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Stochastic Liouville equations are used to study the relaxation behavior of position and orientation
correlation functions of a fluid particle, if the second-order velocity or angular-velocity correlation is
given. Two assumptions for reducing higher-order (angular) velocity correlation functions to two-point
correlation functions are compared, the Gaussian assumption and “the assumption of vanishing higher-
order G-cumulants.” In the case of translation both assumptions predict the same diffusion constant; only
the latter one yields a Burnett coefficient that diverges in accordance with microscopic results. For
rotational diffusion the second assumption is studied and compared with results obtained by Pomeau and

Weber on the basis of the first assumption.

I. INTRODUCTION

The discovery of “long-time tails” for the velocity
autocorrelation function of fluid particles has initiated
much theoretical study of the long-time decay of corre-
lation functions.! One consequence of these long-time
tails is that the translational diffusion constant and the
Burnett coefficient do not exist in two and three dimen-
sions, respectively.

In this paper, we use stochastic differential equations
to determine (a) the decay of position correlation func-
tions if the long-time behavior of the velocity autocorre-
lation function is given; (b) the decay of orientation cor-
relation functions if the long-time behavior of the angu-
lar-velocity autocorrelation function is given.

Qur aim is to reproduce the results of the micro-
scopic theories and to present a framework for under-
standing these microscopic theories, The principal
thrust of the analysis is that the stochastic-differential-
equation formalism, combined with statistical assump-
tions about the behavior of certain time derivatives,
may be reliably employed to predict the correlation
functions of interest and the associated transport coef-
ficients, The question of which assumption is the most
appropriate must be decided on the basis of the physics
of the system under consideration,

Kubo? has presented an atfialysis of stochastic Liou-
ville equations based on various cumulant expansions,
Each expansion involves a different prescription for
time ordering and implicitly adopts an assumption about
the relevant microscopic physics,

In Sec. II, two ordering prescriptions (F ordering and
G ordering) and the corresponding cumulant expansions
are defined and discussed. It is stressed that the ap-
plicability of F and G orderings depends on a physical
assumption about the best approximation for the higher-
order correlation functions,

In Sec, III, the Gaussian assumption and the assump-
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tion of vanishing higher-order G cumulants are applied
to the case of translation, The diffusion constant is the
same under both assumptions and agrees with micro-
scopic theories® in two and three dimensions; the Bur-
nett coefficient is zero under the former assumption,
whereas under the latter assumption it diverges in the
way predicted by microscopic theories. In Sec. IV, ro-
tational diffusion is discussed. The two-dimensional
case is analogous to the case of one-dimensional trans-
lational diffusion. In the three-dimensional case, the
F-cumulant expansion under the Gaussian assumption
has been discussed at length by Pomeau and Weber. *
Their result is discussed and compared with the G-cu-
mulant expansion under the assumption of vanishing
higher-order G cumulants, which leads to a simpler and
physically more attractive result,

li. F ORDERING AND G ORDERING

Our basic stochastic linear differential equation is

u(f) =A(tu(d) , 2.1)

where A(#) is a time-dependent stochastic operator,
which we assume to be zero on the average

(Alt)=0. (2.2)

As the initial condition, we choose u(0)=u,, a nonfluc-
tuating quantity. Then the solution of Eq. (2.1) is given
by

u(t) =Uy(Hy, , (2.3)

with

t t t1
U(t5[1+)t dty Al) +2% | dt th(t)A(t)-l—---]
x(2) fo LAty j; 1£ 2 Alt1)AL,

t
Eexp0x£ Alt)dty . (2.4

This defines the ordered exponential exp,, which is
identical to the usual exponential exp if A{#;) and A(f;)
commute for arbitrary # and f{,. As has been stressed
by Kubo, % there are several ways to define cumulants
for this problem. In general, a cumulant expansion is
given by
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(U(t)y = exPp["Zjl: AT [

