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The end-to-end distance of a flexible polymer in a theta solvent in two dimensions is investigated. A mean
field theory is presented which predicts significant deviations from ideal behavior at the theta point. A real
space renormalization group approach is employed to investigate further the behavior of the polymer’s end-
to-end distance at the theta point and to elucidate the analogy with thermodynamic tricritical behavior. Our
results suggest that the correct result may be numerically closer to the mean prediction than to the values
obtained from second order € = (3 — d) expansions of field theory models of critical phenomena.

1. INTRODUCTION

In good solvents polymer molecules are swollen com-
pared to an ideal random coil configuration as a resuit
of excluded volume interactions. At a particular tem-
perature (or change in composition of a mixed solvent),
it is possible for this excluded volume effect to vanish,
resulting in the polymer chain adopting a more nearly
ideal conformation. The point at which such shrinking
occurs is referred to as the theta point and roughly cor-
responds to the Boyle point of a real gas. :

The responsible polymer chemist would define the
theta point for a dilute solution of monodisperse poly-~
mer chains as the point where the mean square end-to-
end distance {(R®, conforms to the classical random walk
prediction for dependence on length

(RHp=a®N , (1.1)

where a is the segment length and N the number of mono-
mer units in the chain.

In a good solvent, the mean square end-to-end dis-
tance of the polymer chain in d-dimensions may be ex-
pressed as

<R2>=a2N2V(d) (1.2)

where v=v(d) is the exponent that characterizes the ex-
pansion of the chain. From Flory’s classical argu-
ment'? or more recent modern generalizations, one
expects ‘

vid)=3/(d +2), d=4 (1.3)

apart from logarithmiec corrections in N. Above d=4
dimensions the excluded volume effect becomes irrele-
vant and v assumes the classical value for ideal chains
v=1/2. The behavior of polymer chains in good solvents
may also be described by analogy to critical behavior in
magnetic systems. The application of renormalization
group ideas from critical phenomena to the problem of
polymer configurations in good solvents was originally
suggested by De Gennes.®

If one attempts to construct a microscopic theory to
explain the transition from the expanded state in a good

Supported in part by the National Science Foundation.

J. Chem. Phys. 75(10), 15 Nov. 1981

0021-9606/81/225179-07$01.00

solvent to the theta point, one immediately encounters new
physical behavior that is somewhat unexpected, Inparticu-
lar, one finds that the mechanism which results in ideal be -
havior at the theta point in three dimensions {vanishing of
the effective pair interaction between segments) leads to
nonclassical behavior for the mean end-to-end distance
in two dimensions. In particular, one finds the index

at the theta point depends upon dimensionality and that
it deviates from the classicalvaluev’ =1/2ford< 3. For
clarity, the index v at the theta point is denoted v’.

There are a number of theories that present predic-
tions for the behavior of v'(d). De Gennes,* and later
Stephen, ® have argued that the theta point is analagous
to a tricritical point of a gas~liquid or magnetic sys-
tem and employed renormalization group arguments®

with an expansion in € =3 - d to predict for d =3:

v’(d)=é+3(—282)—5<2 . (1.4)

Thus, the € expansion renormalization group result ex-
hibits small, but important, deviations from ideal be-
havior in two dimensions.

Alternatively, one may employ a generalization of the
more conventional Flory type of calculation to arrive at
the prediction that for d=3

vid)=[2/d+1)] , (1.5)

s0 that in two dimensions v'(2) = 2/3 in sharp contrast to
the €-expansion prediction of the renormalization group
treatment based on an analogy to a tricritical point,
i.e., ¢%in contrast to ¢! field theory.

The sharp difference between these two predictions
for v’ in two dimensions as well as the relatively com-
plex reasoning required to apply the €-expansion renor-
malization group theory to this problem has motivated
us to undertake an alternative approach to this problem.
In particular we employ a variation of the real space re-
normalization group (RSRG) method that has been ex-
ploited by several workers’~?® to examine self-avoiding
walk (SAW) models appropriate for the excluded volume
regime. We believe this RSRG method sheds consider-
able light on the nature of the theta point, in particular,
the sense in which this transition should be regarded as
a tricritical point.
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Application of the RSRG to the problem under consider-
ation here is not unique and permits a good deal more
freedom than one would prefer. In order to explore the
range of alternative numerical results that may be
realized, we present several different variations of the
RSRG method.

