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The influence of convective flow on diffusion-controlled steady-state reaction rates in chemically reactive
mixtures is studied for a number of different model systems. Two different flow types are considered: flow in a
frictional medium and constant flow in a medium containing many reactive centers. The significance of the

results for the combustion of fuel sprays is discussed.

I. INTRODUCTION

In many chemical systems that are of considerable
scientific and practical interest, the rate of chemical
reactions is governed by hydrodynamic factors, such
as molecular diffusion and convection. Examples of
such systems are many industrial flow-type chemical
reactors, fluidized beds, and combustion of fuel sprays.

Theoretical work on this subject goes back to the
classical work of Smoluchowski.! The simplest proto-
type problem is the steady-state diffusion of pointlike
particles to a macroscopic sink. The steady-state dif-
fusion equation describing the concentration distribution
c(r) of the diffusing particles is

DV3c =0 s (I.1)

where D is the diffusion coefficient, supplemented by
boundary conditions, e.g.,

c—~¢cy, a8 ¥r—oo (1.2)

and

¢=0, at the surface of the sink , (I.3)

The latter condition states that the absorption of the
diffusing particles at the surface of the sink is complete,
i.e., the probability that a particle which arrives at
the boundary of the sink is absorbed, is unity. Ob-
viously, in real chemical systems this is not the case,
and a “radiative” type boundary condition gives a better
description which takes account of the possibility of non-
reactive encounters.? For a spherical sink of radius a,
the solution of Eq. (I.1) is well known, e.g., the inte-
grated flux is given by
=D f be.
I= o a daQ ( 81’)

r=a

=4n Da . (1.4)
Equation (I.1) is not appropriate for flowing media.

If the fluid in which the diffusing particles are dissolved

streams past the sink with a known velocity distribution

u(r), then the equation governing the convective diffusion

of the point particles to the sink is

(I.5)

It is much more difficult to solve Eq. (I.5)thanEq. (I.1),
and, not surprisingly, the work on this subject has
focused on several simplifying assumptions, *° e.g.,

(W-v-DV?)c =0,
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expansions valid at either large or small values of
the Peclet number uya/D, where u, is the asymptotic
flow velocity.

Another aspect of diffusion-controlled chemical re-
action theory that has received considerable attention
in recent years is the “multisink” problem.!%-1* If
there are many sinks to which the point particles can
diffuse, there will be a change in the rate of absorption
per sink due to intersink competitive effects, Most of
the work on this subject has been involved with stagnant
media in which #; =0. Relatively little attention has
been given to the effect of flow on reaction rates in multi-
particle systems, the work of Happel and Pfeffer!s—17
being a notable exception. In the present paper some
novel analytical results are given on this subject.

Part of the motivation for this work derives from a
recent investigation!® in which it appeared that the depen-
dence of the calculated burning rate of a fuel spray on
the number density of fuel droplets is much stronger than
what is observed experimentally.!*2?® It is partly in or-
der to explain this observation, at least qualitatively,
that the present study was undertaken.

The model studied in Sec. II consists of one reactive
sphere and N —1 unreactive spheres, which do not ab-
sorb the diffusing species, but do influence the.flow by
means of frictional drag., The flow pattern is obtained
by solving the so-called Debye-Bueche (DB) equation®=2*
which involves a continuum model for the frictional
medium. This flow turns out to be simply related to the
Stokes flow close to the surface of the reactive sphere.
Consequently, the reactive flux is simply related to the
one obtained by Levich and others in the case of high
Peclet numbers.® In Sec. III the full N-reactive-spheres
problem is addressed. Again the flow pattern is ob-
tained from the DB equation. Since the resulting con-
vective diffusion equation is prohibitively difficult to
solve in all generality, we replace the full DB field u(r)
by an effective, constant field u,,, which is essentially
the average of the DB field over the volume of the re-
active mixture. The resulting reactive flux is studied
as a function of the asymptotic velocity %, and the num-
ber density p of absorbers (see Fig. 3). In Sec. IV the
experimental significance of the results in Sec. III is
discussed.

