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The perturbation theory for the free energy of hard spheres with an embedded quadrupole is extended to
molecules with a nonspherical core. Our system consists of quadrupolar hard homonuclear diatomics. The
free energy is calculated to order Q° in the quadrupole strength. Several expressions for hard diatomics
are examined to obtain the free energy of the unperturbed system. The term of order Q? is calculated
using recent Monte Carlo results for the reference system and it is found that it gives an important
contribution to the total free energy. The Padé approximant (PA) formed for the quadrupolar hard
spheres with the terms of order Q ¢ and Q¢ is evaluated with an effective diameter calculated analytically
using the isothermal compressibility of the hard diatomics. It is concluded that it is necessary to take into
account the nonsphericity of the molecules in the calculation of the free energy in order to obtain reliable

results for real systems.

l. INTRODUCTION

In recent years much effort has been devoted to the
study of the effects nonspherical intermolecular interac-
tions have on the thermodynamic properties of molecu-
lar fluids. '™ In order tohave a realistic description,
the effects of anisotropic electrostatic forces as well as
those due to core nonsphericity must be taken into ac-
count, which presents difficulties that do not arise in the
theories of simple spherical fluids. In the case of non-
sphericity resulting from multipolar interactions there
exist several successful theories which predict thermo-
dynamic quantities with great accuracy*~® as shown by
comparison with Monte Carlo (MC) results.? This is
the case for polar and quadrupolar molecules which
have spherical reference potentials (hard spheres“‘6 or
Lennard-Jones particles4’8'9). Point polarizability has
also been included® and it appears that its contribution to
the Helmholtz free energy is significant although only
dipole -induced dipole terms have as yet been taken into
account®®

The successful theories for these fluids noted above
have been based onthe use of a Padé approximant (PA)
technique. #*° The PA is formed by terms of order A?
and A? in the free energy expansion, where X is the
strength parameter for any combination of two multi-
poles. As Larsen, Rasaiah, and Stell have discussed, 6
all terms of order X are zero when a spherical refer-
ence system is used. This is not true when a nonspheri-
cal reference potential is considered, and these terms
can contribute substantially to the free energy. >

In dealing with the short-range anisotropic forces
which arise from repulsive core interactions, several
alternative approaches have been used. "2 Here we
shall employ a so-called atom-atom potential“’; in our

2 Also at the OER (Department of Energy).
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case, fused hard spheres forming a homonuclear diatom-
ic molecule with an embedded point quadrupole. The
molecular pair potential is represented by the sum of

the central potentials between interaction sites within

the molecule, i.e.,

ulr, ) =2 ulry,/o,) , (1.1)

i3
where u(r,,/0,;) represents the central potential, 7 is the
distance between the centers of the molecule, and 2 is
the solid angle. When oy, is the same for all the atoms,
the molecule is homonuclear. There are computer sim-
ulations for this model***® which have enabled us to obtain
the pair correlation function in a quasiexact way, thus
making it possible to use a nonspherical reference po-
tential in the calculation of thermodynamic functions and
angular correlation parameters which appear in the ex-
pression for several physical quantities (e.g., dielec-
tric constant and Rayleigh factor). ¢

The formalisms currently used to treat systems of
anisotropic molecules are extensions of those developed
for simple liquids. An example is Chandler’s integral
equation for the reference interaction site model
(RISM), 1" which can be considered an extension of the
Percus Yevick (PY)" equation devised to deal with hard
nonspherical molecules. While not as accurate as the
PY equation for hard spheres it gives results for atom -
atom distribution functions which agree well with the
MC simulations'? (although its thermodynamic predic-
tions, while not yet subject to exhaustive tests, appear
much less promising!®?’), Several perturbation
schemes have been suggested to relate the short-range
anisotropy to a spherical core potential with the anisot-
ropy taken into account in various ways as a perturba-
tion to a spherical reference system. ??! Some work-

rs? have employed the blip method® to relate the prop-
erties of the distribution function of the spherical fluid
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to those of linear molecules. This method becomes
less accurate as the nonsphericity of the molecules in-
creases and it involves a large amount of computation.
It appears unlikely that one can obtain accurate thermo-
dynamic quantities (not to mention correlation functions)
for hard-core particles that are markedly nonspherical
using a perturbation theory with a spherical reference
potential as the basis of the computation.