The results of our calculations, presented below, sug-
gest that v’ in two dimensions lies in the range 0.53
<p’(2)<0.68. This should be compared to the Flory val-
ue v’ =2/3, the De Gennes result (obtained by an € -expan-
sion to second order) v’ =0.505, and the experimental
value of Vilanove and Rondelez! v’ =0.56 obtained from
surface pressure isotherms of Langmuir monolayers.

In no case do our results approach the recent prediction
of Khokhlov'? that v'(2) =3/4.

The principal conclusion of this initial RSRG applica-
tion to polymer chains at the theta point is that devia-
tions from the classical v' =1/2 may be much more pro-
nounced than indicated by available € -expansion calcu-
lations. Indeed, the true value may well approach the
simple minded mean field result. We intend to under-~
take more comprehensive calculations to pursue the
precise numerical value predicted by the RSRG method.

The remainder of this paper is organized as follows.
In Sec. II the self-consisted Flory type theory for v'(d)
is presented. Section III is devoted to a brief summary,
for the uninitiated, of the application of the RSRG to this
problem. Section IV presents RSRG group results for
three variations of a simple one variable model, and
Sec. V contains results for a two variable model.

1. THE MEAN FIELD ARGUMENT FOR THE FREE
ENERGY OF A POLYMER CHAIN

In this section, a generalization of the mean field
argument of Flory is presented for conditions appropri-
ate to the theta point and for arbitrary dimensionality.
The method is based on finding the most probable con-
formation of the polymer chain from an approximate
free energy. The case d =3 has been explicitly consid~
ered by De Gennes* and by Orfino and Flory.*® To our
knowledge the result d # 3 has not appeared in the litera-
ture, but it is known.

The average mean square end-to-end distance of a
polymer coil, in d-dimensions, may be expressed as!

deR"‘1 expl—~F(R)/kT]

i de.R"" exp| - F(R)/k5 T

r® ; (2.1)

where F(R) is an approximate free energy which is taken
to be

2
%ETI zg.(%; +%[pW2(T)+p2W3(T)+"'] . (2.2)

The first term in Eq. (2. 2) represents the entropy of an

ideal random coil with (R%), given by Eq. (1.1). Limita-
tions of this form of the free energy have been discussed
by de Gennes and des Cloizeaux. %18

The subsequent terms in Eq. (2. 2) describe the effect
of excluded volume through a power series in the mono-
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mer density. The virial coefficients W,, Wy, ..., in-
clude the influence of successive intramolecular seg-
ment interactions of pairs, triplets, etc. The average
monomer density may be written as

p=k(d)N/R" , (2.3)
where k{(d) is a numerical geometric factor.

In pursuing a maximum term method, it is useful to
define an effective free energy G(R) that includes the
d~dimensional volume element according to

GR) _ F(R)
T =TT -dInR . {2.4)
In terms of G(R), (R® becomes
f dR R exp]~ G(R)/ksT) ‘
(R% = : (2.5)

_/-dRR'1 expl~ G(R) /By T '

We next express the right-hand side of Eq. (2.5) in
terms of the dimensionless distance

x =R/R®Y* , (2.6)
which leads to the expression
dxxexpl—G(x)/kg T
. (R® f X pl— G{x)/kp T] 2.7
, .

Q= =
&) fdxx"exp[—G(x)/kBT]

where we have introduced the customary expansion fac-
tor ¢. In terms of the dimensionless distance x,

2 N
%(—’-;-1)- = ‘—13(2— -dlnx+ %ln(Rz)o+ 3 [pWa+p*Wy+---] (2.8)
B
with
o =ka-aN(1-4/ 2 ,d (2.9)

If we assume that G(x) has a sharp minimum at x =x, S0
that we may approximate

exp[- G(x)/kg T]=06(x — xq) ,

it is easy to see, from Eq. (2.7), that a®=x}. The re-
mainder of our calculation is devoted to determining xy,
or equivalently @, from locating, for different cases of
interest, the minimum in G(a).

(2.10)

Minimization of the free energy G{o) leads to the first
order condition

arbz_ad=czN(4-d)/2+C3N(3~d)/ad , (2.11)
where
-4
cz=(’_"fK§_".—) , Cs=(k*Wsa™) . (2.12)

In good solvents for d<4, the triplet term C, is irrele-
vant, and one recovers the conventional result Eq. (1.3).

