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An approximate expression is presented for the rate coefficient k to an embedded active site. The site is
located at a depth (sR) in a hollow channel whose sides are located at the polar angle 8, in a sphere of
radius R. The result is k (8y,s) = 2@ DR)[1 —cos8,][(1—5)/s +n(cosfy)]~!, where D is the diffusion

coefficient and n(x) is given as a series of Legendre polynomials.

I. INTRODUCTION AND SUMMARY OF RESULTS

It is well known that in many enzymes the active site
where the attachment of the substrate takes place is
tucked inside of the enzyme.! In order to reach the ac-~
tive site, the substrate molecule must diffuse into the
structure in the inert region of the enzyme. The usual
theoretical studies of enzyme kinetics do not consider
the complications arising from this fact.

In the simple theory due to Smoluchowski,? the en-
zyme is modelled as a sphere with its reactivity homo-
geneously distributed over the surface. Somewhat more
realistically, Alberty and Hammes,® Solc and Stock-
mayer, * and Kuo-Chen and Shou-Ping® have considered
a spherical geometry where only part of the surface is
reactive (see Fig. 1). Here we consider a somewhat
more complicated situation where the active site is a
small spherical cap buried inside an inert sphere (Fig.
2). We seek an estimate of the difference in reaction
rates for the two models (Figs. 1 and 2) in order to ob-
tain an impression of the effect of an active site which
is buried in the interior of the enzyme.

The model assumes the diffusion of pointlike “sub-
strate molecules” to the active site in the enzyme to be
the rate-determining factor. Accordingly, our purpose
here is to isolate a single effect; the burying of the site.
Complications arising from the molecular structure of
the substrate, substrate-enzyme potential forces (wheth-
er electrostatic or van der Waals),**® hydrodynamic in-
teractions,’ and dynamical conformational changes of
the enzyme® are all ignored. Each one of these factors
may have a major effect on the observed rate. Thus the
analysis is restricted to circumstances where the over-
all rate of reaction is diffusion controlled. In addition,
we neglect the effect of overall rotation of the target
particle. The influence of rotation has been investigated
by Solc and Stockmayer* for the case of a surface site;
if the characteristic rotational diffusion time is compara-
ble to or smaller than the characteristic time for reac-
tion, one expects larger rates and weaker dependence on
site geometry than obtained here.

The salient results of our investigation for the diffu-~
sion-controlled rate to a buried reactive site are con-
tained in the approximate formula

k(6,, s)/[47DR] =% [1- cosg,] [ (I;S) +77(coseo)]-1,

(1.1)
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where D is the diffusion coefficient of the substrate
molecules, R is the radius of the target enzyme, §; is
the polar angle presented by the buried site that lies at
a radius (sR) within the enzyme (see Fig. 2). The func-
tion 7(cos§,) is

n(x) = l[(l—x)JrZ—l—————l——P" ()= Py, (x)] . (1.2)

2 o I+1
We note that this approximate formula has the following
sensible limiting behavior: (1) When 63—~ 7 one has a
uniformly reactive sphere of radius p =sR; since 7(-1)
=1, Eq. (1.1) predicts k(6,=7, s)=47Dp as expected.?
(2) When 6,—~ 0 one has no active site and k(0, s)=0 as
required. (3) For s =1 one has the case of a surface ac-
tive site for 0 <8< 4§, and the predicted behavior for the
reaction rate is

k(8,, 1)/[47DR] = 3[1 = cos8y]/n{cos8;).

This case closely resembles a limiting case (no rotation)
considered by Solc and Stockmayer,* who obtain, how-
ever, in place of 7(cosé,) the function 1'(cosé,)

(1.3)

1 1 1 [P, ,x)-P,, &)
! ==(1 =~ i I=1 121
U TR ¥ o) Dy vy .4
as an approximation to their numerical results. Fortu-

nately, the numerical difference between employing
either # or 7’ in Eq. (1.3) is insignificant.

SPHERE

Model I:
cap S is the active site, S, is the inert region of the enzyme

FIG. 1. simple sphere of radius a. The spherical
surface.

axis,

There is azimuthal symmetry around the vertical
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FIG. 2.

Model II:
S; is drilled which terminates in a spherical cap Sy of radius p.

in a sphere S, of radius R a conical duct

Sy is the active site, S; and S3 are inert. There is azimuthal
symmetry around the vertical axis. 6, is the openings angle of
the conical duct. By definition, s=p/R.

