r,?),
where A1, ...,N)= ARy, .
coefficient given by

AMr; Ry, ..

(3.1a)

..,Ry) is the local absorption

.

.sRy) =17, if |[r-R,| <afor somej,
=0, if [r-R,|>aforallj, (3.1b)

where R, is a sink center. We assume that the sinks
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do not overlap and are statistically distributed, as de-
scribed by a given probability distribution P(Ry, ..., Ry).
In some physical situations of interest the source den-
sity s(r, #) will be correlated with the sink positions, but
we shall first consider the simpler uncorrelated case.

To find the average diffusion and absorption of par-
ticles in the many-sink system, we average Eq. (3.1a)
over the probability distribution P(Ry,...,Ry). Resulis
to arbitrary order in the density of sinks may be ob-
tained by use of the cluster expansion formalism de-
veloped recently by Felderhof, Ford, and Cohen.’®
Here we merely aim at obtaining the transport coeffi-
cients correctly to first order in the sink density. We
begin by recalling the method developed, to this order,
by Foldy® and Lax® in the theory of multiple scattering.

The Fourier transform of Eq. (3.1a) reads

—iwe, () =Devie (r) = A1, ..., N)co(r) +5,(r). (3.2)
We define the N-body absorption rate by
alr,t;1,...,N)=xr;1,...,Ne(r, 8 . (3.3)

The effect of the sinks is conveniently described with
the aid of the N-body T matrix defined by

a1, N = [Tl 0L, N

In shorthand operator notation -4
a1, ..., N)=T(w;1,...,N)cx . (3.5)
The solution of Eq. (3.2) can be written
coll, ..., N)=Gow)[-a,(1,...,N) +s,] . (3.6)

Using ¢ = G,4(w)s, and substituting Eq. (3.5), we obtain
Cw(]',"-yN)z[I—GO(w)T(w; 1,"'7N)]sz . (3-7)

Equations (3.2), (3.5), and (3.7) can now be averaged
over the probability distribution P(Ry,...,Ry). Defining
the averages

Cw(r) = (Cw (r)) ’ Aw(r) = (am (r» , (3 . 8)
we find from Eq. (3.2)
= iwC,(r) =DyviC,(r) —A,(r) +5,(r) . (3.9)

To lowest order in the density the N-body T matrix can
be replaced by a sum of one-body T matrices

N
T(w;l,...,N)zziT(w;j) ) (3.10)
j:

Averaging Eq. (3.5) with this approximation, one finds

A, () = [n(R)T(r, v, w; R)cE(r")dr' dRy , (3.11)

where n(R,) is the one-particle density. Similarly, by
averaging Eq. (3.7),

Colr) = c2(x) = [ n(R)Goflr, 7', )

X', v, w; R Ydr' dr'' dR; . (3.12)

To lowest order in the sink density C, =ci so that, to
first order in the density, Eq. (3.11) yields the consti-
tutive equation
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Au(r)=[nR)T(x, ', w; R)C,(¢")dr' dRy (3.13)
or in shorthand notation

Am ::K(w)cw ’ (3 . 14)
where

K{w) = | n(R))T(w; Ry)dRy . (3.15)

Substituting Eq. (3.14) in Eq. (3.9), one finds the low
density average equation

= iwCy(r) =Dyv2C,(r)

—fK(r, r', w)Cu(r)dr' +s,(r) . (3.16)
The one-body T matrix T(r,r’, w; R;) =T(r -Ry, ¢’ - Ry,
w) is symmetric in r —R; and r’ ~R; and vanishes iden-
tically for Ir-=R;l>a, i’ =Ry|>a. Hence, it follows
that the absorption kernel K(r, r’, w) vanishes for
fr-r'i>2aq.

