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J. A. Marqusee and J. M. Deutch

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 15 July 1980; accepted 26 December 1980)

Dynamic scaling relations are presented for the diffusion coefficient and intrinsic viscosity for dilute polymer
solutions in d dimensions. The functional integration description of Adler and Freed is used with the correct
d-dimensional hydrodynamic interaction and assumptions of power law dependence to obtain the scaling
relations. Recursion relations for the exponents are determined in the asymptotic region of large N by an

interdimensional scaling argument.

1. INTRODUCTION

For the past several years there has been great in-
terest in employing scaling theories to the dynamic
properties of dilute polymer solutions, De Gennes and
co-workers have developed scaling arguments in analogy
to magnetic critical phenomena for both static and dy-
namic properties.l"3 More recently Freed and co-
workers!~® have developed a different scaling approach
based on the functional integration description of poly-
mer configuration and motion. For static properties,
Kosmas and Freed* construct scaling relationships and
introduce an interdimensional argument to determine
the power law dependence of static properties as a func-
tion of the excluded volume parameter v and the number
of monomer units in the chain N, Adler and Freed® (here-
after denoted AF) have extended this analysis, in an in-
teresting way, to the dynamics of dilute polymer chains.
For the diffusion coefficient D and the intrinsic viscosity
[n], AF obtain the result in theta solvents, for all di-
mensions d,

kT
ol

where kjy is Boltzmann’s constant, T the absolute tem-
perature, 7, the solvent viscosity, N, Avogedro’s num-

ber, M the chain molecular weight, and ! the Kuhn sta-
tistical segment length. .

In a good solvent AF obtain the results, for 2<d=4,

- N
Do N-1/2 , [n]cc MA‘NSIZZS , (1.1)

T
D« .’.:il_N-v,,(vl ~dy= Qvg-1)/(4-4) (1.2)
and
N
[nlec SA13 NV (p193@e-d/tten) (1.3)

Here the exponent v4 is the Flory exponent obtained in a
variety of ways* "% to be

=1, d=4. (1.4)

For d=4, in a good solvent, AF conclude that D and
[n] behave like the theta solvent, Eq. (1.1).

As remarked by AF, they have adopted in their analy-
sis a form for the hydrodynamic interaction T(») which

*)3upported in part by the National Science Foundation.

J. Chem. Phys. 74(8}, 15 Apr. 1981

0021-9606/81/084261-05$01.00

is valid in three dimensions. The principal purpose of
this paper is to demonstrate the modifications to the AF
results that arise from use of the correct d-dimensional
hydrodynamic interaction. In particular, we find ina
theta solvent for 2<d=<4, in the large N limit, the re-
sult

« kBT N(?-d)/z

Ny
D T]o -—l—a:z—-, [n]m——l\;Nd la, (1.5)
while for d=4,
kT N, ¢
Doc_a._’ OC—A-.-—-ZZNZ. 1.6
N [n] W, (1.8)

In a good solvent we find the following results are not
inconsistent with our recursion relations for the expo-
nents for 2<d=4:

BT N=@-2vq _ e e
B (pyp-t) et U-tvg

e .7

and

[n]oc %.N‘"d ld(vl-d)d(2v¢_1)/(4-d) , (1. 8)

while for d=4, we obtain the results Eq. (1,6),

It is not surprising that our results [Eqs. (1.5)-(1. 8)]
agree with the AF results [Egs. (1.1)~(1.3)] for d=3
since for this dimensionality AF employed the appro-
priate form for T, However, these results differ from
those of AF for all cases where d#3.

Our results can be reproduced by the following simple
physical argument. For d=4, we expect a hydrody-
namic description to be necessary so we assume the

validity of Stokes Law, for d> 2°
D= by T/nyR%? (1.9)

and the Einstein expression for the intrinsic viscosity
of a dilute suspension of spheres of radius R,

inl=RrR¢/M , (1.10)
with R of the form
R=[NVd , (1.11)

For d>4, hydrodynamics does not dominate, and we ex-
pect the simple result Eq. (1. 6) for a Rouse free drain-
ing chain. Note that this physical argument leads to the
proper units for D and [n] as a function of dimensionality
in contrast to the AF resulis.