;tlztzau-;tnao

x (1 2°°-n>P] )

dtdty - - - dt,

(2.5)

where P denotes a certain ordering prescription for the
exponential. The cumulants (1 2- -+ x), (which depend
on fy, ty, ..., t, are found by expanding the ordered ex-
ponentials and equating terms of the same order in A.
We shall concentrate on two of Kubo’s ordering pre-
scriptions, which we call F ordering and G ordering:
(a) If we write

= (a(e) = F()lt) , (2.6)

the average of u(¢) is given by

() = [1+ fo tdt;F(t1)+ fo tdti J; K dtzF(tl)F(t2)+---] u,

t
= [eprfo F(t')dt'] u,,

which defines exp,. This ordered exponential reduces
to the usual exponential exp if F(#) and F(f,) commute
for arbitrary {; and {,, respectively. The associated
cumulants are found by [ef. Eq. (2.4)]

2.7

(U =exp F[Z A" f dtydty -+ dt,
t=ty=r 00 28,20

n=1

x(lZ---n}FJ. (2.8)

For example [cf. Eq. (2.2)],
Dyp=(=0, 12),=12), (12 PHp=(123),
(1234,=1234H-12):84H-(13):2 4%,
-1 92 3, (2.9)
where (1 2«-- m) =(A(t)A(t) -+ - A(t,)) and t= ¢, ...

=2t,20.

(b) If the differential equation for {(u(t)) is written as

9 t
2 y= [ ar 6t )y , (2.10)
0
the average of u({) is given by
(u(t)) = [1 + f dtydt, G(tb tz)
t=t)=ty=0
+ f dtydtydtsdt, G4y, t,)G(1,, t4)+---]uo,
t>11>---;t4>0
t t4
= [expc f dtl f dtz G(tt, t2):| Uy, (2. 11)
0 0

where exp; is by definition the G-ordered exponential
which does not reduce to the usual exponential if G(¢, )
commutes with G(¢;, ¢,). The G cumulants up to fourth
order are

U=, A12e=12), 123),=(123),
(1234),=(1234) (12,3 4,. (2.12)

The applicability of F and G orderings depends on what
is the best approximation for the higher-order correla-
tion functions, The answer to this question cannot be

obtained from mathematics, but must be found in the
physics of the problem. If A(#) and A(¢;) commute for
all times f; and ¢,, the assumption of a Gaussian process
implies that the F-cumulant expansion breaks off after
the second cumulant; in such a case, one must use Eq.
(2.6). If one assumes all higher-order G cumulants
vanish [(123--- 2n-1))=0; (123.-. 20)=(1 2)

(3 4y .+« ({(2n - 1)(2n))], one must use Eq. (2.10) with
G(ty, ty) = (A()A(L,)).

The two orderings differ in the way “overlapping”
pairs, triplets, etc., are dealt with, For example,

f i+ dt (123 4, —(12 3 4),)
t=tyBecez, 20

= dby»oe dt, ({1 3X2 9 +(1 92 3)) .
Ezg e =t,=0
(2.13)

If we define 7, as the correlation time of the pair cor-
relation function and « as the typical size of a fluctua-
tion A(t), then it is easy to see that, because of the time
ordering, the integral on the right-hand side of Eq.
(2.13) is of the order a(at,)’. This has to be compared
with the integral over the first nonvanishing cumulant

f dtydty (1 2) = 0[alat,)] . (2.14)

tz«tlatzao

Since a7, may be taken as a smallness parameter in
many situations, the difference between the fourth-or-
der G cumulant and F cumulant is often very small,
Some care must be taken, however, in the generaliza-
tion of this argument to the whole cumulant expansion
because the number of terms on the right-hand side of
the equivalent of Eq. (2.13) for cumulants of order » in-
creases very rapidly as » increases.? Van Kampen®
argues that Eqs. (2.6) and (2.10) cannot be distinguished
unless there is specific knowledge about terms of order
alar,)?.