Since the reference interaction site model (RISM) and
the associated RISM approximation for that model!? of -
fers a successful and extremely useful treatment of the
structure of molecular fluids, it is natural to consider
a thermodynamic perturbation theory that uses the hard
fused-sphere polyatomic fluid of the RISM as a refer-
ence system. That is our purpose here. Perhaps the
most straightforward way of doing this that promises
to yield high accuracy would be to expand in powers of A
and form a Pad€ approximant that has the desired satu-
ration properties at large x. The terms beyond the linear
term in A, which have been set down in detail by Sand-
ler, 10 appear prohibitively difficult to compute however.
For this reason Rasaiah, Larsen, and Stell (RLS)® have
suggested the alternative strategy of computing the sum
of the reference term and linear term in X as accurately
as possible and appending to it a Padé approximant of the
sum of higher order terms, which is computed through
the use of an effective spherically symmetry reference
potential. In our case here that will be a hard-sphere
potential with an effective diameter.

In this paper we present the calculation of the free en-
ergy for the model of a homonuclear fused-sphere dia-
tomic molecule with an embedded point quadrupole. Our
approximation for the free energy per particle excess to
the ideal gas result SAf=BAF/N, is given by

BAf = BAfy + BAF1QF + BAST (1.2)

where Bis 1/kT, BAf, and PAf; are the terms of order
Q" and Q% respectively, and BAf® is the PA:

BAFP = BALQM 1 - B(Afy, 2 + AR BASHQ

with BAf, and (BAf,,, + BAf;) the terms of order Q* and
QS, respectively, and @ the quadrupole moment. This
is the expression suggested by RLS?® for this model, but
those workers had no reliable means of evaluating the
right-hand side of Eq. (1.2), and could only give esti-
mates of the terms there, based on previous estimates
made by Sandler for BAf, and 8Af1@% In this paper we
consider the terms of Eq. (1.2) in quantitative detail.

(1.3)

For the term of order zero in the free energy we
use the new equation of state given for hard diatomics
by Nezbeda.?* The term of order A which appears with
the nonspherical reference system is evaluated explicit-
ly by means of the recent MC results for the correla-
tion function of hard homonuclear diatomics. !* For the
PA, the expressions given by RLS are employed with an
effective diameter obtained by using the isothermal
compressibility of the hard diatomics. An analytical
expression for the effective diameter is obtained when
the equivalent hard sphere system is treated by the PY
theory. We limit our study of the free energy to densi-
ties p* = po® not higher than 0. 6, where ¢ is the diam-
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eter of an atom and p is the number density. This is
due to the fact that the MC simulations are given only for
this range of densities. In Sec. II we establish the for-
mulas for the different terms in the expansion and discuss
the approximation involved. We obtain also an expres-
sion for the effective diameter and comment on the al-
ternatives in the use of this formula. In Sec. III we
present the numerical results and compare them with
those obtained in other theories. In Sec. IV we discuss
briefly our results and possible extensions to include
other interactions.

If one uses the best available polar moments and po-
larizabilities for molecular fluids to fix the strength of
the first few multipole terms at large molecular separa-
tion 7y, but neglects all higher terms as we do here, one
might expect the resulting pair potential to be a poor
representation of the actual potential at small »y, (i.e.,
close to the hard-core region) where a multipolar ex-
pansion is at its worst. To explore this question we
intend to extend our computations to perturbing terms
of multipole symmetry tempered at small »;, with pa-
rameterized damping functions. Varying the param-
eters will enable us to assess the relative sensitivity
of the thermodynamic results upon the small-» contribu-
tions of the multipole terms and also quite possibly to
approach certain real potentials more closely through
the use of appropriately chosen parameter values. Un-
til such a study is made, it is probably premature for us
to try to directly associate the results of our model
computations with those for any real molecule. On the
other hand, it seems likely that a simple extension of
the model studied here (with a quadrupole term appro-
priately tempered for small 7 if necessary, an added dis-
persion term, and a judiciously chosen effective @) will
proveusefulin the study of simple diatomics such as N,.

tl. PERTURBATION THEORY FOR THE
HELMHOLTZ FREE ENERGY OF HARD
HOMONUCLEAR DIATOMICS

We consider a system formed by hard homonuclear
diatomics (HHD) with an embedded point quadrupole.
The molecule i is characterized by a position vector 7,
and orientation vector Q,=(6,, ¢,), where 6, is the polar
angle an ¢ is the azimuthal coordinate. Each atom of
diameter ¢ in molecule ¢ interacts with other atom in
molecule j with a potential

u(rab) _ {oc} ¥Yap <O

0 Y O,

(2.1)

where 7,, is the atom -atom distance. The quadrupolar

interaction is given by
QQ 3¢? 2 2
u9%r, Q) =5, {1 - 5(cos?8, + cos?6,)