Thus in good solvents for 2<d=4, the predicted power
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law dependence N may be viewed as arising from the be-
havior of the static polymer end-to-end distance R. AF
point out that replacement of this static length R by an
appropriate dynamical scaling length R, does not change
their conclusions. Similarly we find that modification
of our analysis to introduce a dynamical length does not
change the results summarized above.

1. SUMMARY OF THE ADLER AND FREED METHOD

The static properties of a polymer chain with a con-
figuration {r} are determined by the free energy func-
tional!®

o) Flfe} 2,10 = 3 [ as (1))

_J

9P _(Fds (tds, © [ ks T
Pirho=f 2 [ Sy 1ot -sorarve+ 2

o} 1 0
¢ [5!‘(80) + ’;'A_f 51’(80) F[{l‘}, L1 v]]P({r}, 3] s

where £/1 is the friction coefficient per unit length. AF
assume T(7) to be the Oseen tensor

1 11 [ rr]

—T)=——= [+ —5

Mo (r) 8y v2 7t
in all dimensions, although it is only correct in three
dimensions. Using the above Oseen tensor and the static
scaling leads to the time scaling

r_ kT 3

=—2=b"%t .

¢ No L
Scaling the diffusion equation [Eq. (2.4)] by the variable
transformation Eq. (2.2) and Eq. (2.6) yields an equiva-
lent diffusion equation in which the set of parameters
that govern the dynamics are transformed as follows:

{kBTl/E, kBT/n09 L; l’ 'U}
~ {nol6"%/£, 1, Nb, 1, bV 72y1-0} | 2.7

Setting b=N"! leads to 1yIN~12/t~ 0 for large N and the
AF result that the monomer friction coefficient is ir-
relevant in all dimensions.

(2.5)

(2.6)

The scaling relations for the diffusions coefficient D
and the intrinsic viscosity [n] are determined by applying
the static and dynamic scaling to their equilibrium auto-
correlation definitions.

The diffusion coefficient!? is defined as
1 oo
== . 0 2.8
D Sfo aKv() - v(0)), (2.8)
where
1 (L. a8
Vin=1 fo ds oo (s, 1 (2.9)

and ¢ ..) is the equilibrium average, Substitution of the
transformed variable ', »', s’ leads to the AF result,

for large N, that D~ N-'/% in theta solvents in all dimen-
sions and in good solvents above four dimensions. While
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L L
+2—vﬁf0 ds fo dso8[x(s) —r(sp)} , (2.1)

where L is the length of the polymer. Kosmas and
Freed have shown that the scaling of the distance along
the polymer s and the position of a point on the polymer
r(s) by
s'=(/Ds, >0, r'(s)=0"/Dr(s),
leads to the homogeneity relation for the free energy.
Fl{r}, L, 1, 0)=F[{r"}, Nb, 1, '4P12179] | (2.3)

where N=L/I.

The dynamic properties are governed by the diffusion
equation for the probability distribution P{r}, !

(2.2)

Tr(s) -r(so)]]

(2.4)

-

in good solvents for d<4, the same analysis leads to the
result

D =constk§—r£N""d(vl"’)'(z“’d’“’“"” . (2.10)

7ol

This exponent w, is determined by an interdimensional
scaling argument to be equal to the static exponent v, for
the root mean square end-to-end distance R. This in~
terdimensional argument consists of equating the power
law dependence for v and N of a confined polymer in d
dimensions to a polymer in d — 1 dimensions when the
size of the polymer is large compared to the confinement
distance. AF solve the resulting first-order difference
equation for w, by assuming the polymer is Rouse-like
{wy =1) in one dimension.

The intrinsic viscosity!® is defined as

N w
[n]smfo at{J (8) - J(0) ), (2.11)
where
J(t) == 'k‘f—l?' ’/O‘Lds ’Vx(S, t)~5’}’3,(5—s_,7)F[{r}, L: l’ U] .
(2.12)

In theta solvents and good solvents above four dimen-
sions AF find, [#]~N"¥%/M. While in good solvents be-
low four dimensions,

Napy By “4) 320D/ (4-0))

[7]=const=%#

7 (2.13)

and w} is determined to be equal to v, by an interdimen-
sional argument similar to the diffusion case.