If the density of sinks n(R;) is spatially uniform, then
K becomes a translationally invariant kernel K(r - r',
w). Defining the Fourier transform

Crpo= ooz [ Cult) expl~ ik rlar , (3.17)
one finds from Eq. (3.16)
—iwCy = = Dgk*Cy, —nt(k, X, w)Cy o +Sy,0 » (3.18)
where
t(k, k, w) = (k| T(w) | k)
= [exp(~ik- r)T(r,r’, w) exp(ik+ r')dr dr’
(3.19)

is the kk element of the T mairix for a sphere centered
at the origin. Equation (3.18) has the form derived by
Foldy and Lax. Solving Eq. (3.18), one finds the Green
function

G(k, w) = [-iw + Dyk? +nt(k, k, )] . (8.20)

Equation (3.16) and its associated Green function can be
regarded as the generalization of Eqs. (3.18) and (3.20)
to spatially varying sink density.

As stated at the beginning of this section, we have
assumed in our derivation that the source density s(r, )
is not correlated with the sink positions. If we confront
a problem where the particle creation occurs inside a
sink, or is otherwise correlated with the sink position,
then we must modify the formalism. The change re-
quired is that we take conditional averages with the
position of the selected sink held fixed. After deriving
the conditionally averaged equation, this equation may
be solved and a final average of the solution over the
selected variable may be carried out. In this manner
we can, for example, distinguish between particles
created inside and outside the sinks. Also, one could
study how the probability of escape p, is affected by sur-
rounding sinks. We shall leave the treatment of such
problems to a following article and restrict ourselves
here to the study of the special limiting case of perfectly
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absorbing sinks. In this case any particles created in-
side a sink are instantaneously absorbed, so that the
average concentration C(r, #) pertains only to particles
created outside the sinks. It then suffices to study the
average equation for C(r, #).

IV. PERFECT SINK

We first consider a single perfectly absorbing sink,
corresponding to the limit A~ %, For this case we give
here explicit expressions for some of the quantities in-
troduced in Sec. II. The diffusion—absorption equation
for a single sink centered at the origin can be written

—iwcy,(r) =DgVic,(r) = a,(r) +s,(r) , (4.1)
with the condition

co(r)=0, forr<a. (4.2)
The absorption rate a,(r) is given by

a,(r)=s,(r)8la-7) +0,@)o(r-a), (4.3)

where the first term represents the instantaneous ab-
sorption of particles produced inside the sink and the
surface density o,(r) =Dy(8¢,/87)|,.,., is determined by
the source density outside the sink. Hence, the opera-
tors Y () and Y, (w) defined in Eqs. (2.17) become

Yu(r, v, w)=6(r -r")8(a-+"), (4.4a)
Y, (r,r’, w)=Dyb(r - a) z
a

X VG(r, ', w)o(r' - a) . (4. 4b)

In the steady state case (w=0) it is easy to find a com-
pact expression for the operator Y,,(0). By the method

of images
, _1_[;_
Gs(r,r,O)_4nD0 lr=r'|
a 1 ’
__—I v — (a/’r’)rl]’ for'r,r za. (4.5)

More generally, one finds by expanding the Green func-
tion in spherical harmonics

Gylr,r',w) = %Z[iz(ur)k,(ua) =~k (ur)iy(pa)]

x_’;e(((l-; ))_Ym(e,w)y;‘m(e:,(p/) (y<y’)’

(4.6)
where p =(-iw/Dy)'? and ,(u») and £,(ur) are modified
spherical Bessel functions.!® This yields by substitu-
tion in Eq. (4.4b) the simple expression

Y(r, v, w)=8(r —=r"Y0(a=7") +6(r = a)a?®

XE!?‘L(_'———YI»;(G (P)Y ,m(e y @ )9(7' "a)

klra)
(4.7
We may find the matrix element (k| T(w) |k} needed in
Eq. (3.18) by calculating (k!Y(w) IX) and using Eq.
(2.23). As an intermediate step we evaluate the local
absorption g, ,(r) due to a plane wave source density
s,(r) =exp(ik- r). This is given by

ak,w(r) = Y(w) Ik)

=6(a -7) exp(ik* r) +5(r - a)—r—gzo(21+1)

By . . a2 -
xit [ 2D | it B, (a)
ky(ua)
where j,(x) is a spherical Bessel function. Hence, one
finds by straightforward calculation

47 4 41Dy
< k|Y(w)] > 3N DR

XE(ZM)],(M)[M,(M)_:M k]'m(ka)], (4.9)

k(pa)
which is equivalent to the expression (A8) derived by
Bixon and Zwanzig® for {k|T(w)|k). It is evident in the
above derivation that the first term arises from instan-
taneous absorption inside the sinks. Having investigated
the properties of a single perfect sink, we can now use
these results in the average equations derived in the
previous section.