11l. TRANSLATION

The theory of stochastic Liouville equations is dis-
cussed by Kubo.? Here we look at the simple case of a

_particle whose movement is totally determined by a

stochastic velocity v(¢), which has a zero average. The
Liouville equation for such a system is

3

E-L;f(r, ) ==v(t)- vf(r, 1), (3.1)
where f(r, #) is the distribution function. The stochastic
operator A(f) consists of a stochastic part —v(¢) and an
operator part (the gradient operator v). For symmetry
reasons, odd moments of the velocity and hence odd
moments of A vanish, Because of the fact that A(#) and
A(t') commute for every ¢ and ', the ordered exponen-

tials exp, and expy reduce to the usual exponential exp.
Therefore, the structure factor

S(k, ) = {expfik - [r(#) - »(0)]}

~ (exc- f 'v(t')dt']>

is the Fourier transform of {U(r, #)} [cf. Eqs. (2.3) and
(2.4)]. The discussion in Sec. II suggests the following

(3.2)
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two approximations for the higher-order correlation
functions:

(a) All F cumulants vanish except (1 2),., This is the
usual Gaussian approximation. It leads to
——(f(r t>_f at’ (Y flr, 9 , (3.3)

where ¥(£) = (v(t) - v(0))/d for a d-dimensional system.
If we define
¢
A= f ar’ y(t') (3.4)
0

then the (lowest-order) diffusion constant is given by the
limit of A*¥(f) for t— <o, if this limit exists, In three
dimensions, the velocity autocorrelation function decays
like {¥? so that the limit exists. In two dimensions,
A®(p) diverges for large f; the exact form of the pre-
dicted divergence depends on the theory one uses for the
long-time behavior of y(f). According to hydrodynamic
theory, () ~t", so that A(t)~Int; according to trilin-
ear mode-coupling theory, & ¢(#) ~ (¢1n#)™ so that A®()
~1nln¢; finally, if one includes all multilinear modes, "
() ~(+vInf)™ so that A®(f) ~vIn? (all for long times).
Higher-order diffusion coefficients, like the Burnett
and super-Burnett coefficients, are zero in the Gaussian
approximation,

(b) Let us now assume that all G cumulants vanish
except (1 2).. Then [cf. Eq. (2.10)]

5 t

(e, = [t - 99K te, 1) (3.5)
0

After a Fourier transformation in space and a Laplace

transformation in time, we find

S(k, s) =[s +y(s)k?]™ (3.6)

The generalized diffusion coefficient (s) in Eq. (3.6),
i.e., y(s), is only a function of s and not of k. Never-
theless, as has been stressed by Keyes and Oppenheim,3
the Burnett coefficient is not necessarily zero in this
case., We calculate the diffusion constant and Burnett
coefficient from the second and fourth moments of the
displacement x(¢), defined by

)= [ flr, i xdr . (3.7
0

From Eq. (3.7), one easily checks that (8/88)x(¢) =v,(1),
so that

a ¢ ’ ’

Exz(t)=2_/; v (v (t)dt (3.8)
and consequently

26 =280 . (3.9)

This result does not depend on any assumption about
correlation functions and therefore holds as well in the
case of vanishing higher-order F cumulants as in the
case of higher-order G cumulants. Note that, only in
the former case, is A®(#) equal to F(¢) and that only in
the latter case is A®(#) equal to [§G(t - t')dt’, so that in
general F(t=)#G(s=0). 2
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In the calculation of the fourth moment, we use the
fact that the fourth-order G cumulant vanishes ({1 2 3 4)
=(1 2){3 4)) to derive

—(x (1)) =12 f ar' Pt - ' W () . (3.10)

If the Burnett coefficient exists, it is found as the limit
for infinite time of

AN =[3GHN? - () ]/(240) .