1. SINGLE SPHERICAL ABSORBER IN A
FRICTIONAL MEDIUM

In this section we consider a simple model for the dif-
fusion of point like solute particles to an absorbing
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sphere of radius a which is immersed in a frictional f and F depend only on radial distance », and a set of
medium. The frictional medium can be thought of as ordinary vectorial differential eguations for f and F can

a suspension of many spherical centers, which do not ab- be found. After much tedious algebra, the following solu-
sorb the diffusing particles, but do affect the flow field tions result:

through frictional attenuation. A continuum description

u= 2(rr-uy - 2u,y) -3/, (1/7)(rr .0
of the latter effect is given by the Debye-Bueche equa- & fir*( 0 = 209) = 3£, (1/7)( 0 +Uo)

tion?i-24 —2f3uy+f(1/7)@rr -y ~uy) (@<r<R), (I1.10)
2
Vi - gpu - Vp =0, (@.1) U=u0+(fs/xz)rr.u0(—% +§§£ +37K£ +L;->
where ¢ is the friction coefficient of a single droplet,
p =p(r) is the number density of frictional centers, 7is fs 1 x  Kx Kx )
the viscosity of the fluid, and p is the hydrostatic pres- + & o ( P B B +feTT Yo
sure. For p(r), a cavity model is adopted: The spheri- .
cal absorber is placed at the center of a spherical cavity x (% + 3k + K_> + fgUy X <_ —15 - _:_cz - f) (r>R),
of radius R, outside of which there is a constant number 4 r r r r
density p of frictional centers, and inside of which there (1.11)
are no such centers, i.e., p(r)=0 for <R and p(r)=p
for »>R. P=Po—mo-n(§flr+§> (@<r<R), (11.12)
In addition to Eq. (II. 1) we impose the equation of in-
compressibility and
V-u=0, (1. 2) P:po_nuo-r<xzr+§) >R), (I1.13)
the boundary conditions
where
u-u,, as r—«, (I1.3) . .
u=0, at r=a, (I1. 4) x*=tp/n, x=e™, m=r/y.
These solutions obey Egs. (II.1) and (II.2) and satisfy
and the continuity conditions Eq. (I1.3). The six constants f,—f, are determined by
u continuous at 7 =R , (11 5) imp0§ing Eqs. (11.4)—.(11.6.). This gives. rise to six linear
equations which are given in the Appendix, The k%
r -Z continuous atr =R, (11.6) term in Eq. (II.13) shows that one has to apply infinite

pressure to maintain steady linear flow through an
infinitely extended frictional medium.

where T is the stress tensor?®

T=- 2n(V-u) . 1.7
pr +2n( ) ar.7) The solution of the set of equations (A1)-(A6) was
Here | is the unit tensor and (x)° denotes the sym- found using MACSYMA, a computer language developed
metrized part of x. at the M.I.T., designed to manipulate algebraic (sym-

The program to be carried out is (i) to solve the bolic) expressions. Rather than giving the complete

boundary-value problem constituted by Egs. (II.1)- rfssultt; ? f‘?’h‘:‘; are }onti and cumbersomfe, we shalll
(IL.6); and (ii) to substitute this flow field into the con-  5.v¢ the first term in the Taylor expansion of u close

vective diffusion equation (I.5) and compute the resulting to the surface of the absorbing sphere:

reactive flux. 3 y-a\?2 r-a\?
u, =1 0S8 { = ¢( ) +0[< ) ] 11.14)
With the following ansatz?é; v { 2 a a ’ (
u=vx (Vxsfu, for a<r<R (I1.8) 3 - ~a\?
Tt ’ g = — g SIng 5 ¢<'r___a)+o[<"‘ a) ]} , (11.15)
U=u,+Vx (VX Fu,), for »>R, (@. o) a a
J
where
o=2 270 +2700 + (126 - 90A% — 454° +9A4°) +¢°(36 — 90A4% +454° +94°)
"3 180 +0(180 — 180A4) +0%(24 — 454 +30A% - 94%) +0* (4 - 94 +10A° _9A° +4A%) °’

with Levich has developed an analytical treatment of the
flux of solute particles to a spherical absorber which is
A= = . .1 . . ces
/R, o=xR (1. 16) valid if the following two conditions hold: (i) The Rey-
In the limit that p~0, we have ¢ -~ 1 and Eqs. (II.14) nold’s number is low enough so that the flow pattern is
and (II. 15) reduce to the familiar case of Stokes flow Stokesian; (ii) the Peclet number 2uya/D is so large
near a spherical body. that a thin boundary layer of diffusing solute particles is
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FIG. 1. The ratio of the fluxes I and Iy, in 2 medium with and
without friction, respectively, as a function of the dimension-
less density parameter ap!/3, according to Eq. (II.16). Here,
p is the number density of frictional particles and a is the
radius of the reactive sphere,

formed.® With these two provisos Levich arrived at the
following expression for the particle flux:

2 9
1= 2% fdg(_c)
Co 8 /paq

~7.98(uy DPa*) =1 ,, . Im.17)

For the cavity model under consideration, the flux is
simply related to the single sphere result:

I=0Y31, . (I1.18)

Figure 1 gives a plot of ¢” 3 as a function of the number
density p of droplets in the frictional medium. In ob-
taining this plot, the following assumptions are made:
(i) The cavity radius R is equal to the average inter-
particle distance p"*/3, (ii) The frictional constant ¢

is given by the Stokes law ¢ =67a’7; in a more accurate
treatment the dependence of the friction coefficient on

p would be explicitly included. (iii) The radius a' of the
frictional particles is equal to that of the absorbing
sphere (a’ =a). ItfollowsthatA =ap'® and o=(6na)"%p V.

It is seen from Fig. 1 that when the density p of the
frictional medium is increased, the flux of diffusing
particles also increases. There are two factors which
contribute to this effect: (i) As p increases, the cavity
radius R decreases, so that the diffusing particles have
to travel a shorter distance to reach the surface » =a;
(ii) as p increases, the frictional slowing down of the
flow by the suspension outside the cavity is more than
offset by the concurrent increase in the applied hydro-

static pressure [see Eq. (I1.13)]. Similar results have
been found by Pfeffer!® and Pfeffer and Happel.'” The
increase in the hydrostatic pressure is required to
“force” the fluid through the suspension, despite the fact
that fluid is incompressible, to combat the frictional
force imposed on the fluid by the fixed reactive sinks,

i1l. MANY REACTIVE SPHERES IN DB FLOW FIELD

The problem of greatest practical interest is the
study of the flux of particles to an assembly of many
reactive centers. The model we consider consists of
the following ingredients: We shall adopt a continuum
description of the reactive cloud, in which the discrete
centers are replaced by a number density field p(r). The
flow field is again obtained from the DB equation {II.1).
In this continuum model, the depletion of solute particles
through reactive encounters cannot be described by a
boundary condition such as Eq. (I.3), but must be de-
scribed by means of a continuous sink function ¢(r) as
follows:

(u-V-DV3c=-41Dgq . (TI1. 1)

In previous work® it was shown that in a stationary
medium ¢ and ¢ are linked through a linear, constitu-
tive relation

4ng =% , (111. 2)
where
A%(r) =4map(r) . (II1. 3)

The quantity x has dimensions of an inverse length and
is a measure of the degree of screening exerted on a
sink by its neighbors. Solution of Eqs. (II.1) and

(I1I. 1) with the appropriate boundary conditions would
constitute a complete solution of the problem under
consideration. Unfortunately, this program is too
ambitions.

For definiteness we shall limit our considerations to
a uniform spherical reactive cloud of radius R, i.e.,
p@)=p, if <R, and p(r)=0, if »>R. First, consider
the DB equation (II. 1), supplemented by Eqs. (II.2),
(I1.3), (I1.5), and (I1.6); Eq. (II.4) is replaced by the
condition that u is finite at the origin. This problem
has been solved by Felderhof.?* Since we do not have
a theory for solving Eq. (III. 1) for an arbitrary flow
field u(r), the best we can do is to replace the DB field
u(r) in Eq. (III. 1) by an effective field u,, which is de-
fined as

U,y =f Uy (111. 4)
and
R +1
Fi= GR%Y! f r2dr f d(cosé)u pg ~Upp (I11. 5)
0 -1

_d* 2cd (chU sho
"FE =
1 1 sh?c sh2c 1 o )
2 - _= —_ - _
+c (—4 2 ch2o 32 * oo +8 osh2o 7 )
where
3 Glo)
= 22 =2 .
o=xkR, «*=¢p/m, d 5 T33C0)/F (I11.6)
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¢ =2d/c*choG (o), (am.7)

and
G(o)=1~-tho/o . (I11.8)
In Fig. 2, f is plotted as a function of o.