V. AVERAGE EQUATION FOR PERFECT SINK
SYSTEM

We consider first the case of spatially uniform sink
density. Using Eqs. (2.23) and (4.9), we find upon sub-
stitution in Eq. (3.18)

—iwCy = = Dok*Cy,y = [p(=iw + Dok’

+nt°“(k, k9 w)]ck,td +sk,w ’ (5-1)
where ¢ =(47/3)nd’ is the volume fraction occupied by
sinks and ¢,,(k, k, w) is given by

t, (K, K, 0) = 47Dga? 9 (21 +1)j,(ka)
1=0

. Erqlua)
X [u]x(ka)m

Clearly, the first term in square brackets in Eq. (5.1)
must be combined with the terms describing free diffu-
sion. Dividing by (1 + ¢) and keeping terms linear in #,
we arrive at the modified average equation

= iWCy, = = DgEiCy, o — ity (K, K, 0)Cy 0 + (1 = ¢85y,
(5.3)
In this equation the effect of the sinks on diffusion and
absorption is described by only the relevant part of the
T matrix. The source density is reduced, since only
particles created outside the sinks can contribute to the
average concentration. This interpretation makes it
likely that consideration of higher order density terms
in the average equation would lead to a factor 1+ ¢
+¢? ++++ =(1 - ¢)"! multiplying (- iw + Dyk?)Cy ., Which
upon division would precisely give the last term in Eq.
(5.3). We emphasize that the above modification of the
Foldy-Lax scheme is forced upon us by the physical in-
terpretation. Equation (5.3) is the principal resuilt of
our analysis and isolates the effect of instantaneous ab-
sorption. This effect is accounted for by a modification
of the source term and not via the propagator.

—kj,,l(ka)] . (5.2)

We now investigate whether the change from Eq.
(3.18) to Eq. (5.3) has physical consequences. Con-
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sider for example a plane wave source density which is
kept constant up to time #=0 and then switched off. The
average particle density will vary as C(r, ) =C(¢)

x exp(tk+ r), with an amplitude C,(#) which is constant
for £<0 and decays to zero for > 0. According to Eq.
(3.18) or (5.1), the initial amplitude is

C(0)=[(1 + ¢)Dk? +nt, (k Kk, 0)] s, , (5.4)
whereas according to Eq. (5.3)
C1(0) = [Dok? +nt, (k, k, 0) YL - ¢)s, , (5.5)

where we use a prime to distinguish the two results.
When expanded to first order in ¢, both amplitudes are
the same. However, by expanding one loses the impor-
tant effect of screening.? We obtain an estimate of the
screening length by expanding ,,(k, k, 0) = ¢ + £*®
+0(#%) in the denominators of Eqs. (5.4) and (5.5).
This yields the two results

£2=[(1 + ¢)Dy +ntD1/ntlY

£ =(Dy+nt2)/nt® (5.6)

which become identical only if the terms linear in the
density in the numerators are neglected. However, it
should be possible to determine the effective diffusion
coefficient correctly to first order in the density. We
return to this question in the following sections.

Next consider the long-time behavior of the amplitude
C,(f). Asymptotically, the decay is dominated by a w!/?
singularity in £,,(k, k, w) leading to a t*¥? power law, as
shown by Bixon and Zwanzig.® At intermediate times the
decay of C,(#) will be nearly exponential and slightly
modified from the zero order diffusion. From Eq. (5.1)
one finds for this intermediate time a decay rate

n
T(k) =Dk + mtm,(k, k, 0), (5.7
whereas Eq. (5.3) yields
I'(k) =Dk +nt, (K, k, 0) . (5.8)

To linear order in n these results are identical.

