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Figure 3. Effect of FC-75 on the tensile modulus of PTFE. 

on an Instron tester. The results are shown in Table 11. For 
chloroform and carbon tetrachloride, the weight gain was close 
to that observed earlier. For FC-75, it was about one-third less. 
All three compounds reduced the modulus of PTFE and the 
magnitude of the reduction increased with increasing weight 
gain. 

The dependence of the modulus on temperature for a con- 
trol and the sample containing 6.9% FC-75 is shown in Figure 
3. The modified sample had a lower modulus a t  all tempera- 
tures investigated, but the plasticizing effect of FC-75 became 
greater near room temperature and above. This is the region 
of the /3 relaxation which has been attributed to motions in the 
crystalline regions of PTFE.2J7 I t  is surprising that such a 
process would be affected by an additive which is more likely 
to be in the amorphous regions. However, it has been reported 
that the distribution of relaxation times changes abruptly a t  
the 19 “C first-order transition.18J9 Presumably, the additive 
has a greater effect on the relaxation times in the higher 
temperature region. Thus the magnitude of the softening 
process is increased with little if any change in its temperature, 
and the modulus continues to decrease gradually above 25 
“C. 

It is concluded that as long as one focuses on compounds 
containing little or no hydrogen, the sorption behavior of 
perfluorocarbon polymers is the familiar one for nonpolar 
partially crystalline polymers. The plasticizing effect of such 
additives also conforms to a familiar pattern. This has ap- 
parently not been generally recognized, because most appli- 
cations involve exposure to substances such as hydrocarbons 
and polar compounds for which there is very little sorption. 
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A recent article by Daoud et ale1 includes a theory to de- 
scribe the configuration of monomer segments in a “semidi- 
lute” polymer solution. This important contribution has 
motivated us to examine their argument for the square radius 
of gyration So2 for open chains and to extend the analysis to 
the case of the square radius of gyration Sr2 for ring polymers 
in semidilute solutions. 

The mean-square separation between monomer segments 
( rrJ 2,  is concentration dependent. In analogy to ref 1 we shall 
assume for an open chain in dimensionless units 

(rr12)0 = Ii - j I 2 ~ n ~ ~ - ~ ~  Ii - j l  Q n 

(1) 

where n is a dimensionless screening length measured along 
the chain; it depends upon the monomer concentration p ac- 
cording to n - p-1’(3u-1). This treatment of (rrJ2)0 in the 
semidilute region is reminiscent of the physical ideas that 
underlie nonuniform expansion parameters for a single chain 
in the dilute region. 

= Ii - jln2rI-1 Ii - j l  > n 

For open chains the result for So2 = N - 2  2 ( r lJ2)o is 

where ( R 2 ) o  is the mean-square end-to-end distance. In the 
semidilute region n < N ,  ( R 2 ) o  - NnZy-l;  here N is the 
number of monomers per chain. The quantity x in eq 2 is a 
reduced density parameter x = n/N. Daoud et al. consider the 
case 7 = u but give an incorrect result for So2/(R2)o;  the nu- 
merical difference between eq 2 for 7 = u and the result given 
by Daoud et  al. (their equation IV.ll) is small. 

Our motivation for considering the case 7 # u comes from 
the interpretation of light-scattering experiments and Monte 
Carlo  calculation^.^ Most recently, Mazur and McIntyre4 
(MM) have advocated the use of the value 27 = 1.1 in place of 
the more conventional excluded volume result 27 = 2 u  = 6/5.5 
They consider only the dilute region where x = 1 ( n  = N ) ,  
( R 2 ) o  = N 2 y ,  and 

1 
(27 + 1)(27 -k 2) (3) 

MM chose 7 so that his ratio gives 0.153, which results from 
their more fundamental equation for the mean-square sepa- 
ration and which is close to the Monte Carlo results; the choice 
T = u gives 0.142 for this ratio. We generalize the MM argu- 
ment for the dilute case to the semidilute regime according 
to eq 1. In Figure 1 we plot the result for So2/(R2)o vs. 10 for 
the choice 27 = 1.1 and T = U. 

