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Alternative exact expressions for the dielectric constant of a rigid polar fluid are evaluated approximately
employing new Monte Carlo results for the pair distribution function of hard heteronuclear diatomics. The
primary innovation of this work is to proceed beyond formal theories of the dielectric constant to explore
possible approximation schemes that make use of Monte Carlo data on asymmetric molecules to obtain
numerical results for dense molecular fluids. Each of four exact expressions are evaluated, ignoring the
presence of dipoles and including only the effects of the asymmetric core. In this approximation, it is
found that the Kirkwood—Onsager and Nienhuis—Deutch formulas yield the most reliable and consistent

results. An interpretation of these results and a brief comparison with experiment are given.

1. INTRODUCTION

In recent years a number of alternative exact expres-
sions have been put forward for the static dielectric con-
stant € of rigid polar fluids, These expressions are all
formally equivalent and would lead to precisely the same
numerical values of € if the two particle distribution
function were exactly known for the fluid which is as-
sumed to be characterized by pair potentials of the form

v(1,2)=02(1,2) + u(1) - T(ry) - u(2) . 1.1

Here #° is an arbitrary function of the two-particle sepa-
ration ry, and orientation, u is the dipole moment, and
T the dipole-dipole tensor

T(ry,) =ria[1-3(rpr,/rd)l . (1.2)

Of course it is not possible to evaluate analytically
the two-particle distribution 4(1, 2) for these fluids
which is a function of both the position and orientation
of the anisotropic molecules. Since € will be sensitive
to the angular dependent part of #(1,2) which is in turn
sensitive to the anisotropic part of »°, the task of ob-
taining an exact expression for % is clearly formidable,
One must resort to approximations for %.

The question therefore arises as to which of the alter-
native exact expressions for €, when evaluated approxi-
mately, gives the best agreement with experiment,
After all, one of the principal purposes for developing
improved theories of the dielectric constant of polar
fluids is to obtain better predictions of the dielectric
constant of real molecular liquids. The purpose of this
paper is to compare calculated values for € from the
various exact expressions when use is made of the pair
distribution function

g%(1,2)=n"(1,2)+1 (1.3)

of the reference fluid when no dipoles are present. This
route is suggested by the belief that at high densities the
dipolar forces are not as important in determining the
fluid structure as the anisotropic core repulsions,?
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Since the reference fluid is characterized by the
anisotropic pair potential +?, it is necessary to employ
computer simulation calculations for #%(1,2). Here use
is made of Monte Carlo results for rigid heteronuclear
diatomics composed of two hard spheres of diameter o,
and og; we choose g,= gy. This reference system is
characterized by the two parameters y=(op /O'A) and the
dimensionless separation between centers

L*=L/o, . (1.4)

The procedure we are following here for the dielectric
constant is similar to recent approaches in the theory of
simple liquids. In the case of simple liquids, we are
familiar with the modern thermodynamic perturbation
theories® where several alternative routes are available
to determine thermodynamic properties, e.g., the pres-
sure, One may determine the pressure through the com-
pressibility equation, the virial expression, and from
the internal energy via construction of the free energy.
While each route would lead to identical results if exact
distribution functions were available, practically one
seeks to discover the method that leads to the best re-
sults (compared to computer simulations) when employ-
ing information on the core reference system, Experi-
ence has shown that the internal energy route is most
successful. Our effort here is to discover which of sev-
eral alternative routes to the dielectric constant is best
exploited when only information about the refence sys-
tem is available,

il. THE ALTERNATIVE EXACT EXPRESSIONS
FOR THE DIELECTRIC CONSTANT

Hdye and Stell® have discussed in detail the alternative
expressions for € (and their interrelationship) in terms
of spatial Fourier and Hankel transforms of the separa-
tion dependent coefficients in the expansion of k{1, 2):

h(1,2) = hy(r1) + hy(715) AQL, 2) +Rp(715)D(1,2) +. .. (2.1)
where

a(1,2)=5,. s, , (2.2)
and
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D(1,2)=3(5; - 71,)(55- #15) = (8- §;) . (2.3)

Here §, and §, are the orientation vectors of molecules

1 and 2. The Fourier transform is defined by

o) = [ drexplik - r]hy(r) (2.4)
and the Hankel transform by

Ry (k) =4 Lmdvrzja(kr)ha(r) , (2.5)

where the j,(x) is a spherical Bessel function and the
subscript o denotes either A or D,