We shall argue in the next sections that it is possible
to consider separately the effects of diffusion and ab-
sorption in the macroscopic equation obtained by making
a small gradient approximation. If we want to calculate
the diffusion coefficient and the absorption coefficient
correctly to terms linear in the density, then we are
forced to make a choice between Eqs. (5.1) and (5.3).
For the reasons given above we propose that Eq. (5.3)
is the correct equation to employ.

To conclude this section we consider the generaliza-
tion of Eq. (5.3) to spatially nonuniform sink density.
Using the decomposition (2.16), we can write Eq. (3.11)
in the form

A, (r)=v(r)s,(r)
+ [n(R)T, (r, ¢, w; R cX(r")dr' dR, , (5.9)
where

u(r) = n(Ri)G(a— Ir _Ri |)dR1 . (5. 10)

Felderhof, Deutch, and Titulaer: Medium with spherical sinks

For slowly varying sink density one has approximately

v(r)~ §7an(r) + Latviar)] . (5.11)
Eliminating C*(r') from Eq. (5.9) by use of Eq. (3.12)
and substituting in Eq. (3.9), one obtains the modified
average equation

- iwCy(r) = DyV°C,(r)

~ JRoulr, 1 )CUEdr + (1= v(D)]sulE)

5.12
where ( )

Kou(w) = | n(Ry) T, (w; Ry)dRy . (5.13)
Equation (5. 12) differs nontrivially from Eq. (3.16),
The difference is most obvious for the case where the
sink density is only nonzero in a finite part of space
and where s,(r) is nonvanishing only outside the whole
sink system. In that case v(r)s,(r)=0.

VI. MULTIPOLE EXPANSION

The kernel X, (r, r', w) is sufficiently complex to make
it awkward to use in situations with nonuniform macro-
scopic geometry. We therefore assume that the average
concentration C,(r) varies sufficiently slowly that one
can employ a small gradient approximation. We then
apply a multipole expansion to the kernel K, () and
keep only multipoles of low order. We call the resulting
equation for C,(r) the “modified macroscopic equation, ”
The derivation is entirely analogous to the derivation of
Maxwell’s equations from the microscopic field equa-
tions. 11

For the sake of comparison we apply the multipole
expansion to Eq. (3.16) as well as to Eq. (5.12). We
write the local average absorption rate A,(r) appearing
in Eq. (3.16) in the form

A,(r)=471D, [ n(R)p.(r — Ry, R)dR; , (6.1)
where
pu(r ~Ry, Ry)

=(47D)! f T(r -Ry, r’' =Ry, w)C,(r")dr’ (6.2)

is the average absorption at r due to a single sink cen-
tered at R;. The factor 47D, is included for later con-
venience. Correspondingly, we define p.,(r - Ry, R;) for
Eq. (5.12) by the same expression (6.2) with T replaced
by T,,. By definition, p,(r =Ry, Ry) and p,(r =Ry, Ry)
vanish for |r—R;|>a. Multiplying by a smooth test
function f(r), integrating over r, and expanding f(r)
about Ry, one finds

Jr®oute Ry R)ar =2 wO®RY: (0/0R)FRY ,  (6.3)

where the Cartesian multipole moments p{"(R,) are de-
fined by

1
SV (Ry) = - f (r -R()"pu(r —Ry, Ry)dr , (6.4)
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with (r —R,)" a polyadic tensor of rank n. Equivalently,
we may write

pulr Ry, R = (=~ 1Pp{P(R): 7o ~R) ,  (6.5)
s
as can be seen by substitution in Eq. (6.3) and integra-

tion by parts. Hence, the local average absorption rate
can be written

A,(r)=41Dy ) (- 1)"w" PiM(r) (6.6)
n=0
where
P (r) =n(r)u{M(r) (6.7)

is the local multipole density. For brevity we denote
the monopole and dipole density by

P(r) =Q,(r) =n(r)q,(r) ,

PV (r) =P, (r) =n(r)p,(r) . (6.8)

It follows from Eqs. (6.2) and (6. 4) that the various
multipole densities are related nonlocally to the average
particle concentration, We find in particular for the
monopole moment

