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This paper is devoted to the theory of laser light scattering from polymer gels. The principal purpose of the
inquiry is the structure of the Brillouin peaks that arise from the damped sound modes that are supported by
the polymer network—fluid system. Our analysis includes coupling between sound waves in the fluid and
elastic waves in the polymer network that is present even in the absence of any dissipative mechanisms.
Explicit expressions are given for the eigenmodes of the gel in the presence of viscous damping and strong

friction between the fluid motion and the polymer network. A comparison is made between the theory and
available experimental evidence. The main point is that the shift and width of the Brillouin light scattering
peaks {and by analogy sound attenuation) may usefully be employed to study both the static and dynamical

properties of polymer gels.

. INTRODUCTION

Recently, there has been renewed interest in the study
of gels and cross-linked polymer networks because of
their importance in biology and chemistry. Efforts have
been made to improve understanding of the dynamical
properties of gels by use of modern laser light scatter-
ing techniques. In particular, in a pioneering study,
Tanaka, Hocker, and Benedek' demonstrated how the
spectrum of light scattered from a gel could be em-
ployed to characterize the viscoelastic properties of the
gel. These authors focused attention on the broadening
of the central or Rayleigh line around the exciting fre-
quency that is observed in the polarized or unpolarized
scattered light. The broadening arises from the over-
damped motion of the polymer network.

The purpose of the present work is to inquire about
information that may be obtained about the gel by consid-
ering the broadening of the Brillouin peaks that appear
in the light scattering spectrum. One may anticipate
that the density fluctuations that are propagating through
the medium as sound waves will suffer additional scat-
tering from the relatively fixed elastic polymer network.
This scattering will lead to a shorter lifetime for the
density fluctuations and, hence, to spectral broadening.
This problem is closely related to the problem consid-
ered by Bacri et al. ' on the use of ultrasonic wave at-
tenuation as a tool for measuring gelation processes.

Our reason for studying this problem is partially mo-
tivated by noticing the similarity that might be expected
between a cross-linked polymer gel and a concentrated,
i.e., entangled or semidilute,* polymer solution in a
good solvent, The properties of concentrated polymer
solution, because of the relative immobility of individ-
ual chains, may be better modeled by an elastic network
invaded by solvent, rather than the more customary
binary fluid model which is employed for dilute polymer
solutions. New methods that potentially may be em-
ployed to characterize concentrated polymer systems
are of great interest.

The limiting case of the picture adopted here for a
concentrated polymer solution is similar to flow in por-
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ous media. This lies at the base of the Debye —Bueche!
model for the frictional properties of polymer solution.
The microscopic basis of this model has been the sub-
ject of some recent investigation.® Because of this
analogy, it is also not surprising to find that geophysi-
cists who are interested in employing acoustic measure-
ments to characterize fluid bearing porous media en-
counter similar hydrodynamic phenomena. An example
of recent pertinent geophysical work is due to Johnson
and collaborators® in their studies of so-called Biot
waves' in porous media.

The outline of the paper is as follows. Section II
presents a brief summary of pertinent light scattering
theory. Section III is devoted to an analysis of the
hydrodynamic equations. Section IV discusses the re-
sulting dispersion equation in various limits. Section
V derives the light scattering spectrum for one of the
cases discussed in Sec. IV. Section VI includes a com-
parison of the predictions obtained in previcus sections
to related work and some concluding remarks.

. LIGHT SCATTERING

The spectrum of light scattered from the gel® will be
proportional to
Ik, w)zznef dt exp(—iwt){6e(k, 1)6&(~k)) ,  (2.1)

0
where w is the frequency shift from the exciting laser
line, k is the wave vector characterizing the fluctuation
of the dielectric constant §e¢ that gives rise to the scat-
tering
47 .
lk[:—)\- nsin(8/2) , (2.2)

with @ the scattering angle, » the average index of re-
fraction of the medium, and A the incident wavelength.

The Fourier transform of the space and time dependent
fluctuating dielectric constant 5e(r,?) is given by

oe(k, t)::fdr exp(ik- r)se(r, ). (2.3)

These dielectric fluctuations arise from equilibrium ther-
mal fluctuations of the thermodynamic variables that

© 1981 American Institute of Physics 5239

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5240

characterize the system. The angular brackets in Eq.
(2. 1) denote an average over the equilibrium fluctua-
tions; the time dependence of the fluctuations is computed
from appropriate linearized hydrodynamic equations.
Our attention will be limited here to polarized scatter-
ing.