iil. MODIFIED SCALING

The scaling of the hydrodynamic interaction used by
AF for d+3 is incorrect. Linear hydrodynamics pre-
dicts that the Oseen tensor in Fourier space is
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— () nkz[ i—:‘—] (3.1)

in all dimensions.®

Thus in coordinate space

1
T]—T( )‘I Mo ,ra_z 3 (3~2)
so that the appropriate scaling is
pl/2\2-¢
1) = (25) " 1en .9

As a result, two possible time scalings emerge in the
diffusion Eq. (2.4). If we scale so the hydrodynamic in-
teraction is fixed (as AF do) we obtain

b (b,
o :
This leads to the set of parameters in Eq. (2.4) trans-
forming as

{kBTl/g; kBT/nD’ Ly l’ D}
- {nob(4-d)/2 l(d-Z)/g’ 1,Nb, 1’ b(d-4)/2vl-d} N (3. 5)

By examining the behavior for large N, with b=N-1,
this scaling is seen to be appropriate for d<4, so that
the monomer friction coefficient or more explicitly the
draining constant becomes irrelevant,

(3.4)

Alternatively, one may also fix the monomer friction
coefficient and ebtain the time scaling

2
= kgT ;’2 t (3.6)
which leads to the transformation
{ksTU/E, k5T /00, L, 1, v}
- {1’ &b(d-“,z Z(Z-d)/no’ Nb, 1’ b(d—4)/2vl -d} (3. 7)

which is seen to be the appropriate scaling for d>4. In
this case both the excluded volume interaction and the
hydrodynamic interaction become irrelevant. As is
shown in the next section, the consequence of this scal-
ing is that the polymer has unperturbed Rouse-like be-
havior above four dimensions.

IV. DIFFUSION COEFFICIENT AND INTRINSIC
VISCOSITY

A. Diffusion coefficient

Employing the time scaling equation (3.4) for d> 4 and
the static scaling with b=N"!, we obtain

ksT
£

For large N both the excluded volume interaction and the
hydrodynamic interaction are irrelevant. Thus in the
asymptotic region of large N, the diffusion coefficient
exhibits free draining Rouse type behavior,

D=

N-1FD(UZ-4N(4-4)/2, gNu-d)/Zl(Z-d)/no) . (4. 1)

D= -kg—TN*F,,(o) ,

Using the time scaling equation (3.3) for d<4, we obtain

>4 . (4.2)
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N(?-d)/zlz-dFD(Ul ~dN(4-d)/2’ 7701 d-2N(d-4)/‘Z//£) A

(4.3)
Note that for d=4, the N dependence of Eq. (4.3) and
Eq. (4.1) mateh. For d<4 the monomer friction coef-
ficient is irrelevant for large N; i.e., n,l**N@4/2/t .0,
Thus Eq. (4.3) reduces to a two-parameter scaling equa-
tion. In theta solvents where v =0, we immediately ob-
tain the nonfree draining Rouse-Zimm behavior

p_kaT
0

D— kTJIaT N@-0/210-0F (0)
0

(4.4

In good solvents where the excluded volume interaction
is present and v1"*N‘*"?/2>> 1, we assume a new power
law dependence for N to emerge. Assuming
Fo(v1-*N"“®/2) gcales as ~ (v]"IN“4-0"/%)* yields the scal-
ing relation

D zconst_k_szN ‘2'“’21‘2"’(01"’N‘4"”2)"
Mo

(4.5)

EpT .,y e NP -
= const TE— N =0a] 20 (5] -8)(8-2-26) 140>

0

where w,=[d -2 ~ (4 - d)x]/2 is the new dynamic expo-
nent for N,

An equation for the exponent w, can be obtained by the
same interdimensional scaling argument employed by
AF. Consider a polymer confined between two infinite
planes a distance a apart. The scaling relation for the
confined polymer must reduce to the unconfined result
[Eq. (4.5)] as a~ . Assuming there is only one length
that characterizes the polymer for diffusion R leads one
to the scaling relation for the confined polymer in d di-
mensions

D= %B_T_N-w,, l(z-d)(vl-4)(d-2-2wd)/(4-a)gD(a/R) , (4. 6)
0
where g(«) =const. In the limit (a/R)— 0 the scaling be-
havior of the confined polymer should be equivalent to
the scaling behavior of the unconfined polymer in (d - 1)
dimensions. We assume a power law dependence for the
scaling function gp(x) in this limit; g,(x)~”. Equiva-
lent results are obtained by assuming R is the static
end-to-end distance, or a dynamic length [See Appendix]
defined by a Stokes—Einstein relation
D= const% . 4.7
Ty RE
The dependence of the static end-to-end distance on N
and v is