9.(Ry) = f X(Ry —1', w)Cy(r')ar’ , (6.9)
where
X(Ry =r', w) = (47Dy)™ f T(r-Ry, ¢’ =R, w)dr . (6.10)

Using the multipole expansion (6.6), we replace the
average equation (3.16) by a macroscopic equation in
which only the first few multipoles are kept. Keeping
only terms relevant to second order in the gradients,
we obtain the macroscopic equation

- iwC,(r) =DyviC,(r)

-41D[Q,(r) =V P,(r) + vV : PP (r)] + 5, (r)
(6.11)
together with the constitutive equations

Qu(r) =n(r)[y(w)C,(r) + e(w)v?C,(r)],
P, (r) =a(w)n(r)vC,(r) ,
P (r) = Blw)n(r)C, ()1,

with coefficients given by

(6.12)

v(w)=(4aDy)t | T(r, ', w)drdr’ ,
a(w) = 5(47Dy)! Trfrr’T(r, r’, w)drdr’
Blw) = %(41TD0)“ _/ AT(r,r’, w)drdr’,

e() = HamD [y T(r, ¢, w)ar ar’ . (6.13)
We have used the spherical symmetry of the sinks.
From the symmetry of T(r, r', w) it follows that S(w)

= E(O)) .

Similarly, the modified average equation (5.12) yields
the modified macroscopic equation
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- iwC,(7) = DyvC,(r)

= 41Dg[QL(r) -V - PL(r) + 9V : PP (r)] +[1 - v(r)]s,(r)
(6.14)
together with constitutive equations like Eq. (6.12) with
coefficients v, (w), o, (w), B, (w), and €, (w) which are
defined as in Eq. (6.13) with T(r,r’, ) replaced by
Toulr, v, w),

Vil. MACROSCOPIC EQUATIONS

The various terms in the modified macroscopic equa-
tion (6.14) have a direct physical interpretation. The
term v(r)s,(r) describes the instantaneous absorption
of particles created inside the sinks. From Egs. (5.9),
(6.1}, and (6.5) it is evident that the monopole density
Qu(r) describes the total average absorption by sinks
centered at r of particles created outside the sinks.

By integrating Q(,(r) over a volume V, one finds the
total absorption of diffusing particles due to sinks with
their centers inside V. Since the dipole and quadrupole
density occur with a divergence, integration of these
terms gives rise to a surface term which cancels for
neighboring volume elements. If the entire surface of
V lies in a region where »n(r) vanishes, then these terms
do not contribute to the total absorption. Hence, P,(r)
-v-PP’'(r) is more conveniently included with the
macroscopic current density

Jo(r) = = Dy[VC,(r) + 47P(r) =47V - P2 '(r)] . (7.1)

Evidently, this differs from the average current density
(ju(T)) ==-DyvC,(r). Substituting the constitutive equa-
tions, one finds

J.(r) = = Dy[VC.(r)

+ 4mno, (W)VC, (1) ~ 478, (w)V(nC.)] . (7.2)

In a region with spatially uniform »{r) this leads to the
definition of the diffusion coefficient

D'(w) = Dyfl +4mn[a, (w) - B, ()]} . (7.3)

We can give a similar interpretation of the terms in
the macroscopic equation (6.11), with the difference that
now the monopole density @.(r) includes a contribution
from particles absorbed instantaneously inside the sinks,
and that P,(r) and P¥(r) include similar contributions.
It seems unphysical to count the latter as part of a mac-
roscopic current density J,(r) of particles diffusing out-
side the sinks,

To illustrate the difference between the two macro-
scopic equations we calculate the various polarizabili-
ties defined in Eq. (6.13) and the corresponding quanti-
ties with subseript ou. By putting k=0 in Eq. (4.9) and
using Eq. (2.23), one finds immediately

(7.4)

where p =(-iw/Dy)!’2. The coefficients a(w) and f(w)
follow from Eq. (4. 8) by expanding the plane wave and
evaluating the appropriate integrals. One finds