Near the theta point, W, and hence, C, will vanish and
it is necessary to retain the Cq term on the right-hand
side of Eq. (2.11). We proceed to examine the conse-
quences of Eq. (2.11) for arbitrary d. For d=3, for
long chains N - one obtains @ =N°. Thus, to terms of
order InN, one recovers the result that v’ =1/2. For
lower dimensionality d<3, one obtains a?=N'-0/tD
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which leads to the principal result of this section [see
Eq. (1.5)] v' =[2/(d +1)] and

sz 1/(d+1)
<R2> =aa [_T'a] N4/ {d+1) . (2. 14)

a d

This is the Flory type prediction for the mean square
end-to-end distance in a theta solvent. It differs con-~
siderably from the De Gennes prediction Eq. (1.4). In
particular, in two dimensions our result v'{2) =2/3 sug-
gests a major deviation from ideal behavior v’ =1/2, in
contrast to the very modest departure from ideal be-
havior found by De Gennes* v/(2) = 0. 505.

At temperatures below the theta point, monomer—
monomer attraction will dominate and the chain will

collapse. In this regime W,<0 and for large N, one
finds from Eq. (2.11):

ad...N(a-d)/z , (2' 15)
so that

(R®=a®N¥1 . (2.16)

It follows from Egq. (1.2) that in the collapsed state

v=d"! so that in two dimensions there is a coincidentai
equality between the index expected from a Gaussian
random walk and the index which arises from the uniform
distribution of monomers in a disk of radius R that oc-
curs in the collapsed state.

l1l. SETTING UP THE REAL SPACE
RENORMALIZATION GROUP CALCULATION

For a walk on a lattice, the mean square end-to-end

distance is defined by

RE)=Ci' D R*Cy(R)~ N (N ~w) (3.1)

R

where the value of the index v depends upon the dimen-
sionality and statistical character of the walk. In Eq.
(3.1), Cx(R) is the number of N-stepwalks that termi~
nate at R. The quantity Cy is the total number of N-
stepwalks:

CN=Z Cy(R)~ pu¥ N™1 | (3.2)

R

where L is the effective coordination number of the lat-
tice.!” In order to frame the polymer problem in a man-
ner that facilitates application of the RSRG, we define
a generating function R¥( p) for the mean square end-to-

end distance where each step in the walk is weighted by
a factor p. Thus,

L D PRCGB Y RO
R¥p)=-L—R =K (3.3)
Sre oo

We evaluate the denominator by replacing Cy by its
asymptotic form Eq. (3.2) and replacing the sum over
N by an integral. The result is

ZN: P Cy~(6p/p,) (3.4)
where
bc=pt, 8p=p, ~p . (3.5)
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The numerator is evaluated in a similar manner with the
result

; P REYCy~ (Bp/ps) 2" . (3.6)
Thus, one finds
R¥(p) =(5p/p)" . 3.7

In the real space renormalization prdcedure that we
shall employ here, a series of transformations

p=p"; L-L’ (3.8)

are introduced for the weighting factor p and the lattice
scale factor L. This is done so as to make a compari-
son between the walks on the original lattice L and the
-equivalent walks on the new lattice with larger lattice
spacing L'. The transformation takes the form

p'=f(p); L'=bL . (3.9)
One determines the fixed point p* =p, by the condition
p*=f(p*) (3.10)

and linearizes about this point to determine the critical
properties of the walk

&p' =n(p*) 8p . (3.11)

If we apply the transformation Eq. (3.8) near the fixed
point, we obtain

R¥p")=b72R¥(p) . (3.12)
But,
32 o1y = p'\® _ﬁﬂ)-zv= -2v 32
R¥p") (p) Y (ch NTRYp) (3.13)

where use has been made of Eq. (3.11). Comparison of
Eqgs. (3.12) and (3. 13) leads to the resuit

BE=2? (3.14)

or
v=1nb/Inx .

We shall employ variations of this simple procedure to
the problem at hand in subsequent sections.

The RSRG method was originally developed for criti-
cal spin systems.® It was originally applied to the poly-
mer SAW problem by Hilhorst!® through the analogy to
the n=0 vector spin model. It has subsequently been ap-
plied to a number of SAW problems by Shapiro,? Family,?
de Quieroz and Chavez,? and Redener and Reynolds. 1

IV. ONE PARAMETER RSRG

In this section, we present results for three varia-
tions of a simple one parameter model for a polymer at
the theta point. Following previous work on the poly-~
mer SAW problem, "*° we construct the RSRG transfor-
mation [Eq. (3.9)] by a decimation procedure for a tri-
angular lattice and by a cell method on the square lat-
tice. Two alternative rules are employed for the square
lattice.