In general, one assumes that the system is in local
equilibrium and that the dielectric fluctuations may be
expressed in terms of linear deviations of a pertinent
subset of the thermodynamic variables {8¢,(r, #)} from
equilibrium;

R de -
5€(k, 1) :z:(ﬁ;) 5¢J(k’ t) ’

where the dielectric constant derivatives are evaluated
at equilibrium. Accordingly, from Eq. (2. 1) the spec-
trum is

e 0)=2 2 (35)(35)

x Rejo dt exp(-iwt) {53,(k, )6 3(-K)) .

(2.4)

2.5)

We shall assume that there are two pertinent variables
that couple to the dielectric constant. These are the
network density p, and the solvent density p; thus 8¢/83,
will vanish except for these two variables. For the
sake of concreteness, one may, at optical frequencies
envision that € depends upon these densities according to

€ - l=4r(a,p,+ap), (2.6)

where a, and a are the polarizability of the network
and the solvent, respectively. Thus we neglect other
potential thermodynamic fluctuation mechanisms, e.g.,
temperature, that may influence the light scattering.

"In general, the linearized hydrodynamic equations for
the thermodynamic variables will take the form, in
vector notation,

%ﬁ (k, )= - M(k)- 59(K, ¢) . 2.7)

The one-sided time Fourier transform may be formally
performed to obtain

Gi(k, w) =J: dt exp(—iwt)o(k, t)

=@l +M)1. 6 (k) . (2.8)

This expression may be substituted into Eq. (2.5) to
reach the result

Ik,w)=2 D

= (@)

xRe(iwl +M)j: (63, (K)69,(~K)) . (2.9)

We shall assume, although this assumption is open to
attack, that the equilibrium fluctuations of the thermo-
dynamic variables that shall be selected to describe the
system under consideration are uncorrelated. Thus,
we have

(68,(k) 63,(~ k) = 6,,( | 6%,(k)[?) .

Relaxing this assumption would require an analysis of

(2.10)
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equilibrium thermodynamic fluctuation theory for elas-
tic media. Potential modification to- Eq. (2. 10) could be
included in the analysis, at the expense, however, of
simplicity.

With Eq. (2.10), the result for the light scattering
spectrum is

Ik, @)= 22(8%)( )Re[zwl +ME)];E (| 63,)|2) .

(2.11)
Evaluation of this expression from an appropriate set
of linearized hydrodynamic equations is undertaken in
the next section, The sums in Eq. (2.11) are understood
to extend over the two variables solvent density p and
network density p,.

Ill. LINEARIZED HYDRODYNAMIC EQUATIONS

The linearized hydrodynamic equations that we adopt
to describe the gel system are as follows:

(1) The continuity equation for the solvent density

—9—e+p°v- v=0,

o (3.1)

where v is the solvent fluid velocity.

(2) The continuity equation for the elastic gel net-
work

860,

o +ng°u:0,

(3.2)
where u is the velocity of the network from equilibrium.?
Note that the network velocity u is related to the net-
work displacement s according to

o8

ot
Similarly, the fluid velocity v is related to the fluid dis-
placement d according to

ed
a

=u.

Thus we have the relations
= - pgv (3- 3)

(3) The linearized equation for the network displace-
ment

bp=-p'v.d, &p

035
Btz Pn

+8V(V-d)-flu-v) .

=uvis+ (k+ p/3)V(V- 8)

(3.4)

In this expression the coefficients « and pu are the net-
work bulk and shear modulus terms, respectively. The
last term on the right-hand side of Eq. (3. 4) denotes
the frictional damping on the elastic network resulting
from the fluid moving relative to the network. The next
to last term on the right-hand side of Eq. (3.4) contains
the coupling effect of elastic waves in this two-phase
system. Displacements of the fluid influence the net-
works and vice versa. Since Tanaka et al.! did not in-
clude the influence of the fluid on the network, the last
two terms on the right-hand side of Eq. (3.4) do not ap-
pear in their analysis.
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(4) The linearized Navier -Stokes equation for the
velocity of the fluid

0 %: - clvop+ n,viv

+(Ny+ MgV (V- v)+8V(V-8)-flv-u), (3.5)

where ¢, is the speed of sound 7, and 7,, the shear and
bulk fluid viscosity, respectively. The next to last
term on the right-hand side of Eq. (3.5) includes the
coupling of the elastic waves of the network with the
fluid motion. Note that the coefficients 8 and f that ap-
pear in Egs. (3.4) and (3. 5) are identical as required

by symmetry, 7 The final term on the right-hand side
of Eq. (3.5) reflects the additional fluid damping due to
the frictional loss in the network. In these equations the
superscript zero on p° and p?, denote the equilibrium fluid
and gel density, respectively.