In a straightforward way, it is found that, in three di-
mensions, [P(¢)~¢%?] a“(¢) is given by

AP =CVT (tlarge), (3.12)

with C{>0. This result agrees with Ref. 3, though the
near cancellation does not occur, because in the theory
presented here, the generalized diffusion coefficient
does not depend on k, so that the contribution to the
Burnett coefficient from the 2 dependence of the diffu-
sion coefficient D(k, s) is equal to zero. Thus, the dif-
fusion constant in three dimensions is finite whereas the
Burnett coefficient does not exist. In two dimensions,
hydrodynamic theory [4(2) ~ 1] leads to

AW(f) == Cytlnt +Cyt (tlarge),

(3.11)

(3.13)

with C,, C3> 0. The term proportional to ¢ does not oc-
cur in the mode-coupling calculation by Keyes and Op-
penheim; in their result, a similar term is cancelled
by a contribution from the k-dependent part of the gen-
eralized diffusion coefficient, As explained above, the
present theory cannot reproduce k dependence.

IV. ROTATION

In the theory of rotational diffusion, there is an essen-
tial difference between two and three dimensions. As
we shall see, the operators A(ty) and A(¢,) commute in
two dimensions whereas they do not in three.

A. Rotational diffusion in two dimensions

In two dimensions, the stochastic rotation of a disk
around a fixed axis is formally equivalent to stochastic
translation in one dimension, The Liouville equation
for the distribution function f(¢, #) is

9
5 /(6 1) =

where ¢ is the orientation angle of the disk (in the plane
of the disk) and where w(f) is the fluctuating angular ve-
locity which we assume to be zero on the average., In-
troducing the correlation function ¥(f) = (w(H)w(0)), we
find

-w(t)3 f(¢>, f, (4.1)

2o, m= [ ar ) s, (4.2)
if all F cumulants except ¥(¢) vanish, and
2 o th= [ a'shi- t)8¢2<f(¢>, nar (4.3)

if all G cumulants except () vanish, For two-dimen-
sional rotational diffusion, two predictions of the long-
time behavior of () have appeared in the literature.

From Messenger’s® calculations for a cylinder rotating
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about a fixed axis, one would conclude ¥(z) ~t™. This
would lead to a logarithmically diverging A‘*)(#), so that
the rotational diffusion constant does not exist. Berne’
reports ¥(£) ~ ™52 for rotational diffusion of a disk in a
two-dimensional fluid. If that is the case, the diffusion
constant is finite,

B. Rotational diffusion in three dimension

In three dimensions, the Liouville equation for rota-

tional diffusion is
2@, ) =~w() - LA, 1), (4.9)

where © is a unit vector fixed to the sphere and where
L=Qx(8/3Q) is the angular-momentum operator. Now
the operators A(t;) and A(t,)[ A(t) =w(f) - L] do not com-
mute at different times ¢ and ¢,, so that the F-cumu-
lant expansion does not break off after the second cu-
mulant if one assumes the Gaussian approximation for
higher-order velocity autocorrelation functions. For
example,

1 o
A234,-1534+1534-1352-1353, (s

where the horizontal brackets indicate the pairs that are
correlated. Because of rotational invariance,? F cu-
mulants do commute, so that we may replace exp, by
exp.

The F-cumulant expansion for rotation has been stud-
ied extensively by Poneau and Weber.* They show that
the terms in this expansion are finite if the angular ve-
locity correlation function #(#) [4(#) = (w(#) - w(0))/d] de-
cays faster than 1”2 for large ¢{. They calculate orienta-
tion autocorrelation functions for both small and large
at,. They find a correction to the Debye equation of
diffusion on the unit sphere which is due to F cumulants
of order 8 (and higher). The Debye law for the corre-
lation function of the autocorrelation function of asso-
ciated Legendre polynomials is

(1[0 . ()
=08,4:0 e €xp[= 11 +1)D], t>7,, (4. 6)

where the rotational diffusion coefficient may depend on
(at.)? but not on I. Pomeau and Weber do find an I-de-
pendent term in a calculation where (f) is assumed to
be of the form y(t) =’ exp(- ¢/7,). Their result is

g1(t)= (7, [00)]r ][]