A polymer in a good solvent is well represented by a
SAW on a lattice. The presence of the effective two-
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FIG. 1. The transformation of walks on the simplest cluster
in the triangular lattice to a single step on the new decimated
lattice.

body repulsive potential can be accurately modeled by
forbidding a walk to occupy a site or bond more than
once.

At the theta point, this effective two body term van-
ishes, but three body terms remain. To capture this
basic feature, we model the polymer by a walk on a lat-
tice that may occupy a bond at most twice. This model
has been referred to in the literature as a two-tolerant
walk. %

For the triangular lattice, an approximate recursion
relation is constructed by considering walks within the
simplest cluster. Figure 1 represents graphically the
transformation for this case. Walks that go from site
1 to site 2 are mapped onto a single step on the new
decimated lattice, which has a larger lattice spacing,

L'=V3L (b=V3).

A typical SAW is shown in Fig. 2(a). This two step-
walk is represented by a single step on the new lattice
and contributes a weight p 2 to the new weight #’. The
recursion relation for the SAW in this 1owest approxi-
mation is’

v =2p"+2p°
which has one nontrivial fixed point P* =0. 366 and an
eigenvalue determined by linearizing about the fixed
point A =2.268. By use of Eq. (3.14) the exponent is

determined to be v=0.671. This should be compared
to the Flory value v=3/4.

(4.1)

For a polymer at its theta point, walks that double
back on themselves are also allowed. An example is
shown in Fig. 2(b), which contributes a term p* to p’.
Including these walks yields a new recursion relation

Pr=2p%+2p° +4p*+ 6p° + 8p° . (4.2)

There is one nontrivial fixed point for this transforma-

FIG. 2. (a) Example of a
SAW contributing top /. (b)
Example of a polymer con-
figuration at the theta point
which contributes to p’.

3 4
v ’
R '
P - . P
i 2 P
[

FIG. 3, Transformation of a 2x2 cell to a renormalized
horizontal and vertical bond.

tion, »* =0.308 and an eigenvalue A=2.675. This cor-
responds to an exponent v’ =0. 558 which, as in the SAW
case, is below the simple mean field prediction v’ =2/3.

In the case of the square lattice, we divide the lattice
into cells which preserve the symmetry of the original
lattice. We treat here the simplest case of a 2X 2 cell,
which has a scaling factor »=2. Figure 3 shows graphi-
cally the transformation for this case. We consider two
possible rules for counting walks that have been previ-
ously employed for SAW.®1° In the first method, one
counts walks that start at site 1 (Fig. 3) and traverse
the cell to site 3 or 4 (or the equivalent horizontal posi-
tions). These walks are mapped onto a single step on
the new lattice.

An alternative (method II) is to count all walks that
traverse the cell. Thus, walks are allowed to start at
either site 1 or 2. For larger cells, both methods
should converge to the same result.

The recursion relations for the SAW for the two rules

are®1?

p'=p?+2p*+p* (method I)

and (4.3)
P =2p%+4p° + 2p* (method IT) .

These both yield one nontrivial fixed point,
p*=0.466 , A=2.636 (method I)

and (4.4)
p*=0.297, A=2.457 (method II) ,

and values for the exponent v=0.715 and v=0.771, re-
spectively. De Queiroz and Chaves'® have reported cal-
culations up to b =4 for the above two methods which ap-
pear to be converging to the same value for the expo-
nent. Even in this smallest cell, they are surprisingly
close to the Flory value which lies between them.

We construct recursion relations for the polymer at
its theta point by allowing double occupancy of a bond.
The recursion relation for method I is

P =p?+2p°+3p*+4p° + 6p8+ 8pT + 5p° . (4.5)

This recursion relation has a fixed point at p* =0.381
and an eigenvalue A=3.225. This yields an exponent for
the theta point v* =0.592, Alternatively, if we allow the
walk to start at site 1 or 2 (method II), we obtain,

P =2p%+4p®+6pt+ 8p° +12p°% + 16p" + 10p° (4.6)

which has a fixed point p* = 0. 268, an eigenvalue
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TABLE 1. Values of the theta point exponent
v’ with & =0 (no free parameter) and with «
chosen so that the SAW exponent fits the Flory
value (3/4).

v'{a=0) o v'ia)
Triangular 0,558 —-1.621 0.543
Square (I) 0.592 -0.8717 0.591
Square (I) 0.688 1,994 0.681

A =2.740, and the exponent v’ =0.688. It should be
noted, that as in the SAW calculation, the mean field
value V' = 2/8 lies between the two results.