~15cos?6, cos?6,+ 2|sinb; sinb, cos(p - dy)
(2.2)

where 7 is the distance between molecular centers. The
distance between the centers of the atoms in a molecule
is L¥*=L/o. As mentioned in Sec. I, Sandler has ex-
panded the free energy in powers of Q2 and obtained the

~4cos6; cos6,)’},
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expression
BAf = BAfy + BAFIQP + BASHQ + B(ASy, , + 81;)Q° (2.3)

where &f,, Af; ,, and Af; are intractably difficult to
compute without further approximation, and where, even
if computed exactly, Eq. (2. 3) can only expected to yield
as it stands accurate results for rather low . To cope
with both these difficulties RLS suggested (i) the re-
placement of the true reference system by an effective
hard-sphere reference system in the computation of

Af,, Afy,, and Af;, and (ii) the replacement of the @*
and ° terms by the gAf” of Eq. (1.3) using the Af,,
Af, ., and Af; so computed, thus capturing the saturation
effect which causes the free energy to behave more

and more linearly in Q2 as ¢ increases.

There are several alternative expressions which can
be used for the free energy BAf; of a homonuclear dia-
tomic system. The scaled particle theory (SPT)* plays
a central role in the calculation of the equation of state
for nonspherical particles. Originally, % it was used to
obtain the pressure of a hard-sphere system and later
it was extended by Gibbons® to cover convex molecules
of arbitrary shape. Boublik? has modified Gibbons
equation by adding an extra term and obtains the formula

BP/p=[1+(y =2}y + (1 -y —1¥/3)y2 = (¥/3)%](1 —3)3,

(2. 4)
where
y=pV
with V the molecular volume, and
y=RS/V (2.5)

with R the mean radius and S the surface area of the
molecule. The Boublik expression reduces to the
Carnahan -Starling28 equation when y=1. Rigby29 has
suggested how to apply these formulas to nonconvex
particles. Using the exact Isihara expression® for the
second virial coefficient of hard dumbbells, one can fit
¥ from the equation

BZZ%(1+')/) (2 6)

and use its new value in the Boublik or Gibbons formulas.
If we integrate Boublik’s equation of state we get for the
free energy

2y +2)y + (¥¥/9 - 29y = 1)y%
BAfY = =T = >/3)

-(1-%4/9)In(1 -y).

2.7
Very recently, Nezbeda®! has proposed an equation of
state based on the RISM for HHD. This is given by

1 ay by?
Aoy TaA- Ay

BP/p (2.8)

with

_(9+13.5L*+6L**+0.5L*Y)
T 3(1+1.5L*-0.5L*9) ’

(3+4.5L*+21*% -0, 5L*)?

b= 3AT 1. 507 —0.5L°)

When compared with MC simulations® it shows very
good agreement, especially in the range of reduced

5763

TABLE I. Comparison of (P/pkT) (Nezbeda)
with MC results for hard homonuclear dia-

tomics.?*

L*=0.6 v (P/pkT)y (P/pkT)yc
0.1047 1.65 1.64
0.2094 2,84 2.84
0.3141 5,14 5.02
0.4188 9.92 9.24

2Values taken from Table II in Ref. 24.

densities p*=10. 2 to 0. 6 which we examine and exhibit
in Table I. Integrating Eq. (2. 8) we obtain for the free
energy '

N a bly '-’é') ( ¥y )
So=moyta o NS

Alternative to these analytical formulas, use of “effec-
tive” hard-sphere diameters could be made employing
the blip method along with the PY or CS equations of
state. However, as discussed in Ref. 24, the Nezbeda
equation appears to give good results and has the great
advantage of its analyticity.

(2.9)

The term BAf,Q2 which appears when a nonspherical
reference system is used, is given by:
2
8710 =58 [ d1azgun(n, 202001, 2) . (2. 10)

In the above expression, guyp (1, 2) is the pair distribu-
tion function (pdf) of HHD and di=d7 dQ,.