R~Nvd,y(zvd-1)/(4-d) . (4. 8)

Proceeding with the static definition of R, the scaling
law for the confined polymer in d dimensions in the limit
(a/R)~ 0 becomes

Da ~N % v(d—Z-de)/(«i-d)N “vgy v-y(Zvd-l)/(4-d) . (4' 9)

Equating powers of N and v in Eq. (4.9) with the powers
in Eq. (4.5) for d - 1 dimensions results in

We g =Wyt ,

d-3-2w, _d-2-2uw,
5-d 4-d

) y@v, ~1) (4.10)

4-d

.
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We eliminate y from the above equations and obtain the
first-order difference equation for w,:

d-3-2w,y d-2-2w;, wgq—ws2v,-1
5-d 4-d = vy, 4-d

(4.11)

A unique solution can be constructed by fixing the value
of w, for a specific dimension. Note that this difference
equation differs from that obtained by AF.

In our view the type of analysis employed here, and by
AF, cannot yield an unambiguous boundary for the inter-
dimensional difference equation. Indeed for our result,
Eq. (4.11), various consistant possibilities emerge for
different assumed boundary conditions. For example,
if we employ, as AF do, the boundary condition of Rouse
behavior in one dimension, w;=1, Eq. (4.11) leads to
Rouse behavior in all dimensions. But we do not expect
hydrodynamic interactions to be irrelevant for 2<d=4
and, indeed, note that

we=(d-2)v,, 2<d=4 (4.12)

is an acceptable solution, although not unique.

B. Intrinsic viscosity

Using the time scaling Eq. (3.4) for d> 4 and the
definition of the intrinsic viscosity Eq. (2,10) with b
=N-! results in

N
[n]:—ﬁy—f—olzN"’Fﬂ(vl"’N“"”z, EN W22 1y

(4.13)

As in the diffusion case, both the excluded volume and
the hydrodynamic interactions are irrelevant above four
dimensions, and we obtain the free draining Rouse be-
havior

N

(4.14)

[n]= 7Iizzzv%v,,(o) , d>4.
0

S5

For d<4, we apply the time scaling equation (3. 3) and
set b=N"! to obtain
N
[n)= 34N EF (017N 07 (4.15)
where the friction coefficient has been ignored for large
N. In theta solvents, Eq. (4.15) reduces to the Rouse—
Zimm result
NA d/Zld (4 16)
[T]] = WN F”(o) . .

Note that the factor !N %% is the d-dimensional volume
of a chain in theta solvent.

In good solvent where the excluded volume interaction
is present we expect a2 new power law. Assuming the
scaling function F (vl N ‘4*"2) hag a power law for when
pI™N 4925 1, we obtain

[n] =const-1;41‘-N"2l"(vl"N {4-4)/2)= (4.17)
and we define an exponent
we=d/2 +x{4-a)/2 (4.18)

to describe N dependence. The same argnment may be
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constructed to determine w, as was employed for w,.
The scaling length may be defined by the static end-to-
end distance or a dynamic length defined by

[n]=constRY/M . (4.19)

Both definitions yield recursion relations for w, that
give the same results. Using the static end-to-end dis-
tance we obtain the difference equation

2w, 4 —d+1 _ 20,-d + (;4-1—5’-4) (2"4'1)

= .20
5-d 4_d Vg 4-d (4.20)

If the chain is assumed Rouse-like in one dimension then
it is Rouse-like in all dimensions. However, the ex-
pected solution

We=dv,, 2<d=4 (4.21)

is consistent with the recursion relation.

V. CONCLUSION

We have presented scaling relations and explicit power
laws for the diffusion coefficient and intrinsic viscosity
of dilute polymer solutions. The analysis is based on
AF method for the path integral representation of a poly-
mer’s dynamic and static properties. Cur work differs
from theirs in the treatment of the hydrodynamic inter-
action. AF assume the three-dimensional representa-
tion of the hydrodynamic interaction is valid in all di-
mensions, This leads them to incorrect results for
d+3.