There is a fairly large spread in the values obtained
for v'(0.558-0.688), but considering the simplicity of-
the calculation, they are quite reasonable. In light of
the accuracy obtained for the SAW exponent for the three
calculations, it appears that the mean field result may
lie quite close to the actual value of v'. Calculations
with larger clusters or cells are needed to determine
accurately the numerical value,

One can imagine ad hoc procedures that could be ex-
ploited in order toachieve more accurate results or to
explore the sensitivity of the procedure. One example
of such a procedure that has been introduced in another
context®! is to add an empirical term of the SAW re-
cursion relation

P =f(p)+ap” (4.7

where the additional term is intended to represent walks
not included in the restricted cluster which serves as
the basis for construction f(p). The coefficient n is
chosen to correspond to the shortest path not included
in the adopted cluster; for the case of the triangular
lattice considered here n =3 and for the square lattice
n=4.

The value of the parameter o is chosen so that the re-
sulting 2-D SAW exponent is the Flory value v(2) =3/4.
For the theta case, the relation Eq. (4.7) is employed
with the addition of the new allowed paths and the value
of o determined above. A new value of v/(2) is deter~
mined for this value a. In this way, one has an ad hoc
procedure for examining the sensitivity of the theta point
calculation to the underlying SAW walk description. Re-
sults for the square and triangular lattice are presented
in Table I. The results suggest that the determined
value of v/ may not be very sensitive to the manner in
which the walks are enumerated. Of course this method
does not prove the point since it is an ad hoc procedure.
Its ad hoc nature is best illustrated by noting that the
value of the empirical parameter a is found to be nega-
tive in some cases rather than positive as suggested by
the heuristic rationale for the procedure.

V. TWO PARAMETER RSRG

In the previous section, we considered three variations
of a simple one parameter model to obtain an estimate
for the value of v'. In this section, we adopt a more
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general model that allows for a variable weight for dou-
ble occupancy of a bond. We present this calculation to
elucidate two qualitative points. The first is that double
occupancy belongs to a different universality class than
the SAW. If the weight associated with double occupancy
is increased relative to single occupancy, a new end-to-
end behavior appears in the large N limit. The second
is to illustrate the analogy to thermodynamic tricritical
phenomena in a more physical manner than the field
theoretic approach.® Thus, the calculation is not pre-
sented only to improve the numerical accuracy of our
estimate of the theta point exponent, but also to give a
simple picture of the transitions from good solvent to
theta solvent to the collapsed state.

For simplicity we consider the triangular lattice only,
although similar results can be obtained for the square
lattice.® We generalize the recursion relation for p’
[Eq. (4.2)] by assigning a weight ¢ for bonds that are
doubly occupied and p for bonds that are singly occupied.
Therefore, the walk depicted in Fig. 2(b) will contribute
p%q to a new singly occupied step on the decimated lat-
tice. This yields a new recursion relation for p,

P =p%[2+4q+8q%]+p3[2+6q]. (5.1)

To obtain a doubly occupied bond on the decimated lat-
tice, a walk must go from site 1 (Fig. 1) to site 2 and
return to site 1. Enumerating all such walks yields a
recursion relation for ¢,

q' =2q°%+10q° + 34q* + 34¢° + p3[8q + 16¢%)+ p*[2+6¢] . (5.2)

The fixed points of this coupled set of parameters are
determined from the relations

p*=f(p*,0") |
q*=g(p*,q*) .

These two parameter recursion relations have three
nontrivial fixed points labeled A, B, and C in the flow
diagram (Fig. 4). The three fixed points control the
critical (or large N limit) properties of a polymer in a

(5.3

a4
3r

—~—

Pl )v
L =N

0 1 2 P
Pc (SAw)

G
/
/

/

\:

FIG. 4. Qualitative flows for the two parameter recursion
relations [Egs. (5.1) and (5.2)]. The dashed line represents
the critical surface on which the three fixed points A, B, and
C lie. The fixed points A, B, and C are for the SAW, theta
point, and collapsed state, .respectively.
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TABLE II. Fixed points, eigenvalues, and exponents for the
two parameter recursion relations, The three fixed points A,
B, and C control the critical properties of a SAW, theta point,
and collapsed state, respectively.