A way to handle this integral is to make an expansion
of the pdf in spherical harmonics. *° Despite the poor
convergence of this expansion and the attendant ques-
tions concerning whether a truncated series can rea-
sonably represent the total function, * several quantities
of interest can be unambiguously expressed as integrals
over the coefficients of this expansion. If we know these
coefficients, either from compuier experiments or from
some model, we are able to calculate thermodynamics
functions, among them BAf,Q%

The expansion of an arbitrary function X (ry,, Q4 Q)
of the configuration of linear molecules can be written as

X(rl2’ Ql’ ‘Q2) = 47'2 Xll'm('r)Ylm(gls ¢1)YI'-m(92’ (Pz) ’

1'm

(2.11)
where Y,,(0,, ¢,) are spherical harmonics and the coef-
ficients in the expansion depend only on the distance be-
tween molecular centers. If we expand the pdf and take
into account that for the quadrupole —quadrupole interac-
tions the only coefficients which are not zero are uyg(#),
t921(¥), and ug,(r), Eq. (2.10) takes the form,

& (”

4
BAF,Q :?ﬂ Bo* =5 (3g35° ()

HHD

HHD
—-4g991

dr*
() + g32z (7] pors (2.12)
Although there is no available approximation theory for
the g, (), MC simulations'® have been done recently
for HHD. Their data are presented in terms of the
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Zirm(r) and therefore it is an easy task to make the nu-
merical integration and obtain SAf,@% The blip tech-
nique has also been used for this problem®'!® and we

will show a comparison with it in the next section.

We can thus calculate the first-order term in a
quasiexact way if we have very precise MC data as will
be discussed in Sec. III. We turn next to the terms of
order @* and higher, using the formulation given by
RLS® for quadrupolar hard spheres, but with an effec-
tive diameter calculated in our own way, as will be de-
scribed below.

The BAf,QY, BAf,,,Q° are given by integrals over the
pair distribution function and the two body quadrupole -
quadrupole term of 0(@*) and O(QG), respectively, while
BAfst involves an integration over the three particle
correlation function and the three-body triple quadrupole
potential. We refer to Refs. 5 and 6 for detailed analy-
sis of these terms. They are functions of x=pd® and ¢
=kTd/Q% where d is an effective hard-sphere diam-
eter, which we determine according to our own pre-
scription rather than follow RLS in the use of Sandler
blip-function calculation. In order to facilitate con-
trolled comparison with the RLS results, our method
of calculating Af,, Af, ,, and Af; is otherwise identical
to theirs. Their expressions are’

BAfQ =~ 8.79651 5 (x)
0.1397x + 0. 0308x2

1510

HS( \__ 1
Lo =1+=770 37402« (2.13)
BAf, ,@%° = 1. 8465 I'5 (x)
HS(.y 0. 0926x
L) =H+ T -5 737105 + 0. 1445477 (2.14)
BAS Q% = 0. 0833x% + 0. 2011x° + 0. 2262x*
+0.1603x° + 0. 08724° + 0. 0039x7 . (2. 15)

Reference 6 gives polynomial expressions for Af, and
Af,,, that are negligibly different numerically but some-
what more conveniently manipulated, as well as a very
slightly more accurate polynomial for Af;. We recom-
mend the use of these improvements in future work but
note that their use here makes no perceptible changes
on the scale of our figures. These alternative expres-
sions are®

IS —140.1397x+ 0. 0826x%+ 0. 0310x°

+0. 0124x" — 0. 00074° (2.18)
155 = 41 0. 0926x + 0. 0681x% + 0. 0359+
+0.0152x% + 0. 01174° (2.17)
BAFQ%% = 0. 0833x%+ 0. 2011%° + 0. 2262x*
+0.1604x° + 0. 0951x° - 0.0032x" .  (2.18)

We obtain our values of an effective diameter by
equating the isothermal compressibility K, of the HHD
and an effective hard-sphere fluid:

(0RTK)uno = (pkTKr)us -

Note that this equation can be rewritten as

(2.19)

a
Jo {eXP[—BWHHD(I:Z)] yuno(l, 2)

ae

'eXP‘.—'Bfuns(V)]st(’l’)}drZ;ZO ’ (2.20)
where

¥(1,2)=g(1, 2) exp[ - Bu(1, 2)] (2.21)
since
(pkTK p)unp = 1 + 47p* f (gD () —1)p*2dy* (2. 22a)

0
and
(pRTK p)ys =1+ 4np*f (%) =12 dr* (2. 22b)
0

where

ggo%n(r):fgﬂﬂo(l, 2)dQ/4am . (2.23)
If

yum (1, 2) = yps(v) (2. 24)

one then obtains the blip expression for the effective
diameter

jo (exp[ - Buxrp(1, 2)] - expl - Buus(#))

Q
xyﬂs('r)dr d—:O . (2.25)

47
Equations (2. 19) and (2. 25) give similar results when the
density is small but at larger densities the predicted
diameter will be quite different.