We shall write the alternative exact expressions for €
in terms of the notation of Hgye and Stell.® The first is
due to Kirkwood? and Onsager® (KO)

(e-1)2¢+1) _

-
3¢y 3+p* 0, (0) ,

(2.6)

where p* is an appropriate reduced density; here p*
=(po}), and

y =4mpu®s/9 . 2.7
Note that the Kirkwood g factor® is given by
gx=1+%5p*ha(0) . (2.8)

The expressions Egs. (2.6) and (2, 8) apply to a system
embedded in an infinite continuum of its own dielectric
constant, #® The s, must be chosen to correspond to this
physical situation and not some other, for example, a
finite spherical sample in vacuum,

The second expression is due to Nienhuis and Deutch’

(ND)

€-1__ 1 xr7 7

’3*3)—*1*-3[) [724(0) = 715(0)] (2.9)
when transcribed into the H@ye/Stell notation, This ex-
pression is valid for any sample shape and does not de-
pend upon the surroundings, While %,(r) contains a long-
range dipolar piece that leads to such annoying depen-
dence, %,(0) includes the effect of dipolar forces in a
more subtle way. Infact, k,(#) may be expressedas®~

-~ 3 L.
hD(r)=hD(r)+7fo hp)x%dx |

10

(2.10)
o) =hon) =3 [ npl)

where fp(x) is a short-range function. In the mean spher-
ical model® for hard sphere fluids, 7,(r) is simply re-
lated to /2, (r) at a ficticious density. In general® /,(k)
=[h,(k)]7, where [7,(k)]7 denotes the Fourier transform
of hip(r).

The third expression is due to Hgye and Stell®? (HS)
and takes the form

{e=1)*_

-
35 =—p*hp(0) . (2.11)

An auxilliary expression that is not independent from
the above may be found by taking [(KO) — 2(ND)}:
€~1 L

—_—=1 +§p* [ﬁA(O)-f-ZED(O)] .

2.12
3o (2.12)
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In the following discussion this auxiliary expression will
be referred to as AE, W introduce this form because it
is identical to the fourth independent expression for ¢

in terms of atom/atom correlation functions

63;1:1— %’; p*AS | (2.13)
where

AS=S,, +Spy = Sa5— Spa (2.14)
and

Sea= lwdrr%aﬂ(r) . (2.15)

Here h4(7) is the atom-atom correlation function de-
fined in Ref, 11 and originally introduced by Andersen
and Chandler,!? We shall refer to Eq. (2.13) as AA.

The four expressions, Eqs. (2.6), (2.9), (2.11) and
(2.13), are fully equivalent. Each of these expressions,
if evaluated exactly, would lead to the same value for €.

ifl. THE REFERENCE FLUID APPROXIMATION

We shall approximate the function #%,, .,, and k., that
appear in the exact expressions for €, exclusively in
teyms of functions W, kY, K24 of the anisotropic hard
core system wheve dipoles ave absent, Thus our ap-
proximation is

ha(r)=n3(¥) ,
hp(r)=n%(r) .

It should be noted that once the dipoles are neglected,
hp no longer exhibits awkward long-range behavior.

3.1)
(3.2)

Our initial expectation is that this approximation will
not be equally successful for the alternative expressions
for €. For example inthe limit L* =0, the reference
fluid consists of hard spheres for which 2% =13 =0. In
this limit one finds

(e—-1){(2¢ +1) -

KO: 3ey 3,
ND: (e-1)=3y , (3.3)
HS: e=1,

AA=AE: e=[1-3y]" .

In this case, it is clear that only the KO and ND expres-
sions will give useful results [the AA and AFE, expressions
are negative for y > 4] and that the ND result will be
smaller than the KO result for large y. The severity of
our procedure is adequately illustrated; the alternative
expressions for € approach different dipolar hard sphere
limits [L* =0] and none approaches the more exact mean
spherical model® expression for € which includes the ef-
fect of dipoles more completely.

