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Recently, Verdier and Kranbuehl (VK) have examined by Monte Carlo simulation the relaxation times for
the end-to-end vector of a polymer, with excluded volume, on a lattice. The kinetic model employed by
VK includes two-bead crankshaft motions in contrast to earlier kinetic models that included only single-
bead motions. It is shown that the new VK model contains constraints similar to those discussed by
Hilhorst and Deutch for the single-bead model. These constraints lead to artificially long relaxation times

not due to the long-range excluded-volume effect.

1. INTRODUCTION

In recent years Verdier and co-workers'~* have em-
ployed Monte Carlo simulations to study the configura-
tional dynamics of a polymer in solution under the ran-
dom forces of the solvent. Their various models, in
which a polymer chain is inscribed in a cubic lattice,
differ by the way of introducing the random bead mo-
tions (consistent with the connectivity of the chain).

In their original model the dynamics was simulated
by randomly choosing one bead every interval of unit
time and interchanging the two neighboring links
of that bead (see Fig. 1, where only a part of the chain
around the chosen bead is drawn). By repeating this
process, called a bead cycle, one simulates the dynam-
ics of the chain. The surprising result of this “single-
bead cycle” (SBC) model, in which not more than one
bead is affected per bead cycle, was that the intro-
duction of the excluded-volume effect caused a strong
slowing down on the relaxation times of the correla-
tion functions

C& ) = (R (1)R% (0))/ (R% (0 1.1)
and
CH () =(Ry(t) - Ry(0))/ (R5(0) . (1.2)

(Here R, is the end-to-end vector). In the absence of
excluded-volume effects these correlation functions
decay, while not exponentially, with a characteristic
correlation time that behaves as

To=const N (1.3)

where N is the number of beads of the chain. When
excluded-volume effects are included, the simulations
lead to

T (8BC)= const N3, (1.4)

This effect of excluded volume is much more pro-
nounced than one expects from physical considerations
and the results for frequency dependent relaxation
properties of dilute polymer solutions. The conven-
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tional conjecture is that the relaxation time for a
chain should behave as

T = const N2*¢¢@) (1.5)

for large N. For random chains with no excluded
volume €=0; when excluded volume is present € is
a small positive constant which depends upon the
dimensionality d.

Hilhorst and Deutch® (HD) in an effort to explain the
discrepancy between the SBC model, Eqs. (1.3) and
(1.4) and the conventional expectation Eq. (1.5),
demonstrated that the SBC model with excluded vol-
ume gave the result Eq. (1.4) as a consequence of a
special constraint, not present in more realistic
dynamical models. The special constraint consists
of the inability for single-bead cycles to permit local
extrema in chain conformations to pass each other or
to disappear without passage of these extrema all the
way to one of the ends of the chain. A model was con-
structed by HD to show that this constraint led to the
result Eq. (1.4). It was argued that a more realistic
model, which included the possibility of bead cycles
with simultaneous two-bead jumps, would remove the
special constraint and presumably lead to the result
Eq. (1.5). The simultaneous two-bead jumps would
permit local conformational changes that removed the
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FIG. 1. The three types of bead cycles for the SBC model,
drawn for the two-dimensional case. Only the part of the
chain that is affected in the cycle is shown. Beads occupy-
ing the same lattice site have been drawn as distinct dots
for clarity; a “tagged” lattice vector is indicated by a thin~
ner line. Fig. 2(c) shows a cycle that interchanges “up-
ward” and “downward” vectors, This cycle does not occur
if excluded-volume effects are taken into account, because
the configuration of the chain before (and after) the move is
forbidden in that case.
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FIG. 2. Four typical cycles for the VK model, drawn for the
two-dimensional case, In Fig, 2(a) the crankshaft move is
shown, Fig, 2(c) shows a cycle in which ‘“upward” and “down-
ward” vectors of the same type (maximum y coordinate at even
sum of coordinates) are interchanged, This cycle does not
occur if the excluded-volume effect is accounted for.

constraint and allowed neighboring extrema to pass
each other; an example is the well-known local “crank-
shaft” motion [Fig. 2(a)]. Of course, not all two-

bead jump rules introduce the dynamical flexibility to
avoid constraints. HD conjectured that the SBC model
plus crankshaft motions would be adequate to remove
constraints and lead to the result Eq. (1.5) for the
excluded volume case.