This hydrodynamic equation is not equivalent to the one
introduced by Bacri and Rajaonarison® in their study
of ultrasonic attenuation in gels. Bacri ef al. do not
include the coupling of the elastic waves described by
the term involving 8. For $=0, the hydrodynamic descrip-
tion we have adopted reduces to that of Bacri et al.

It should be noted that other hydrodynamic equations,
consistent with the symmetry and physics of the as~
sumed physical situation, could be proposed. The
virtue of the dynamical set adopted here is that the es-
sential physics is contained (a) in the simple frictional
damping term proportional to f that describes the ex-
change of momentum between the fluid and the network
and (b) the coupling 8 of the elastic waves in the fluid
and in the network. To our knowledge, the implications
of this coupling for sound absorption or light scattering
from polymer gels has not yet been explored.

When f=0, one has the limiting case of a coupled
elastic medium without damping. If d=0 (and hence v
=0) in Eq. (3.4), one has the limiting case, considered
by Tanaka ef al., ' of the gel dissipating energy into
the surrounding quiescent fluid. For our purposes, the
critical terms are the elastic coupling term 8 and the
frictional damping term f. 1t is these terms that carry
information about the polymer network into the width
of the Brillouin peaks.

The set of hydrodynamic equations may be most simply
solved in terms of the Fourier~Laplace ({w=z) trans-
form of the densities 6p and 6p,, the longitudinal part of
the fluid velocity V- v, and the longitudinal part of the
network velocity V- u. Thus we take
69k, t) = column[6p(k, ), 6p,(k, £),

-ik- (k, ¢}, —ik- Gk, )] . (3.6)

The hydrodynamic equations may now be written in the
form stated in Eq. (2.7), were the hydrodynamic ma-
trix is

0 0 o 0
0 0 0 P
MIOS e e oktage gy
_ Bkz/pﬁp" - w;"‘/pg —f/Pﬁ f/Pg
(3.7)
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We have introduced

b=@m,+$n)/0" , (3.8)

wi=clr?, 3.9)
and

wl=clk? =Rk +4u)/p} (3. 10)

where ¢, is the velocity of sound in the network.

The solution of the hydrodynamic equations in Fourier~
Laplace space is obtained by inverting the matrix
{{w T+M}. The general structure of the solution, for-
mally presented in Eq. (2. 8), is
59k, ) = [detGwT+ M) 20 P, (k, w)63,(k) , (3.11)

3

where P, is the cofactor of the matrix element [{w5,,
+M,]. The correiation functions are simply obtained
from Eq. (3.11)

(63, (k, @)63,(—k)) = [P, ,(k, w)/det(iwT+M)]
x (| 6%,(k)|?),

where we have used the assumption of statistical inde-
pendence of the equilibrium fluctuations Eq. (2. 10).

(3.12)

In order to calculate the inverse Laplace transform
of Eq. (3.12) or to obtain simple expressions for the
spectrum, we need to determine the roots of the deter-
minant. Approximate solutions of this dispersion equa-
tion are discussed in the next section.

IV. THE DISPERSION EQUATION

According to Eq. (2. 11), the behavior of the hydro-
dynamic modes will be governed by roots of the deter-

minant of the hydrodynamic matrix [iw1+M(k)]. From
Eq. (3.7) one finds this dispersion equation
[w? - Wl —iw(Bk? + £/p") [ (w? - w2 —iwf/p?)

- Gwf/ o - B/ p))iwf /0° - R /p") =0 . (4.1)

For light scattering, k is fixed and one solves for the
four roots of Eq. (4.1) that describe the dynamics of the
hydrodynamic modes. This dispersion equation differs
from the one given by Bacri ef al.

In general, we will be interested in physical situations
that correspond to various limiting cases of the param-
eters that appear in Eq. (4.1). We shall examine some
of the more important cases below. Each of the cases
yields roots found by a perturbation analysis that are
identified with hydrodynamic modes.