(W) =37 +74,(0), Youlw)=a(l +pa),

. l+pa+iu’d
Aw)=Ha @ (w), ap(w)=d—HIIEE

Blw)=5ula® +8,(w), Bu(w)=}a(1+pa). (1.5
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Finally, we note that the kernel x(r ~r’, w) defined in
Eq. (6.10) is also easily found from Eq. (4.8) via the
matrix element {01¥(w)ik). For its Fourier transform
one finds

x(k, w) =_[x(r, w) exp(ik - r)dr

= (k! + ) /R)js(ka)

+ajo(ka)(1 + na) - kd¥j,(ka) , (7.8)

8o that
1 .
x(r-r',0)= I‘E)—OG(G— ll‘ -r ')(—zw —Dov'z)

1+pa

+
4ra

1
5|r-r'|-a)+ Ea(a— |r=2'|)v'2. (1.7)
Here the first term corresponds to the instantaneous
abgorption. From the coefficient of % in the expansion
of x(k, w) one finds

e(w) =iuta’ - 3 + €, (0)
(7.8)

Note that €{w) = B(w} as demanded by the symmetry of
the T matrix, but that €, (w)# 8, (w). It is easily
checked that the instantaneous absorption terms in Eq.
(6.11) agree with Eq. (5.1).

Finally, we write the modified macroscopic equations
obtained by substituting the constitutive equations into
Eq. (6.14), It reads

= iwC,y(r) =DV * [VC,, +4mna, (w)VC, — 478, (w)v(rC,)]

= 47D, (W)C,, + €, (W)VIC, ] + [1 = v(r)]s, (1) .
(7.9)
The first term on the right describes the diffusion as
affected by the presence of sinks and the second term
describes the absorption. The frequency dependence of
the coefficients gives rise to memory effects.

€u(@) =31 + pa) +30° .

VIII. CONCLUSION

We have shown that the average diffusion-absorption
equation for particles diffusing in a system of perfect
sinks, when derived to first order in the sink density,
is not given by the Foldy—Lax scheme, but by a modi-
fication thereof. There is a corresponding modification
in the macroscopic equation which follows from the av-
erage equation by multipole expansion and restriction to
second order spatial gradients.

Next we compare with some of the interesting results
obtained by Bixon and Zwanzig5 for a spatially uniform
system of perfect sinks. These authors calculate the
Green function (3.20) and for long times deduce an effec-
tive diffusion coefficient Dy, =Dy(1 + ¢). Equivalently,
we can derive this Dy, as the coefficient of %* in the ex-
pansion of I'{k) in Eq. (5.7). To linear order in » this
yields

Felderhof, Deutch, and Titulaer:

Medium with spherical sinks

Dy =Dy +nt2(0)
=Dofl +4mn[a, (0) - 8,,(0) - €, (O]}
=Dy[1 + 4mnla® - éaa -%a%]
=Dyl +¢), 8.1)

where we have used Eqs. (7.5) and (7.8). Note that
nonlocal effects in the absorption contribute via €,,(0)
to Dyy. The modified equation (5.8) yields the same
result,

In the static case Bixon and Zwanzig define the effec-
tive diffusion coefficient D3%, as the coefficient of #? in

the inverse of the Green function (3.20). From Egs.
(2.23) and (4. 9) one finds
DiY, =Dy (1+2¢) . (8.2)

The same result can also be obtained from Eqs. (6.11)
and (6.12). In this way one finds

D3, = Dy{l + 4an[a(0) — B(0) - €(0)]}
=Dy[1 +4m(d® -}d* —é—aa)]
(8.3)

To this effective diffusion coefficient there are contri-
butions from instantaneous absorption inside the sinks
in addition to absorption of particles created outside,
already contained in Eq. (8.1).

=Dy(1+2¢) .

We previously derived® in the static case a diffusion
coefficient D=D,{1 +3¢). This must be compared with
Eq. (7.3), which yields

(8.4)

D'(0) =Dy[1 + 47n(d® - }a®)] =Dyl +5¢) .
13

In our previous work the quadrupole contribution -za
was not included. We have argued above that the instan-
taneous absorption should be handled separately and that
the coefficient governing the average diffusion is given
by the result (8. 4).
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