Consider Eq. (OI.1) with u replaced by u,, and with the
following boundary conditions: (i) ¢ is finite at the ori-
gin, (ii} c—~¢, as »~«=, and (iii) ¢ and 8c/8r are con-
tinuous across r=R. The substitution

c=exp(a-r)y, (I11. 9)
with a@=u,,/2D, leads to the following solution:
CO(l _ea'r‘pout) (7>R) ’
II1. 10
Coe""%n (7’<R) ] ( )
where
Jout =2 d ky(ar) Py(cosh) , (. 11)
1=0
Y = O £141(8r) P,(cosh) (I 12)
1=0
BE=a?+2%, g,=G,/8,, d,=D;/4,, (Im. 13)
G, =(-1)*' 21 +1)n/(2aR?) , (1. 14)
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FIG. 2. The average frictional reduction f of the Debye—

Bueche flow field by a uniform spherical medium as a function
of the dimensionless density parameter o, according to Eq.
(I.5). o=(tp/n)'/*R, where p is the number density of fric-
tional particles, ¢ is the friction constant, 7 is the viscosity,
and R is the radius of the sphere which contains the reactive
centers.
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D, =(-1) @1 +1)[oi, (BR)#,(aR) - Bi,(aR)$}(BR)] ,
(II. 15)
A, = ai,(BR) ¥, (aR) - Bk, (aR)i,(8R) , (111. 16)

i (x) =(7T/2x)1/2114(1/z)(x) ’ kx(x) 2(77/2?()1/2&,(1/2)(96) s
i) =di, /dx , F(x)=dk,/dx,

where i; and k, are modified spherical Bessel functions
of the first and third kind, respectively.?” The volume-
averaged reaction rate (in nondimensional units) is

g* = ¢ 7R apc,)? jdrq(r)=R% > q;h,, (.17)
1=0

where g, is defined by Eq. (III. 13) and
hy = (R?/3®)[Bi,(aR) i,  (BR) - aiyy (@R)i,(BR)] .
(IT1.18)

We can now study several limiting cases of Eq.
(II1. 17). In the limit that u,~0 (no convection), only the
1 =0 term survives and one obtains

thaR )

3
q*(a, A);—_; RE (1 oY (I11.19)

the same result as in the purely diffusive case.** In
the limit that A -0 (no screening), one obtains

3 L]
o, N 5 2 (D@D
120
x[i2(aR) ~i;,1(aR) iy (@R)] . (TIL 20)
The above equality follows from the identities
D (-1 @I +1)i%(x) =1 (1. 21)
1=0
and
2
[ ax it =52 [36) i @i @) (111 22)
0

In the limit that X~ (an infinitely dense spray), ¢* -0
as 2~% and
I(a)=lim 322R%g*(a, A)
A
i; (aR)
kl (aR)

This result can be obtained by considering a single
sphere of radius R in a constant flow field,

71 -
=5am ,Zo: (-1)@1+1)

(I11. 23)

For arbitrary values of a and ), the summation in
Eq. (III.17) can be performed numerically. In Fig. 3,
g* is plotted as a function of the screening number AR,
varying between 0 and 10, for different values of the
Peclet number aR=u,R/2D=0, 5, 10, 50, and 100.
Note that « differs from «, by a density-dependent fac -
tor f, given by Eq. ([I1.5). For values of R larger than
about 10, the numerical algorithm used to compute the
sum in Eq. (IIL. 17) is not reliable, due to cancellations
resulting from the alternating sign of consecutive terms
in Eq. (OI.17). Thus, in Fig. 3, in the curve for o,R
=50 when AR <4 and in the curve for oyR =100 when
AR <5, the curves are smooth extensions of the large-
AR sections that go through 1 at AR =0 as expected from
Eq. (III.20).
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FIG. 3. The average, nondimensional reaction rate ¢* of a

uniform, spherical cloud of absorbers as a function of the den-
sity parameter AR for different values of the Peclet number
a¢R, according to Eq. (III.17). Here, ¢* ={(47/3) R3? c0]'1