Recently Verdier and Kranbuehl® (VK) motivated by
the HD analysis, have undertaken Monte Carlo simula-~-
tions of a model which includes two-bead jump rules.
While these authors refer to their model as “the crank-
shaft model”, we prefer to term it the VK model, in
order to distinguish it from a model where both SBC
and crankshaft motions are simultaneously possible.

The results obtained by VK for the VK model are
the same as the earlier results of the SBC model,
namely Eqs. (1.3) and (1.4).

The purpose of this note is to point out that the VK
model still contains a constraint that leads to the ar-
tificially strong slowing down effect of excluded vol-
ume.

Il. ANALYSIS OF THE VK MODEL

The introduction of the excluded volume into a lat-
tice model of a polymer chain means that two beads
cannot occupy the same lattice point. This has two
qualitatively different effects. Omne of these is the
occurrence of “repulsion” of beads that are at a short
distance from each other in space but far apart if one
measures along the chain. It is this effect which
should be associated with the concept of “excluded
volume”; it is a long-range effect.

The second effect is of a strictly local nature: I
multiple occupancy of a lattice site is forbidden, zero
valence angles [ as in Figs. 1{c) and 2(c)] do not
occur, whereas in the absence of the excluded-vol-
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ume condition the models of Verdier and co-workers
do allow for zero valence angles. Here we will show
that the latter effect is the reason for the strong slow-
ing down in the SBC and VK models.

We follow a line of reasoning very similar to the
HD analysis of the SBC model. Let us first rephrase
the HD argument in a way which facilitates under-
standing what happens in the VK model. For this
purpose we assign an orientation to all polymer lat-
tice vectors according to the way one passes them
going through the chain from the beginning to the end
[see Fig. 3(a)]. In the SBC model one can only inter-
change links of the chain which have a bead in
common. So one can only interchange vectors in the

.+ a (“upward”) and ~ o (“downward”) directions

(¢=x,y, 2), if these vectors have a bead in common
[see Fig. 1(c)]. But this implies a zero valence angle,
which is forbidden in the excluded-volume case. If
angles of zero degrees are not allowed, there is no
mechanism to interchange “upward” and “downward”
vectors and hence there are barriers between groups
of “upward” and “downward” vectors. [In Fig. 3(a)

a polymer configuration is shown; in Fig. 3(b) only
the vertical vectors are drawn for the same polymer
configuration; one sees that the barriers are the

local extrema of the configuration.] The barriers can-
not pass each other and can onlybe created or destroyed
at the chain ends (i.e., by bead cycles in which one
of the end beads is chosen). HD describe this situation
as a collective random walk of the barriers and deduce
from it Eq. (1.4). They observe, that this relaxation
behavior would probably not occur if one would add the
possibility of a crankshaft move [Fig. 2(a)] to the SBC
model, because the crankshaft move would provide for
a mechanism to interchange “upward” and “downward”
vectors.

In the VK model the crankshaft move is included.
However, the VK model is not equivalent to SBC plus
crankshaft. In the VK model a cycle consists of choos-
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FIG. 3. An oriented chain on a lattice as an illustration of the
barriers in the SBC and VK models; ¢ stands for a bead with
even sum of coordinates, o for a bead with odd sum of coordi-
nates. In Fig. 3(b) only the vertical vectors of this chain are
drawn and the corresponding SBC barriers between upward and
downward vectors are indicated by broken lines; obviously,
these barriers are local extrema of the chain, In Fig, 3(c)
only the vertical vectors of type I, (with maximum y coordinate
at a bead with odd sum of coordinates) are drawn and the VK
barriers between upward and downward vectors of type I, are
indicated.
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ing a vector of the chain in a random way and, if pos-
sible, interchanging the two neighboring vectors. (In
Fig. 2 some typical cycles are shown). Let us divide
the £ o (“vertical”) vectors in two subsets, vectors of
the type I, with maximum « coordinate at a lattice
point of odd sum of coordinates, and vectors of type
II,, for which the sum is even. It is easy to see, that
a vector of type I, (II,) transforms into a vector of the
same typeunder the VK rule. Furthermore, an “up-
ward” vector and a “downward” vector of the same
type cannot be interchanged unless they form a zero
valence angle [see Fig. 2(c)]. If angles zero are for-
bidden there are barriers between groups of “upward”
and “downward” vectors of the same type. [In Fig. 3(c)
only the vertical vectors of one type are drawn and the
corresponding barriers are indicated]. For these
barriers the argument of HD holds and one therefore
arrives again at Eq. (1.4).