Fixed point  p* q* A+ A v

A

(SAW) 0.333 0.053 2,475 0.531 0. 606
B

(Theta) 0.279 0.150 2,804 1,560 0.533
C

(Collapsed) 0,0 0.188 2,936 0.0 0.510

good solvent, a theta solvent, and a collapsed state, *
respectively.

To analyze the critical properties of these walks near
their respective fixed points, a simple generalization of
the one parameter RSRG discussed in Sec. III is em-
ployed. ®® We linearize about each fixed point to obtain
the 1ocal flows,

[5.0':\ _ l:)\n 7‘&2] [5P]
6q’ Ayt A il g
Diagonalization of the above 2X 2 matrix determines
eigenvalues A, which control the divergence of the gen-

erating function R®. The resulting values for the three
fixed points are listed in Table II.

(5.4)

The three fixed points all lie on a single critical sur-
face shown on the dashed line in Fig. 4. On the critical
surface, the flows upon renormalizing the walks are
away from the theta fixed point B, towards the SAW fixed
point A, or the collapsed fixed point C, and from the p
axis towards A. The intersection of the critical surface
with the p axis corresponds to p. for the SAW. The
fixed point A is off the p axis because we have consid-
ered multiple bond occupation.

The flow diagram gives us the following physical pic-
ture. A walk with a low weight for double occupancy
will, in the large N limit, behave like a SAW. Thus,
there is a region corresponding to a good solvent, of
double occupancy weight that exhibits the SAW exponent
with v=0.606. A walk with a large weight for double
occupancy compared with single occupancy will be in the
collapsed state in the large N limit with v, =0.501. The
theta point corresponds to a delicate balance between
these two “phases.” In our simple model, the weight
for double occupancy must be slightly larger than the
weight for two single occupied bonds for this to occur.
In this manner, the theta point is analogous to a tricriti-
cal point. A more quantitative picture can be constructed
by considering the eigenvalues of the renormalization
group transformation.

Both fixed points A and C have one relevant eigenval-
ue (i.e., A, >1). Along the local axis defined by the cor-
responding eigenfunction, the flows are away from the
fixed point. The other eigenvalue (A.<1) is associated
with an irrelevant parameter. Thus, the large N prop-
erties of the walk are insensitive to the precise value
of g. There is a region for both the SAW and the col-

J. A. Marqusee and J. M. Deutch: Polymer end-to-end distance

lapsed state {i.e., good and poor solvents) in the {p,q)
plane that will converge to their respective fixed points
for large N. The exponents associated with the fixed
points are listed in Table II.

The theta fixed point B has two relevant eigenvalues
(A,>1). Thus one must be at both a critical value of p
and the proper relative weight g for the corresponding
divergence to be seen. The divergence is controlled
by the larger of the two eigenvalues. The resulting
theta point exponent is v’ =0.533. The existence of two
relevant eigenvalues is analogous to the standard pic-
ture of tricritical points for thermodynamic systems.®

VI. CONCLUDING REMARKS

In this paper, we have investigated the behavior of the
polymer end-to-end distance, at its theta point in two
dimensions. Our approach has been to examine the con-
sequences for the end-to-end distance that arise from
the vanishing of pair monomer-monomer effective inter-
actions.

Our analysis is based on the real space renormaliza-~
tion group which has been applied here, to our knowledge
for the first time, to the theta point. The method per-
mits a description of the polymer in the three possible
circumstances of a good solvent, a collapsed state, and
the theta point.

The results obtained indicate a value for the critical
index at the theta point that is closer to the mean field
value than to the value obtained from the € =3 —d expan-
sion of de Gennes. Further work is required to deter-
mine accurately the precise value of this index. The
outcome is not altogether uninteresting. If the correct
value turns out to be quite close to v' =1/2, as suggested
by the € -expansion method, polymer chemists will not
be required to modify conventional beliefs about theta
point behavior. If the correct value turns out to be
closer to v’ =2/3, some modification of conventional
thinking is required, accompanied by considerable sat-
isfaction about the power of Flory type mean field the-
ories in polymer chemistry.
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