In summary, we propose that Eq. (1.1) can be em-~
ployed to estimate the diffusion-controlled rate of sub-
strate molecules to a buried site in a larger target mole-
cule. Since the model is idealized to contain only the ef-
fects of diffusion and many complications (such as those
mentioned above) are not included, the expression for
k(8y, s) should be applied to real enzymatic systems
with caution.

The remainder of this article is devoted to a presen-
tation of the approximate analysis that led to Eq. (1.1)
and illustrative results for k(6,, s) as a function of 4,
and s.

1. SPECIFICATION OF THE MODEL

We solvé the steady-state diffusion equation for the
local concentration ¢(r) of substrate particles

vi¢(r)= (2.1)
subject to the following boundary conditions
¢ = dywhen v - (2.2)
¢(r)=0at the active site (2.3)
E%: Oat the inert surface region of the enzyme
’ (2.4)

(here, 8/an denotes the normal derivative). In Secs.
II. A and ITI this boundary-value problem is solved for
the two models of Figs. 1 and 2 (to be referred to as
models I and II henceforth), Comparison of the results
shows that the rate in model II is substantially less
than that in model I when the angle §, is small.
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A. Sphere with external active patch {(model )

The Laplace equation (2.1) can be rewritten in terms
of an integral equation® for ¢ with the boundary condi-
tions (2.2)-(2.4) automatically satisfied

1 ,_ 1 8¢
4w lldr fr—r'] &’

1
fdrab er’!r 'l

This is solved by the following series of Legendre poly-
nomials P,(x)

had 141
¢('Va )= bo [1 - xZﬁfx(%)(%) P;(COS@)] ,

where the expansion coefficients f; satisfy the following
set of linear equations

¢(r)=¢o—

(2.5)

(2.6)

Z:;A,kfk=%law(90), (I=0,1,2,...). (2.7)
Here,

An=pt o 31—k = 1) ay(6) (2.8)
and

1x(8) f dx Py(x) Pylx). (2.9)

cosfg
It is readily verified that when 6,=7, f;,=0for /=1, as

required. Generally, Eq. (2.7) can be solved numer-
ically. In the numerical solution one must impose an

- upper limit on the dimension of the system N>=[, k. It

is not clear a priori whether the calculated ¢y (r) con-
verges smoothly to the correct result when N— « and
how large N must be to satisfy a certain convergence
criterion. We presently return to this problem.

The reaction rate k is proportional to the integrated
flux of diffusing particles over a surface o enclosing the
sphere

D ]
_¢‘ov/o' dr an

According to Gauss’ theorem this integral is the same
for any surface ¢ enclosing the reaction surface. If ¢ is
chosen to be a spherical surface with radius R >a, then
one finds

k=41Da f4(8,).

In Fig. 3, the reduced reaction rate R*=k/4nDa=f, is
plotted as a function of §,. The crosses and circles per-
tain to two different values for the Legendre cutoff pa-
rameter N; namely, N=10 and 30, respectively. It is
seen that as 6,7, k approaches the well known Smo-
luchowski result 47 Da.

(2.10)

(2.11)

At not too small angles (say, 6,=7/10) the variation
of k* with N (in the range of 10~30) is not large (less
than 20%), indicating that the algorithm is reasonably
stable, although the possibility cannot be excluded that
for much higher values of N the results would change
appreciably. However, at smaller angles one observes
increasing numerical instability. For example, at 6,
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K*(8,)
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FIG. 3. The reduced rate £* as a function of 6, for model I.

The circles pertain to calculations with N=30, the crosses are
for N=10. At small angles (dotted part of the curve) there is
a large uncertainty in the computed numbers.

=1/100, f5(8,) for N=10 and N=30 differ by a factor of
14. The occurrence of this instability is not surprising;
at the surface of the enzyme the function ¢(a, ) and its
normal derivative change sharply in the region around
6=86,. In order to represent this accurately with a Le-
gendre series, one needs a very large number of terms.