Our results for d=4 may also be obtained by the sim-
ple hydrodynamic argument stated in the introduction
and for d> 4 by assuming the polymer exhibits Rouse be-
havior. Through our scaling analysis we have found, in
contradiction to AF, that the monomer friction coeffi-
cient is the controlling factor for the dynamics above
four dimensions, while the hydrodynamic interaction is
irrelevant. This leads to the free draining Rouse be-
havior,

The physical reason that the hydrodynamic interaction
is unimportant above four dimensions may be understood
by considering the picture Debye and Bueche!* have given
for the motion of a polymer. They demonstrate that the
fluid inside a polymer in three dimensions moves with
the same velocity as the polymer itself. That the dif-
ference between the fluid velocity and the polymer ve-
locity decays to zero within a “shielding length”

Kl (Ctg/??o)I/Z ,

where C* is the concentration of monomers within a
polymer coil. In three dimensions K -1 js much smaller
than the size of the polymer. This leads to the picture
of a polymer as a sphere that obeys Stokes law., If we
generalize this argument to 4 dimensions, one sees that
the ratio of the size of polymer to the “shielding length”
in the large N limit changes abruptly at four dimensions

R/KxR(C* £/m)!"?
~ NU2awptr2

(5.1)

(5.2)

Thus, above four dimensions the polymer is much more
porous, the fluid flows freely through it, and one should
expect free draining Rouse behavior.
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An alternative way of understanding why the hydrody-
namic interaction is irrelevant above four dimensions,
is to compare the direct frictional force F, relative to
the hydrodynamic force F, acting on a typical polymer

bead. In a uniform veloecity field v,,
F,~tv, (5.3)
and
1 ! ? I3
Fuy~— |T(x-c)plr)dr - v,. 5.4
S AR UTCOL (5.4)

For a Gaussian distribution of neighboring segments,

olr) ~ R%42 exp| - d*/2{RY)] , (5.5)
one finds
Fu~7151 Nl-(d-Z)vd . (5' 6)

For v,=1%, the classical value, there is an abrupt tran-
gition at d=4, where the hydrodynamic force is domi-
nated by the frictional force for large N.

Recent experimental work'® has found that D~ N -
rather than D~N "¢ the result inferred here, and also
by other authors.? %% It has been speculated that this
discrepancy between theory and experiment arises from
an anomalous value'® for the dynamic exponent z or be-
cause the asymptotic region of large N has not been ex-
perimentally reached.!"!? The exponent z is related to
the diffusion coefficient by D~N ‘“*4, We have se-
lected the values

z=d, d=4,

5.7

::4, d_>_4,

but the interdimensional scaling argument does not
eliminate the possibility of an anomalous dynamic expo-
nent, since the solutions to Eq. (4.11) and Eq. (4.20) are
not unique,

In summary, the significance of what has been demon-
strated here is that correct application of the AF dy-
namic scaling arguments leads to inferred results for
the chain length dependence of D and [n] that are consis-
tent with the essential physics as a function of dimen-
sionality. The essential physics is as follows. Above
four dimensions the excluded volume and hydrodynamic
interaction effects become irrelevant for large N. Be-
tween two and four dimensions, in a good solvent for
large N, Stokes law for D and the Einstein law for 7]
contain the essence of the sophisticated dynamic scaling
argument where the sphere size is associated with the
mean end-to-end distance R ~N“¢,

APPENDIX

Using the dynamic length R, [Eq. (4.7)] we derive an
equivalent alternative recursion relation for w,. The N
and v dependence of R, is

R~ N0/ (0=) (422001 -t} 2=) (A1)
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Employing this in Eq. (4.86) and comparing powers of N
and v in the limit a/Rp~ 0, we obtain

wd—'ywd/(Z —‘d):wd’-l y

2
d-2-20, yld-2-20) d-3-2w. (42)
4-d ~(4-0d2-d 5-d4
Eliminating y yields the recursion relation for w,
(d-2-2w,) (d-38-2w.y)
= . A3)
A= ~ (B dwe (
The solution of Eq. (A3) is
d-2-2w,
coLeT e A4
o4 =) const , (A4)

where the constant is determined by the boundary con-
dition for w,. The results for Eq. (A4) are identical to
the results for the recursion relation derived from the
static length [Eq. (4.11)].
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