If we take the PY isothermal compressibility for hard
spheres, Eq. (2.22b) is given by

1 -n?

et (2. 26)

(pkTK r)us =
where c=7/ 6pd3. This is a very good approximation,
especially for the range of densities we are dealing with
in this paper. Using Eqs. (2.26) and (2. 19) we obtain
the equation

al ~4a3+ (6 -4c)a’-4(l+c)a+{l-¢)=0, (2.27)

where ¢ = (0FTKp)uup, @=T*v, T*=7/6po°, and v
={d/ o). Solving this equation we have that v is given by

v=m'(1+vVec—-Ve+3JC ).

Therefore an effective diameter can be calculated ana-
lytically if we know the isothermal compressibility for
the nonspherical system. This in turn, can be derived
from an analytical equation of state or from knowledge
of giliP(y) from MC data. As we shall see, only the
first alternative is quantitatively useful.

(2. 28)

i, NUMERICAL RESULTS

We make the computations for two values of the pa-
rameters L*, o, and @ which correspond roughly to
nitrogen and chlorine. These values are shown in Table
II. This choice allows us to make a comparison with
other results in the literature. We examine each term
in the expansion and give its contribution to the total
free energy.
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TABLE II. Parameters for the HHD
model,

L* O'(A) Qlesu cm?)
N, 0.4 3.0 ~0.52%107%
Cly 0.6 3.6 6.14x107%8

The results obtained for BAf, using the Rigby-Boublik
(RB) [Eq. (2.7)] and Nezbeda [Eq. (2.9)] formulas are
shown in Table III. Also shown are the Sandler blip
results. 1 It can be seen that Nezbeda equation predicts
a larger free energy at higher densities than the other
two expressions. At low density it gives a smaller val-
ue of gAf,. Nezbeda’s equation for the pressure is in
better agreement with computer simulations®! and there-
fore it seems reasonable to use the SAf; given by Eq.
(2.9). In Fig. 1, BAf, is plotted against y for each model
and the above comments can be applied when we com-
pare this curve with the one showed by RLS using an
effective diameter with the CS equation. The contribu-
tion of O(Q?) was calculated using MC results'* for the
g 2(r) an integration Eq. (2. 12) with Simpson’s rule.
The characteristics of the MC data are summarized in
Table IV and the results for the free energy term
BAf,@* are shown in Table V for temperatures corre-

+3 T 7 T
*= 0.4 /

5755

TABLE III. Comparison of the several expres-

sions for the excess free energy SAf, of hard

diatomics.
Rigby Nezbeda

o* y=pV Eq. 2.7 Eq. (2.9* Blip'
L¥=0.4 (N

0.2 0.164 0.813 0.511 0.7643

0.3 0,246 1.394 1.572

0.4 0.328 2,139 2,749 3.0277

0.5 0.411 3.211 4,233

0.6 0.493 4,727 6.305 5.2541
L*=0,6 (Cly)

0,2 0.094 0,025 0.976 1.298

0.3 0.188 1.820 2,292

0.4 0.282 2.950 3. 805

0.5 0.375 4.649 6.191

0.6 0.469 6,738 9.862 6.956

sponding to the critical point, boiling point, and melting
point of each substance. One observes that for the mod-
el with L*=0. 4 at p*=0. 6 the two sets of MC data give

free energy values which differ ~20%. As the contribu-
tion to the free energy by integrating BAlez in the inter-
val 7* =3 to »*=4 is very small, this discrepancy indi-

cates that already at intermediate densities (p*~0. 5),

+2

Q =152x10"%gsy-cm? /'

80t

N2

+iF / -

L T — 126K
\\ \\\\
N 77.4K
N
N
1 N
- N .
N
\\
N - ——BAfQ?
AN ----Bat?
\,
\\
-2+ \\ —
\
\
\\
20.7K
N\
\,
-3 1 ! N 1
o.l 0.2 03 04 0.5
y
(a)