Before proceeding, it is helpful to note that if coupling
between the network and the solvent has not been in-
cluded in the hydrodynamic description Eq. (3.7) then
one would have arrived at the dispersion equation

(w? — W} —iw(Bk? + £/p")] (w? - w? —iwf/pl)=0 . 4.2)

This dispersion relation yields two roots corresponding
to propagating modes in the solvent. In the limit, where
the damping in the solvent is small (bk? + f/p®)/wi <« 1,
one obtains the expressions familiar from ordinary
Brillouin gcattering from sound waves with the addition
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of angle independent frictional damping:
Wy, =+wq+ (bR +1/p°) . (4.3)

Similarly, the network supports two modes with fre-
quencies

if 4w
=57 [li 1-(%317;] (3.4)

In the limit of large damping, f/p)> w,, one obtains the

modes of the gel identified by Tanaka et al. ; there is a
very rapidly decaying mode

wg =if/ o} (4.5)
and a diffusive mode

wy=iwim/f (4.6)

In general, of course, there will be coupling between
the elastic waves of the fluid and the network 8#0 even
in the absence of damping., For the case b=f=0 one
finds the dispersion equation

(@? - wi)(w? - w?) - BR4/plp" = 4.7

Brillouin scattering from polymer gels

2

new frequencies w; is

ot=Hiots s lud -ty 4.9)

4172

A2
P pn

Evidently, for sufficiently large 8, the frequency w? will
be negative and thus w. will become complex. However,
as is well known from the theory of harmonic lattices,
one may expect a limit on the magnitude of 3. In analogy
to what is found for coupled binary harmonic crystals, !’
we shall assert that

3

=5 = Ackc? 4.9

p'ph 0“n » ( )
with 0= a<1. Note that the limit 3-~0 (A ~0), the eigen-

frequencies approach the unperturbed fluid and network
2

frequencies w?—w} and w? ~w?,
In addition, there is dissipative coupling between the
network and the solvent. In the limit of small damping
in both the solvent (bk? + f/p)/w,<< 1 and the network
f/p?,w,, <1, one finds damping of the four eigenfrequen-
cies, Eq. (4.8). The resulting modes are of the form

= ; 4.1
The resulting roots of w? describe the new eigenfrequen- Wip=to, +il, (4.10)
cies of the coupled elastic media. The result for these where
}
r. — 2Lt =0 (f/p" + bk) + (W} = WE(f/pg) = foow,(A/ 0"} ] (4.11)
T [wi-w?] '
and
wy, =tw_ +il_, (4.12)
where
p = 2 =D /0’ + b) + (] = (/) ~foqw, (/o] (4.13)
- (w2 -wi] :
‘ —_—
Note that in the limit of no coupling between the elastic Wy=%w +iTk, (4.18)

waves 8=0, one finds Eq. (4.10) approaches Eq. (4.3)
and Eq. (4. 13) approaches the small friction limiting

form of Eq. (4.4):
wy, 4=+ W, +5if/p . (4. 14)

In this limit of small coupling, only linear terms in f
are retained.

A more interesting limiting case is strong friction
in both the fluid

(f/p%)> bk? , w,, BkY/p° (4.15)
and the network
(F/p}) > w, , BE*/py . (4.16)

For this case there are two propagating modes that cor-
respond to sound waves in the average coupled elastic
medium of network and fluid. These propagating fre-
quencies may easily be identified by setting 8 =d in the
hydrodynamic equation. Not surprisingly, one finds
that strong frictional damping between the network and

the fluid provides relaxation to a medium of density.
pr=p"+p; (4.17)

that supports a dampened sound wave. One finds

where w =7k and the average sound speed is given by

Pret=(coV P+ e,V pl) 2+ 2coc,(VA-1)Vplpd . (4.19)
The damping of these modes is found to be
0 0\2
T 1 b 0 +£1 (P pn>
z{ P /PT 7 "—rpT
x[ed -t - coea(0” ~ PRV pap®) 2]2/52} . (4. 20)

In the limit A =0, one obtains a slightly more general
expression than found by Bacri et al. in their discussion
of sound attenuation in gels; their result is reproduced
in the limit ¢ > ¢2 and p’> pl, with 8=0.
The third mode is rapidly decaying, similar to Eq.
(4.5), which it approaches for p”> p? :
wy=if(py/p°0Y) . (4.21)

The final mode is the diffusive mode similar to the one
identified by Tanaka et al. [Eq. (4. 6)):

w4_z(p"p )kz _&2_ (1-x).

For A=0 and p’> pf,

(4. 22)

this reduces to the expression
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found by Tanaka et al.

These approximate expressions for the four modes
of the coupled network~fluid gel system are the prin-
cipal results of this section. We find that the modes
exhibit coupling both in their elastic properties for
#0 and in their dissipative behavior.