= exp{— HI+1) [(oz-rc)2 +3(at,)t + 112—(ot~1-c)6

17 1
+ ﬁ(oz'rc)8 - §(a'rc)sl(l +1)+ > :]} , 1T,

4.7

Here we shall investigate the consequences of the as-

sumption of vanishing higher-order G cumulants, This
assumption leads to
') ]
5@, )= f ar’ y(t - )L fQ, t) . (4.8)
]

From Eq. (4.8), one finds that g,(¢) obeys a similar

equation, which after Laplace transformation reads

gi(s)=[s + N+ D] . (4.9)
Thus, the Debye result is generalized to allow for fre-
quency dependence of the rotational diffusion coefficient
and no anomalous [ dependence occurs, A similar gen-
eralization to frequency dependence was found in the
case of translational diffusion.

It is useful to point out that the assumption of vanish-
ing higher-order G cumulants implies, for example,

(A(t)A()A(t)A(2))
=(AAL)ALAW)) (for ti> 1>+ >1), (4.10)

which does not affect the order of the operators

A(y), ..., A(t)) and hence is independent of commutation
properties. The assumption of vanishing higher-order
F cumulants would imply that higher-order correlation
functions, when reduced to pair correlations, are can-
celled by pair terms where noncommuting operators oc-
cur in a different order. Therefore, in the case of a
noncommuting stochastic operator, the assumption of
vanishing higher-order F cumulants is not physically
acceptable, If the Gaussian assumption is employed in
conjunction with F ordering and a noncommuting sto-
chastic operator, the F expansion does not terminate
after the second-order F cumulant.

V. CONCLUDING REMARKS

We have shown how the formalism of stochastic dif-
ferential equations combined with assumptions about the
properties of the random operator may be employed to
relate conveniently the long-time behavior of (angular)
position correlation functions to the associated velocity
correlation functions. The stochastic agssumptions are
formulated in terms of cumulant expansions accompanied
by different ordering prescriptions as suggested by
Kubo., The formalism is simple and reproduces the es-
sential results of previous analyses for the correlation
functions pertinent to both translational and rotational
diffusion,

Most importantly, our analysis of three-dimensional
rotational diffusion demonstrates that the discrepancy
with the Debye law found by Pomeau and Weber for
(Y 1m(8)¥;,(0)) is a consequence of F ordering combined
with the Gaussian approximation, If one adopts G order-
ing, the conventional Debye law is found at iong times.
Which ordering is correct depends upon a sSpecific mi-
croscopic physical model and the issue cannot be de-
cided by mathematics alone,

ACKNOWLEDGMENTS
One of us (J.M.D.) wishes to thank Peter Mazur and

Irwin Oppenheim for stimulating conversations that led
to this work.

J. Chem. Phys., Vol. 70, No. 7, 1 April 1979

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3208 H. Boots and J. M. Deutch: Translational and rotational diffusion

IFor a review, see J. R. Dorfman, in Fundamental Problems "N. G. van Kampen, Physica (Utrecht) 74, 215 (1974).
in Statistical Mechanics III, edited by E. G. D. Cohen 1. A. Michaels and I. Oppenheim, Physica (Utrecht) A 81,
(North-Holland, Amsterdam, 1975). 522 (1975).
’R. Kubo, J. Math, Phys. 4, 174 (1963). "H, H.-H. Yuan and I. Oppenheim, Physica (Utrecht) A 90,
3T. Keyes and 1. Oppenheim, Physica (Utrecht) 70, 100 1(1978).
(1973). 8T, J. Messenger, thesis, Harvard University, 1973.
4y. Pomean and J. Weber, J. Chem. Phys. 65, 3616 (1976). B, J. Berne, J. Chem. Phys. 56, 2164 (1972),

J. Chem. Phys., Vol. 70, No. 7, 1 April 1979

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