+4 T 7T T
*-06 '
Q:6.14x10%8esu-cm?;
/ Cly,
+3 I/BAfO -t
/ — BAf,Q2
/ ~——— BAFP
rei- / -
/
,/
+ / -
‘ ’ oI72K
°%j 0238.6K
0417
i X
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\\\\ \\\\ .~
-l \\\ \\\\ ]
~ -~
\\\ \\\
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0.l 0.2 0.3 0.4 05
y
{6/

FIG. 1. Free energies of homonuclear hard diatomics with an embedded quadrupole according to Eq. (1.2). The parameters
L* and @ correspond to N, [Fig. (a)] and Cl, [Fig. (b)] and the temperatures are the experimental critical point, boiling point,
and melting point for N, and Cl,, respectively. See discussion in the text.

J. Chem. Phys., Vol. 70, No. 12, 15 June 1978

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5756 Martina, Stell, and Deutch:

TABLE IV. Characteristics of the MC data for
homonuclear diatomics used in the evaluation of

BAA .
No. of No. of Cutoff of g;s,, (#)

p*  particles configurations in units of ¢
L*=0.4

0.2 256 108 3

0.3 256 108 3

0.4 256 108 3

0.5 500 5x108 4

0.6 256 108 3

0.6 500 5x10° 4
L*=0.6

0.2 256 108 3

0.3 256 108 3

0.4 256 108 3

0.5 256 108 2

the MC data must be obtained from simulations with a
large number of particles and configurations. We ex-
pect this to be particularly important for the molecules
that are most highly elongated (e.g., L*=0.6). At
somewhat lower densities, (p*<0.4) the simulations
with smaller samples should be reliable. However, even
if we assume a decrease of 10% in the values shown in
Table V, they are still larger than those obtained with
the blip method, **!* at least for the densities studied in
this paper. This shows how important is to use an ac-
curate nonspherical pdf to obtain reliable results for the
contribution of BAf1Q2 to the total free energy. As we
mentioned before, we calculate the free energy only up
to p*=0.6, because the lack of MC data for HHD at high-
er densities prevents us from making the evaluation of
BAf,Q2 there. This term is most important at low tem-
peratures where it is of the same order as the difference
between BAf, and BAfT.

To calculate the effective diameter for the Padé ap-
proximant we cannot use the MC gte>(») to obtain the

TABLE V. Free energy for quadrupolar hard diatomics.

Free energy of hard quadrupolar diatomics

1.30 T T

1.251
d/o

.20

115

110 L 1

0 0.2 04 06
y

FIG. 2. Values for the effective rigid-sphere diameter 4 used

to obtain ﬁAfP according to Eq. (3.1) as function of the re~
duced density y=pV.

isothermal compressibility because we must have

‘gea(r) accurately calculated at distances much larger

than 3o or 40 in order to avoid large uncertainties due
to the factor (gt () — 1) which appears in the integral
of the compressibility. But reliable MC results are not
available for »>40. Therefore we make a self-consis-
tent calculation using the equation of state given by
Nezbeda. The diameter is shown in Fig. 2. When com-
pared with the effective diameters predicted with the
blip method, we notice that at low densities a larger ef-

p* y pd® BAfY Baf; @ Bar¥
L=0.4 (Ny
T=20.7 T=77.4 T=126.1 T=20.7 T=77.4 T=126
0.2 0,1642 0, 3662 0.5113 0.104 0,028 0.017 -0,8283 -0,0678 —0.0261
0.3 0.2463 0.5619 1.5717 0.210 0.056 0.035 —-1.635 -0,1393 —0.0539
0.4 0,3284 0.6324 2.7486 0.433 0,116 0.071 —2.693 -0, 2389 —0.0932
0.5% 0.4105 0.7590 4,2327 0,447 0,119 0,074 - 3,987 —0.3692 —0.1451
0.6 0.4926 0.8850 6.3052 0,851 0,223 0,140 - 5.506 —0.5328 -0.2112
0.62 0.4926 0.8850 6.3052 0.676 0.181 0.111 - 5.506 —-0.5328 —-0.2112
L=0.6 (Clp)
T=172 T=238.6 T=417 T=172 T=238.6 T=417
0,2 0.0938 0.4127 0.9760 0,158 0.114 0.065 ~0.4274 —0.2300 —-0.0784
0.3 0.1877 0. 5665 2.2915 0,1385 0.277 0.159 —0,8836 —0.4811 - 0.1663
0.4 0.2815 0.7111 3. 9050 0.653 0,470 0.270 -~1.508 - 0.8313 —0,2917
0.5 0.3753 0.8254 6.1905 0,686 0,493 0.283 —-2.302 - 1.2855 —(0.4585
0.6 0.4692 0. 9447 9.8621 -3.273 -1.8511 —0.6717