V. THE LIGHT SCATTERING SPECTRUM

The light scattering spectrum may be obtained nu-
merically once the values of the transport coefficients
are specified. Alternatively, analytic expressions
for the spectrum may be obtained in limiting cases,

(oplk, £)5p(~k)) (pSck+8)
T1pMITY prc

(8p,(k, )5, (=k)) _ (p°cd + B) _
AT = pge? X D) +

(6p(k, 2)5,(—k)) _ (o0ck+ Bpa/p") 6Bk, £)65(~k))

0.2 _
exp(~DJ%) + %;»_ﬁ) exp(~ I'k%) cos wt ,
T
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such as those discussed in the prior section, when ap-
proximate roots to dispersion equation may justifiably
be adopted. In this section we present explicit results
for the spectrum for one of the limiting cases considered
in Sec. IV. The spectrum may be obtained in a similar
manner.

The case we consider is the strong friction case
where the four approximate roots are given by Egs.
(4.18), (4.21), and (4.22). For this case one can invert
the Laplace transform to obtain the time dependence of
the correlation functions. To lowest order in the desig-
nated small quantities, one finds

(16,()1%) — ~ (p°ca+Bp/pn)  (16p(K)IT)

where we have defined a “diffusion” coefficient [Eq. (4.22)]:

B popo czc'2' _
n ()R o n.

(5.1)
(p3cd + B) 2 —
—fiz—exp(-r‘k t)cos Wt , (5.2)
0 2 0/ 0
= (o cl: +Ezﬁp 42 [exp(- T'k%) cos @t — exp(- D k%)] , (5. 3)
T
(5.4)

Due to the frictional and elastic coupling, both the fluid and network densities manifest two propagating modes and
a diffusive mode. In the limit ¢, < ¢, and p,‘f <<p°, the time dependence of the fluid fluctuations are primarily gov-
erned by the propagating mode, while in this limit the network fluctuations are predominantly diffusive.

The light scattering spectrum for this case may be constructed:

) 2 0 0.2 2 kZ
l(k,w)=(£> kpT %’g {P cot B Tk r

[(w ) LN (w+@F+ IRt

]

rx?

. 2(p,ct+B) DR
ppct  wi+ DA

I'k?

[
<8e)2 kyTo) §2(p°ck+8) DF:  plci+B
o) — 7
8p, Cn

{—_LT_ W+ D% p,.'éz
(&)6)

prC
2, 2.0
2480 D‘;Oj CaPn)

C5Co
where we have replaced the equal time correlation func-
tions by their k—~0 limit, and we have taken them to be

[

kp Tppd TR?

—Z
tpr

p

0
| 5500)(%) =k o7 &
0

and

-~ 2 po
(] 6p,(k)| Y=kyT (5. 6)

It should be noted that, for simplicity, we have not
displayed the non-Lorentzian contributions to the light
scattering spectrum. These terms are expected to be
small.

The above spectrum describes two Brillouin peaks
and a central diffusive peak. Both the network and fluid
fluctuations contribute to the amplitude of the three
features in the spectrum. Their widths and positions

"have been described in the previous sections. The fast
frictional damping wg [Eq. (4. 21)] contribution to the

J. Chem. Phys. Vol. 75,

{w-w) + Tt ql'(<‘>~x-6)z+l"2k:i iy D

@-or+rt ¥ (w+wfF+ I‘zk{I}

by-2 2Dkt

(5.5)

L,

spectrum is of higher order in the designated small
quantities and thus is not expected to be observable.

VI. COMPARISON WITH EXPERIMENT AND
CONCLUDING REMARKS

In this paper we have presented a theory for light
scattering from a gel or polymer network that includes
Brillouin scattering. Two different limiting cases were
examined in Sec. III: (a) small friction in both the sol-
vent and the network and (b) strong friction in both the
solvent and the network. At sufficiently low concen-
trations all gels would follow case (a). However, con-
centrations that correspond to ordinary laboratory con-
ditions normally will correspond to case (b). If the
theory is to be successful, it must simultaneously pre-
dict the width of the diffusive central peak w, [Eq.
(4.22)], the splitting c(k) [Eq. (4.19)], and width [Eq.
(4. 20)] of the two Brillouin peaks. Experiments may be
undertaken at variable temperature and/or variable
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network concentration p,, the former usually?? directed
toward study of the sol-gel transition.