For small angles 6, a different approximation method
is obviously required. The well known sum rule for
Legendre polynomials

> 1+ PP, () =b(x —x')

1=0

(2.12)

makes it a simple matter to construct functions of ¢ that
vanish on a given interval and are finite elsewhere. For
example, a function that satisfies the condition that 8¢/

8r (a, 8)=0 for 8> 6, is

Z L+s T ( oo)(") - P,(cose)], (2.13)

I-O

o(r, 9)=¢o[

where 7 is as yet undetermined and a4(6,) is defined in
Eq. (2.9). Instead of attempting to find an exact solu-
tion which would satisfy ¢(a, 6)=0 for 0<6,, an approxi-
mate solution is obtained by requiring ¢(a, 8) to vanish

only at #=0 (i.e., at the center of the active site). This
implies that
7(6,) = Z——z ayo(8) = —((1 ~ cos6y)
7 2
+ZP1-1(°°590) P,.l(cosel)) (2.14)
I=1 l+ 1

It can be shown that this sum is rapidly convergent.
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From Egs. (2.6), (2.11) and (2.13) we obtain

k 1 (1 - cOSf?o)
4mDa” 2 n(6y)

k*= (2.15)
One finds numerically that ¢(a, 9), when averaged over
the patch, differs very little from zero, thus supporting
the approximation that determines 7 only from the con~
dition ¢(a, 8=0)=0. An estimate of the error introduced
by this approximation is provided by the quantity €(8,),
which is defined as
1
el6)=3 [ dcossla, 6), (2.16)
cosép

where for the normalization constant 91 we arbitrarily
take the integrated flux

1
m(90)=a/so dcés@(gg(—;:—e—)) .
cosdg rea

The quantity e(6,) varies almost linearly from zero to
0.04 in the range 6,=0 to §,=7/10.

(2.17)

In Figs. 4 and 5 we present respectively results for
7(6,) and k*(8,) for 6, =<7/10.

The small-angle approximation Eq. (2.15) has the ad-
ditional desirable feature of smoothly joining the large-
angle numerical results in the vicinity of 6,=7/10.
Moreover, the small-angle approximate result approaches

.20 —

7 (8g)

.08

.06 T

I Y N I O Y B
0] .02 .04 .06 .08 .10

8,/

FIG. 4. Plot of the function 1(8;) defined in Eq. (2.14) for 8,
=< w/10. Circles are calculated numbers, line is the best linear
fit.
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FIG. 5. The reduced reaction rate 2* as a function of 6; for
model I for small angles (6y=< 7n/10). Circles are calculated
numbers, line is the best linear fit.

the correct limiting value k*=1 at §,=7. Accordingly,
we may employ the small-angle approximation through-
out the entire range 0 = §, =7 without appreciable error.
In Fig. 6 the predicted values for k * vs 6, are plotted
for both the numerical approximation and the small-
angle approximation Eq. (2.15) in the region 7/10 =g,
=7, It can be seen that the approximation Eq. (2.15)
differs from the correct numerical result by less than
20% throughout this region.

At small angles, k* is approximately a linear function
of 6,. This might be expected on the basis of the Smo-
luchowski law k=4mDa, which shows that k is propor-
tional to the square root of the surface area for a homo-
geneous sphere,

The linear dependence of £* on §,, i.e., (area)? for
small 6,, could be a consequence of the simplification in
the boundary condition that requires ¢(a, 6) to vanish
only at §=0. The possibility of a quadratic dependence
of B* on 6, i.e., (area) for small 6, when the exact
boundary condition is asserted cannot be excluded. In-
deed, one knows from the work of Solc and Stockmayer4
for the case of “chemical” boundary conditions where
the combination [¢ + ¥(8¢/87)] is required to vanish on
the reactive patch, that k* is a linear function of area
for small 6, as expected. There may, however, be a
subtle change in functional dependence of & * on 6,, for
small 6,, as ¥~ 0, the pure diffusion-controlled case.

i11l. CASE WHERE THE ACTIVE SITE IS INSIDE
{MODEL 11)

The sum rule (2.12) may also be employed to con-
struct a more general class of functions which have a

vanishing normal derivative at S,. For the “outside”
solution (» =R) the following function has the correct
behavior at S, (see Fig. 2)

x had 1 I+l
G oue (7, 5):¢’0[1‘ Z cha“ wo%ﬁ(‘?) PI(COSG)] )

720 k=0
(3.1)
where the ¢, are as yet undetermined. We expand the
“inside” solution (p <% <R, 0<6=4§,) in terms of the
Legendre polynomials P;(cos78/8,) which form a com-
plete set on the interval [0, §,]. Furthermore, they
satisfy