Of course, for the preceding analysis to apply, there
must be two or more barriers. On the average for the
SBC model without zero valence angles, a given vector
{for example, up) will be separated six vectors from
the first vector down. In the VK model the separation
between an upward vector and the nearest downward
vector will be twelve vectors, on the average. These
estimates are of course very crude; a long-range ex-
cluded-volume effect, e.g., is not taken into account.
The chain lengths used in the VK model simulations are
N=15 (marginally insufficient) and N=83 (sufficient
for our analysis to apply).

{ll. CONCLUDING REMARKS

In related work, the computer results of Heilmann’
for the SBC model and variations of the SBC model
agree with the ideas presented in Ref. 5 and here. For
the SBC model Heilmann reproduced the result of
Verdier and co-workers: He found Eq. (1.4) for the
relaxation time. For the SBC model with a 90° crank-
shaft (i.e., the crank is turned to a position which is
perpendicular to its original position) he found in the
excluded-volume case the result

1~ NE1+0(ND)] . (3.1)

The coefficients of N2 and N in the expansion were
not dramatically changed if only zero valence angles
were forbidden but no other excluded-volume effect
was taken into account. Heilmann concludes that the
local structure of the chain rather than the long-range
effect of the excluded volume is of importance for
understanding the movements of chains, which is true
at least for the chain lengths used in his computer ex-
periment ( N=128).

The mean field® and scaling results for the long-
range excluded-volume effect, as derived by De Gen-
nes, ° are

T ~N? (mean field) (3.2)

r ~N%% | (scaling in three dimensions) 3.3
In this derivation the chain dynamics is introduced
with the use of a Rouse model., The problem of
special constraints due to local effects does not arise
in this theory.

The chain lengths in Heilmann’s computer simula-
tions are much too small to discern between the relax-
ation behaviors of Eqs. (3.2) and (3. 3), if one does not
know the proportionality constants in these equations.
The proportionality constants depend not only on the
type of lattice, but also on the rules for the chain mo-
tion. The chains are much too short to find the correct
power law because of an appreciable contribution of
the higher order in 1/N. Eqgs. (3.2) and (3. 3) are,
however, consistent with Heilmann’s computer results
in that the excluded-volume condition has a much
smaller effect on the relaxation behavior than the SBC
and VK models suggest.

The conclusion of this analysis is that the new model
of Verdier and Kranbuehl, like the SBC model, does
not show a relaxation behavior which is representa-
tive for models of chain dynamics with excluded vol-
ume, because of the occurrence of a special constraint.
In the SBC model, the special constraint was the in-
ability for adjacent local extrema of the chain to pass
each other. In the more recent VK model, the par-
ticular two-bead jump rule does not permit certain
adjacent local conformations of the same class to pass
each other. In both models, the barriers must diffuse
to the chain ends before relaxation occurs. This ex-
plains the observed long relaxation time in the ex-
cluded-volume case found by VK, Other jump rules,
such as SBC plus crankshaft, we conjecture will not
contain constraints of this type and should exhibit the
weaker slowing down expected for the excluded-vol-
ume case. This conjecture is supported by the nu-
merical work of Heilmann and the dynamic scaling
argument of De Gennes. Clearly it would be useful
to have additional simulations undertaken to resolve
this important question about polymer dynamics.

Note added in proof: Lax and Brender'® have recently
reported computer experiments consistent with the con-
clusions of Hilhorst and Deutch. In a new publication“
Kranbuehl and Verdier use the SBC model to study the
relaxation of aspherical polymer shapes. We expect
here also a strong effect of the SBC constraint on the
relaxation time scales.
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