In the general case of arbitrary L* and ¥, the alter-
native expressions simplify when the crude reference
system approximation, Eqs. (3.1) and (3.2), is intro-
duced. In particular when the approximation Eq. (3.2)
is introduced into Eq. (2.10), one easily computes that

20y =[2% (] =0 , (3.4)
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TABLE I. Model parameters for hard
heteronuclear diatomic Monte Carlo
simulation,

Core Model L* hY

A 0,346 0,600
B 0,346 0.675
C 0,346 0,750

an identity which holds for any short-ranged function
hp(¥).' This result reflects the subtle manner in which
long-range dipole forces are treated in these theories.
If dipole—dipole interactions are retained, the presence
of the %,(0) is vital; if these forces are neglected, the
ED(O) term gives no contribution, Thus in the reference
fluid approximation one has

(e-1)2e+1)

R \ Tl 0 UL s * 70
KO: 3¢y 3+p H3(0) , (3.5)
ND : (€——1—)=1+§p*;&(0) , (3.6)
3y
HS: €-1=0, (3.7
. (5—1)_ 1.%70
AE: 35 =1+3p*1%(0) . (3.8)

Clearly the HS expression is useless in this approxima-
tion, The AE =AA expression is simply related to the
ND expression:

1

2= <[ND] (3.9)

e[AE]=
This expression will be unphysical for ¢[ND]>2. Ac-
cordingly, we conclude that the reference fluid approxi-
mation can only lead to sensible values of € when use
is made of either the KO or ND expression,

Our Monte Carlo results!® are expressed in terms of
the invariant expansion'*

W, 2)+1= D 4mgoUl'm; ) V(@) Yim(@y)

it'm

(3.10)

where Y;, are spherical harmonics and ©,, @, are the
orientations of dipoles 1 and 2 in a reference system in

which the interparticle axis is the polar axis. Interms
of the functions g*(11'm, »),
ha(r) =g°(110; ») - 2¢°(111; 7) (3.11)

1) =g°(110; ») +g°(111; %) .

The limiting case y =1 corresponds to a reference
fluid of homonuclear hard diatomics, In this case the
odd ! terms in Eq. (3.10) vanish and all the alternative
expressions are seen, from Egs. (3.5)-(3.8), to reduce
to different values of € which, in fact, are identical to
the hard sphere limits Eq. (8. 3).

IV. NUMERICAL RESULTS

The formulas in Sec. II allow one to use computer
simulation results to calculate dielectric constants for
fluids of hard heteronuclear diatomic molecules, Here
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we have used the results of Monte Carlo simulations®
carried out by the method of Metropolis et al.™ for
systems of 256 molecules. The computer program has
been described by Streett and Tildesley.® For most of
the points listed in Table II, the results are based on
Monte Carlo simulations of 2x10°® configurations, during
which contributions to the averages for the distribution
functions were calculated at intervals of 1280 configura-
tions. The #%(1,2) and % 4(#) used to calculate dielectric
constants have been derived from histograms based on
at least 6.5x 10° trials—one trial consisting of the selec-
tion of a particular particle (molecule or atom) as the
origin, followed by counting the numbers of other par-
ticles lying in spherical shells of thickness 0. 025 o,
centered on that origin. The distribution functions of
interest have been calculated at distances up to 3 g,.

As a check on the accuracy of these functions, a separate
Monte Carlo run of 4x10° configurations was made for a
system of 500 molecules at p,=0.9, ¥=0.675, L™

=0. 346, which permits calculation up to distances of

4 g,. From the difference between the 500~ and 256-
particle simulations, uncertainties in the %2°(1, 2) and
hos(r) are estimated to be about 3%.

Results are available for molecules with the different
values of y and L*, summarized in Table I, These val-
ues were selected to be similar to the CH;F molecule
for which some experimental data exist for € and the
equation of state, In all calculations the dipole moment
was takento be 1.85 D,

In Fig. 1 the results for € vs T at three reduced den-
sities p,=pc2=0,2, 0.6, 0.9, where g, is the diameter
of a sphere with the same volume as the diatomic, are
presented for the KO and ND formulas for the case
y=0,675, L*=0.346. Both formulas give similar re-
sults that converge as T increases for fixed p,. This is
to be expected, since as T increases the influence of the
dipoles diminishes and the approximation g~g° become
progressively more exact,

In Fig. 2, the results for € vs p, at two temperatures
with y=0,675, L*=0,546 are presented for the KO and
ND formulas, For fixed 7 the discrepancy between the
two expressions increases as p, increases, This gives
an indication that the approximation g ~g® may not be
so benign even at high density.