2500 particles.
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TABLE VI, Free energy contribution of
order Q“ and Q6 from perturbation theory
and the Padé approximant for two tempera-

tures.

y BASKQ! paf® park?
C T=20.7, L=0.4 (Np)

0.164 -1.0014 -0.7921 —0.8283

0. 246 —-2.0924 - 1.507 —-1.635

0.328 —3.6619 —2,345 —2.693

0.411 -5.7835 -3.177 - 3.987

0.493 - 8.5499 —3.824 ~5.506

T=172, L=0.6 (Cly)

0,094 -0.4876 -~ 0.4189 —0.4274

0,188 -1.056 - 00,8499 - (.8836

0,282 —-1,897 -—1.408 -1.508

0.375 —-3.062 -~ 2,052 -2.302

0.469 —-4.617 -2,721 -~3.273

fective diameter is predicted, but it diminishes faster
as the density is increased. At p*~0. 6, it is about
15% smaller than the blip diameter. That indicates

the same trend shown in the free energy, i.e., the blip
method does not describe in a satisfactory way the cor-
relation of nonspherical molecules at these intermediate
densities.

The effective diameter thus obtained was used to cal-
culate Af,Q! [Eq. (2.13)], BAf,,,@° [Eq. (2.14)], and
8A£;Q° [Eq. (2.17)] and the PA

P_ 6 _13(Af2.LQ4'*'Afa(&);s)]-1
BAfT = BAfLRQ [1 85,07 .

The PA free energy is shown in Table VI and gAf? is
plotted in Fig. 1. The PA value is about 10% more nega-
tive than indicated by the cruder estimate of RLS.

3.1)

It is clear that the PA must be used at lower temper-
atures and higher densities. This is seen from Table
VI where already at p* =0. 6 there is a large discrepan-
cy between the PA and BAf®’, where

BAFS = BAFQ' + BAS,, Q8 + BAfQE . (3.2)

At higher densities ,BAf‘S’ differs noticeably from
BAf® and therefore is not able to yield satisfactory re-
sults for the total free energy if used in place of BAfF
in Eq. (1.2). On the other hand, use of only the gAf,@*
term in place of BAfT appears to yield results that are
much in error, even at lower densities.

IV. CONCLUSIONS

The results obtained in the preceding sections have
made clear that to have a reasonable theory for the free
energy of nonspherical multipolar molecules, the @2
contribution must be calculated using an accurate dis-
tribution function for the reference system. Also im-
portant is a correct account of the free energy of hard
diatomics. Although the Nezbeda equation gives good
results for the function up to the densities we have ex-
amined in this paper, the highest of which approaches
typical liquid densities, it becomes increasingly un-
reliable at higher densities. Thus it is probably accept-
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able—but just barely—as a representation of reference-
system thermodynamics in the liquid state, and an ex-
pression of increased accuracy would be welcome.

Due to the complexities of the computation for higher
order terms, the PA was calculated using an effective
diameter. With the analytic expression used here
(equating isothermal compressibilities of the HHD and
the effective HS systems) our results are about 5% (high-
er densities) to 10% (lower densities) larger in absolute
value than the preliminary free energy contribution of the
PA given by RLS. There is no MC simulation for the
full quadrupolar system and therefore we cannot asses
in a definitive way the exactness of our results. Also,
simulations for the giga(r) of the reference system are
lacking for densities higher than p*=0.6. Both simu-
lations must be made if the results appearing in this
paper are to be assessed in a definitive way.

An extension of this method to other systems can be
easily made if only permanent multipolar forces are con-
sidered. In particular, particles with heteronuclear
hard cores can be treated with little modifications using
the techniques of Ref. 6 and the dipole contribution to
the free energy can be examined. The effects of polar-
izability can also be included using the results of Ref.

6. This will be the subject of a future study, along with
the effects of moderating the multipole terms with ap-
propriate switching functions as » -0,
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