X [<gdr c(r), where c(r) is the concentration distribution of
diffusing particles and ¢, is its asymptotic value and R is the
radius of the reactive cloud; AE(41rap)'/ ¢, where a is the
radius of the individual reactive droplets in the cloud and p is
the number density of droplets in the cloud; and o, =u,/2D,
where u, is the asymptotic flow velocity and D is the diffusion
constant. The dotted parts of the curves labeled oy R=50 and
100 are not obtained by direct calculation, but are merely
smooth extensions of the corresponding solid parts of the
curves that go through 1 at AR=0.

It is seen that for A <q,, the dependence of g* on AR
becomes gradually weaker as qgR is increased. For A
> ag, the curves for different values of a,R approach the
curve with aoR =0 as AR increases.

IV. DISCUSSION OF RESULTS

In this section, the experimental significance of the
results of the last section is briefly indicated. In two
recent publications'®** we have formulated a simple
model theory for the burning of fuel sprays, which takes
screening effects between fuel droplets in the spray into
account, but which ignores convective flow. In Ref. 13
we considered the same uniform spherical spray model
as in Sec. III and in Ref. 14 we considered a one-di-
mensional spray model where the number of droplets
is determined self-consistently, In both cases, the de-
pendence of the calculated burning rate ¢* on the num-
ber density p of droplets was found to be stronger than
what is experimentally observed. 18 The following ar-
gument makes it plausible that ¢* becomes progress-
ively less dependent on p as the flow rate u, is in-

R. Samson and J. M. Deutch: Flow and chemical reaction rates

creased., At high flow rates, a diffusion boundary layer
is set up around each droplet, the thickness of which is
inversely proportional to #,. OQutside the boundary
layers, the concentration of diffusing particles c(r) is
more or less constant (= ¢y), the concentration gradient
being limited to the region inside the boundary layers
of the droplets. If the average interdroplet distance is
much larger than the boundary layer thickness, then
there is no possibility of interdroplet competition.
Hence, it follows that a high flow rates u,, ¢* is rela-
tively insensitive to variations in p, as is experimen-
tally observed. This is borne out by the results in
Fig. 3.

It should be pointed out, however, that our results
are only qualitatively in agreement with the experimental
results of Ref. 18. In the latter work, ¢* is found to
be approximately 0.5 over a large range of interdroplet
distances, while in our work ¢* approaches 1 for a
> x. We suspect that this is not due to interparticle ef-
fects, but to the fact that the spray experiments!® were
performed under other flow conditions than the single
droplet experiments® with respect to which the spray
burning rates are expressed.

ACKNOWLEDGMENTS

One of us (R.S.) wishes to thank Dr. D. Ronis for
several very helpful suggestions and stimulating dis-
cussions, The computer language MACSYMA was de-
veloped by the Mathlab group at M.I. T. supported by
the Defense Advanced Research Projects Agency work
order 2095, under Office of Naval Research Contract
#N00014-75-C-0661.

APPENDIX

The equations which determine the six constants f,—f,
occurring in Egs. (II.10)—(I1.13) are summarized here.
They follow from the boundary and continuity conditions
(1. 4)-(11.6):

F1°/15 + fo/a +2f /3 - 2f, /a® =0 , (A1)
2f10%/15 +f, /2a +2f3 /3 + f, /a® =0 , (A2)
= f1/15 - f =2f3 /3 +2f,
=1+2f(kx+x - 1)/k2+2fgx(k +1) , (A3)
-2f,/15 ~f,/2 -2, /3 ~ £
=1+ fs(~rPx ~kx —x =1)/K = fex (¥ +x +1), (Ad)

2f, /5 +3f, —12f,
=k? + f5 (K% — 4KPx — 12kx — 12x +12)/6® — 4 fex (1 + 3k +3) ,

(A5)
-4f, /15 +f,/2 +3f,
= Fs (3% +26%% + 3ux +3x — 3)/k% + fex (k> +2k% +3k +3) .
(AB)

Here, x =exp(-R) and we have set R =1,
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