In Fig., 3 values of € vs T for fixed p, =0. 8 are pre-
sented for various values of y=0,600, 0,675, 0.750
with L* = 0. 346, according to the KO and ND formulas,
These curves reflect, at fixed temperature, the increase
in € due to greater asymmetry (y smaller) of the diatom-
ic, We expect that as y—0, the effect of the asymmetry
will be negligible, and beyond a certain value of ¥ (not
determined from our data) € will decrease with further
reduction in y,

Similar results can be obtained from this type of
Monte Carlo calculation. However, here we wish to
focus attention on the set of results presented in Table
II. This table presents, for two temperatures and one
combination of core parameters, the value of € as a
function of reduced density p,. '

The tends predicted by the KO and ND results are
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FIG. 1, Dielectric constant
as a function of the tempera-
ture at three reduced densities,
pe=0.2, 0.6, and 0,9 for a
heteronuclear diatomic with
parameters L* =0,346 and vy
=0, 675 as defined in the text.
The solid lines refer to the
Kirkwood—Onsager formula
[Eq. (3.5)] and the dashed
lines refer to the Nienhuis—
Deutch formula [Eq. (3.6)].

100 150

quite similar. As expected, the KO values lie above the
ND values, For the KO and ND expressions, the change
in € compared to the ideal value of € obtained from Eq.
(3.3) is quite small, In general, including the aniso-
tropic term %3 (0) changes the predicted values of ¢ by

a few percent, which indicates the supremacy of the pa-
rameter y in setting the value of €. Included in the ta-
ble are values of ¢ from the AA expression, Eq. (2.13),
employing reference system atom-atom correlation
functions, These results are computed directly from the
Monte Carlo results, Note that the AA values are un-
physical and negative, as expected from the reasoning
in the previous section for the limiting cases of hard
spheres and hard homonuclear diatomics.

V. COMPARISON TO EXPERIMENT

With some trepidation we compare the results of our
calculations to the experimental results'’ for CH,F.
This comparison is presented in Table III. If the gas
phase value of the dipole moment of CH;F 1 =1,85D is
employed, the results for € are very poor, However,
if we scale the dipole moment by a single factor f (dif-
ferent for the KO and ND expressions), we can fit the
two data points without adjustment for changes in the
density and temperature, Small changes in the potential
parameters, e.g., v from 0.675 to y=0,600, which
make the diatomic more asymmetric, do not appreciably
improve the agreement with experiment. Table III has

T=134.6°K

—
—
—

T=348°K

/ FIG. 2. Dielectric constant
4 as a function of the reduced
- density p, at two temperatures,
T=134,6°K and T =348°K.
The parameters 1.* and vy are
the same as in Fig. 1. Solid
and dashed lines refer to KO
and ND expressions, respec-
tively.

Pe

J. Chem. Phys., Vol. 67, No. 7, 1 October 1977

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Martina, Deutch, and Streett: Dielectric constant for nonspherical molecules

3161

FIG. 3. Dielectric constant
as a function of the temperature
at a reduced density p,=0.8
for three models: L*=0,346
and y=0, 600 ( ); L*
=0,346 and y=0,675 (-—-- )s
L*=0,346 and y=0,750 (----),
The upper three curves were
obtained via the KO equation
and the three lower ones were
obtained via the ND expres-
sion,

100

150
T(°K)

so few entries because it is only at these two data points
that information is simultaneously available for ¢, the
equation of state, and the Monte Carlo generated g°(llm;
7). Comparisons of the type presented here are severe-
ly restricted by the absence of this type of information,

VI. CONCLUDING REMARKS

The purpose of this study was to find out if information
on the orientational distribution of molecular cores, ob-
tained from Monte Carlo studies, could be practically
employed to determine dielectric constants for dense
polar fluids.

Our conclusion is that the KO expression is preferred
in this procedure. While the ND expression gives simi-
lar results to those of KO, for reasons discussed below
we advise principal reliance on the KO expression,

It should be emphasized that our procedure is an ap-

TABLE II, Dielectric constant as a function of reduced density
according to various formulas,?