8 mo

Y P, (cos—é;>
so that the boundary condition at S; is automatically
obeyed. If we choose

b7, 8)=0, ’Z:; b,l:(%)l _ (%)milﬂ (cosl;%),

then the boundary condition at S is also satisfied. The
unknown coefficients b, and ¢; can now be fixed by the
continuity conditions on ¢ and 8¢ /8 across the opening
of the tunnel. This gives rise to a set of coupled linear
equations for the b; and the ¢, which can be solved nu-
merically. Again, a cutoff parameter N>/, k must be
imposed. The resulting solution for the reaction rate is
found to be violently unstable against variations in N for
all values of the parameters 8, and s =p/R.

=0, (3.2)
8=60

(3.3)

In order to make progress we must again resort to ap-
proximation procedures. In analogy to Sec. II, we shall
use an approximation which is expected to give good re-

K (8,)

O T N S U S SO
o) 2 4 .6 .8 1.0
90/1r
FIG. 6. The reduced reaction rate £* as a function of 6, for
model I: comparison between “numerical” approximation

(same as in Fig. 3) and the small-angle approximation (curve
labeled approximate).
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FIG. 7. The reduced reaction rate k* as a function of the ratio
of the radii s=p/R for model II for angles 6,=7/10 and 37/100.
Note that at s=1 the results for model I (see Fig. 5) are re-
trieved.
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sults for small opening angles 8,. For the outside solu-
tion we shall use instead of Eq. (3.1) the more restric-
tive function of Eq. (2.13)

hd 1 1+1
Gout (7, 9)=¢0[1-% ‘z;% a,0(90)<—§> P,(cose)] . (3.4
In order to fix 2 and b, ({=0, 1, 2, ...) we shall impose
the following conditions: (1) 8¢ /87 is continuous across
the opening of the channel, and (2) ¢,,(R, §=0)=¢,,(R, 6
=0). From these conditions it follows that b,=0 for [
>0 (i.e., the gradient across the opening of the channel
is independent of #) and

l1-5s

h(s, 6,) = 5

+1(6g), (3.5)
where s =p/R (0 <s =<1) and 7(§,) is given by Eq. (2. 14).
Condition (2) is an approximation since it requires con-
tinuity in ¢ only at the center of the opening rather than
across the entire channel. A rough estimate of the er-
ror made as a result of this approximation can be ob-
tained similarly as in Eq. (2.16) through the quantity €.
From Eq. (3.4) one obtains the reduced reaction rate

k(8,,s) 1 1-cosh
% - 0 - = 9
B 60, ) =32 0R" 5 s, 8)

(3.6)

Substitution of Eq. (3.5) into Eq. (3. 6) leads to the
principal result of our analysis, Eq. (1.1). Since
k*(6,, s) smoothly goes over to the external patch re-
sults (model I) as s -~ 1, and gives the correct limiting

FIG. 8. The reduced reaction
rate 2* as a function of 6, for
s=0.1, 0.5, and 0.9 (model
II). Note the change in scale
occurring at 6,=/10.

8o/
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behavior k*=p as 6,~ 7, we propose to use Eq. (3.6)
for all values of s and 6.

In Fig. 7, k* is presented as a function of s for 8,
=7/10 and 37/100; Fig. 8 presents k* as a function of
6o for s=0.1, 0.5, and 0.9, Note that for §,=7/10, s
=%, k*(7/10, 3)=0.0195, and that for §,=7/10, s=1,
E*(w/10, 1)=0.0968. Thus as an illustrative case we
find that the reduction in diffusion-controlled reaction
rate from an active site buried halfway down a 36 ° chan-
nel is a factor of 0.20=k*(7/10, 2)/k*{7/10, 1). This
reduction should be compared to a factor of 0.5, which
would be predicted on the basis of the change in the
square root of the surface area presented when the site
is buried to s =%. For a 10.8° channel, k¥(37/100), 3]/
k*[(87/100), 1]=0.08. This fraction is significantly
less than the corresponding reduction in the square root
presented surface area of the active site.

Finally, we note that an alternative procedure for ap-
proximating diffusion-controlled rates could be based on
use of a variational principle. However, in the present

case construction of sample trial functions that satisfy
the boundary conditions inside and outside the channel
is not trivial and accordingly we have not pursued this
possibility.
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