We are aware of only a single Brillouin light scatter -
ing study of gels. Bedborough and Jackson!! determined
that the Brillouin skift versus gel concentration in-
creased linearly at relatively low concentration. The
data presented by Bedborough and Jackson for the line-
width as a function of gel concentration are more am-
biguous but appear to predict a linear increase of line-
width at low gel concentrations.

Comparison of the theory presented here with this data
requires a number of assumptions about the behavior
of the various physical guantities that enter into the
theory. We shall assume that the gel solution behaves
much like a two-phase porous medium with the gel net-
work present at volume fraction (or porosity) ¢, as a
“solid” phase of density p¥, and the solvent present at
volume fraction (1 — ¢) with density pf. Thus,

Pr=0p% , P =(1-9¢)of . (6.1)

We further assume that the speed of sound in the sol-
vent, c;, and in the network, c,, are primarily func-
tions of pf and p¥ and only weakly dependent on ¢. Such
an assumption is questionable, especially for the net-
work, since higher concentration usually means in-
creased cross linking that tends to increase c¢,. Evi-
dently, the theory we have employed assumes that the
wavelength of light is large compared to the mean dis-
tance separating network regions. This translates into
the condition that the wavelength of light be large com-
pared to pore sizes in the porous medium analogy. With
these assumptions, the prediction of the theory presented
above in the strong friction limit at low concentrations
for the shift Eq. (4.19) is

oo () (3) o3 (359 v

The lowest order terms for the width Eq. (4.20) (A#0)
are

1 (o} - ) prcd }
_Z{b* [1+¢> p}‘ ] + P 7 , (6,3)
and for A=0
%{b*[ e R )}, (6.4)
where
=(m,+ 4n5)/pF . (6.5)

The friction coefficient f should be expected to be a sen-
sitive function of ¢.  In particular, for small ¢ it may
well be assumed to behave linearily with ¢, f=f,¢
++.+. The result would be a prediction for a linear in-
crease width with ¢ provided A=0.

Of course, at very low values of ¢ one would expect
a transition to the case of small friction Eq. (4. 14),
with a prediction of the width as

width= [b*kz(l +o)+ M}

of (6.6)
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The transition from the regime described by Eq. (6. 3)
to that described by Eq. (6. 8) is best studied, in prin-
ciple, by angle dependent measurements that, unfor-
tunately, are not available.

We conclude that qualitative agreement with the trend
found in the available data is possible. However, on a
quantitative level further difficulties arise. Namely, if
one attempts to reconcile the Brillouin measurements'!
with the Rayleigh measurements, '+'2'!3 despite the fact
that different gels are involved, one finds a major dis-
crepancy in the elasticity of the gel. For the Brillouin
measurements, with the assumption x =0 one must have
w,>w,~ 10! Hz. But the Rayleigh measurements sug-
gest w,~10% Hz. Similarly, the friction coefficient in-
ferred from the Brillouin measurements is an order of
magnitude less than that found in some of the Rayleigh
measurements. %! Similar discrepancies were found
in the sound absorption measurements of Bacri et al.,
who suggest that the hydrodynamic scheme must be
modified to permit dispersion in both the elasticity of
the network c,(w) and the friction coefficients f (w). De-
velopment of a systematic hydrodynamic treatment of
this gel system with an internal degree of freedom which
gives rise to such dispersion is underway and will be
reported elsewhere. In this regard, it is important to
note that the hydrodynamic description we have adopted
is not unique. Indeed, other hydrodynamic descriptions
which are consistent with both the symmetry and physics
of gels can be constructed. One such example is pre-
sented by the work of Biot” and of Johnson ef al.} where
there is additional inertial coupling of the form p;,(du/
8t) and py(8v/8t) in Egs. (3.4) and (3. 5), respectively.

It should also be noted that expressions for the sound
attenuation in a gel described by the hydrodynamic equa-
tions included in Sec. III may easily be determined
through an analysis similar to that undertaken in Sec.
IV. The sound attenuation is found by determining the
complex part of the wave vector k, for real frequencies
w, in contrast to the light scattering calculation where
the complex frequencies w are determined for real val-
ues of k.

The main point is that combined Brillouin and Ray-
leigh light scattering measurements have the potential
of elucidating the dynamical behavior of gels. The cen-
tral quantity of interest is the friction coefficient
f(¢, w) that is likely to be a complicated, nonanalytic
function of both the volume fraction of the gel in the
solution and the frequency of the mechanical disturbance.
This friction coefficient combined with the ela-stic prop-
erties of the system will provide a description of the gel
adequate for most purposes.
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