Pe y KO ND AA
T =132,6°K y=0.675 L*=0,346
0.2 0.75 3.85 3.15 -0.61
0.6 2,24 10.36 7.54 -0.35
0.7 2,62 11,03 7.99 -0.09
0.8 2.99 13,77 9,82 -0.03
0.9 3.37 17. 84 12,54 0.03
T=172°K ¥=0.675 L*=0.346
0.2 0.58 3.14 2.65 -0.97
0.6 1.73 8.12 6.04 -0.51
0.7 2,02 8.63 6.38 -0.11
0.8 2.30 10.74 7.80 -0.04
0.9 2,59 13.88 9.90 -0.04

*KO Eq. (3.5), ND Eq. (3.6), AA Eq. (2.13).

proximate one and that our numerical results should be "
considered a preliminary indication of the most effective
manner in which reference fluid information may be em-
ployed to estimate € for dense polar liquids, In particu-
lar, the various expressions for € are sensitive to the
forms of g(l'm; ¥). We believe that improved values of
g(l'm; v) at ranges beyond y > 30, would not significantly
change the contribution of 7% (0) to €[KO] and ¢[ND].
However, other combinations of the g(II'm; ») can be sen-
sitive to the quality of the numerical data, For exam-
ple, if the Monte Carlo results are employed to compute
h%(0) with »=< 30,, one does not obtain zero as required,
but values which lead to €, according to the HS expres-
sion, in the range 1.5 (higher temperature, lower den-
sity) to 4.0 (lower temperature, intermediate density).

One immediately thinks of improving the procedure
presented in this paper by employing thermodynamic
perturbation theory'® to include, partially, the influence
of dipoles on #(1,2). We do not investigate this possi-
bility here, However, two comments are in order.,
First, the perturbation correction involves higher order
distribution functions of the reference fluid, These must
be approximated in some manner,'® which introduces yet
another chain of assumptions. Second, the question of

TABLE III, Comparison to experiment for
methyl fluoride,?

plg/cm® T Q) elexpt) !9 €P(KO) e° (ND)
0, 8877 -82,4 25.6 9.76 7,14
0,9986 —138,4 46,4 17.59 12,06

2Potential parameters o, =3.6 A, y=0.675, L*
=0,346, 1 =1,85 D,

PEquation (3.5). The scale factor for p to achieve
agreement with e(expt) is =1, 65,

“Equation {3,6), The scale factor for p to achieve
agreement with e(expt) is f =2.01,
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which alternative expression for € should provide the
starting point for the perturbation theory remains rel-
evant; our results suggest the suitability of the KO ex-
pression for this purpose.

Finally, we should like to emphasize why the KO and
ND results are more satisfactory than those of the HS
and AE expressions. We believe that the culprit is the
quantity %4,(»). In a polar fluid, %,(#) is long ranged, re-
flecting the presence of dipole—dipole forces in its
asymptotic behavior, The two expressions for ¢, HS,
and therefore AE, are explicitly constructed® on the
basis of the existence of this asymptotic tail, It is not
surprising that the use of a reference fluid 1}, even if
exact, does not work well, since its asymptotic charac-
ter bears no relationship to dipole—dipole forces. An
analogy is found in the case of simple liquids where
h{ry,) has an asymptotic tail that depends on the com-
pressibility, It would not be useful to examine the tail
on a hard core reference system /%(1, 2) to approximate
the compressibility of a Lennard-Jones system; the nu-
merical inaccuracies of a Monte Carlo simulation of it-
self would preclude this approach. The reason that the
presence of %,(r) in the ND expression for € [in the guise
of 1,(0); see Eq. (2.9)] is not so damaging is more sub-
tle. In the ND approach’ to €, the long range dipole con-
tributions to /(1,2) are explicitly subtracted and
treated separately and exactly, leading to the construc-
tion of the short range part of #(1,2), »Y(1,2). Thus
one may expect that a reference fluid approximation to
R(1,2)=#°(1, 2) may be reasonable, The residual term
7,(0) in Eq. (2.9) has a completely different origin.

This term arises from the singularity in the dipole-di-
pole that arises at close separations. While it is by no
means obvious that this singularity is adequately accom-
modated by use of a reference system h%, the close
agreement between KO and ND indicates that such is the
case,

It is timely to inquire about the situation with respect
to the practical evaluation of dielectric constants of mo-

Martina, Deutch, and Streett: Dielectric constant for nonspherical molecules

lecular fluids from alternative expressions for €. This

paper is a first step in this direction,
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