For the case of a ring-polymer solution the influence of 
shielding on ( r i j 2 ) ,  is more conjectural. We propose 

-- S O 2  - 
( R 2 ) o  
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Figure 1. The square ratio of the radius of gyration and the open- 
chain end-to-end distance as a function of l/r. (I and 11) radius of 
gyration for open chains, 2T = 1.1 and 2T = 2 u ,  respectively; (111 and 
IV) radius of gyration for rings, 27 = 1.025 and 27 = 2 4  respective- 
ly. 

Other reasonable choices for ( r ; ,  2 ) r  in the region I i - j I I n 
are possible, but Sr2/ ( R  2 ) 0  will only differ by terms of order 
(27 - l)x3. In particular, note that eq 4 is not symmetric about 
(N/2) in the region 1 i - j I I n. We adopt this form rather than 
the symmetric form which would be obtained by raising the 
second factor to the ( 2 , ~ )  power for the following three reasons. 
First, the present form is continuous a t  Ii - j (  = n. Second, 
for x < l/2, the two arcs of the ring ) i  - j l  and [N - Ii - jl] 
have different lengths relative to n when I i - j 1 5 n and ac- 
cordingly will feel the influence of excluded volume differ- 
ently. Finally, the only discrepancy arises near x = l/2 where 
a symmetric form would be preferred, but this is where the 
form for I i - j 1 > n is questionable. As indicated, a change in 
functional form has only a minor effect on the numerical 
values presented below. 

The value of T may be chosen in a variety of ways, e.g., to 
match the enumeration results of Rapaport6 for the dilute case 
x = ‘12. This leads to 27 = 1.025. In Figure 1 the ratio S,2/(R2)o 
is plotted vs. l / x  for the choices 27 = 1.025 and 27 = 2 u  = 6/s. 
We see that the concentration dependence for 27 = 1.025 is 
much less than that exhibited for the choice T = u. However, 
the uncertainty in Rapaport’s enumeration work does not 
exclude values of 27 which are larger, up to about 27 = 1.1. 
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In 1942 Huggins’ proposed the following expression for the 
viscosity of a solution of macromolecules 

‘I = ao(1 + [‘Ilc + K [ a ] W  ( l a )  

where 9 and 70 are the viscosities of the solution and the sol- 
vent, respectively, c is the mass concentration of the solute, 

1111 = lim - 

is the intrinsic viscosity of the solute, and K is the Huggins 
coefficient. Equation l a  is more than a formal expansion of 
7 with respect to c. By the introduction of the factor [712 in the 
coefficient of c 2 ,  the remaining Huggins coefficient may be 
expected to provide information about the interactions be- 
tween the macromolecules. 

This can be seen from considering Einstein’s equation for 
the viscosity of a solution of hard spheres. The viscosity de- 
pends on the volume fraction 4 only 

7 = a o ( l  + 2.54 + k42)  ( l b )  

Since k in ( lb )  can be calculated for hard spheres and the 
volume of the macromolecule is expressed by [a], the effect 
of introducing the factor [712 in the coefficient of c 2  in eq l b  
is to obtain a Huggins coefficient K which can be compared 
with a theoretical value for hard spheres. Since the second- 
order terms in both ( la )  and (Ib) represent the interactions 
between the solute molecules, comparison between the ex- 
perimental Huggins coefficients and those calculated for hard 
spheres gives not only an insight in the hydrodynamic inter- 
action between the macromolecules, that is in the “hardness” 
and the interpenetration of the spheres, but reveals also the 
occurrence of specific thermodynamic interactions, if the 
latter are present. 

Experimentally Huggins coefficients have been determined 
for many different polymer-solvent systems. In solutions 
without strong association the values range from 0.5 to 0.7 and 
are nearly independent of molecular weight. They depend on 
the branching and the stiffness of the macromolecules and are 
sensitive to specific interactions. 

Theoretical calculations of k and K yield different results. 
For random coil polymers under theta conditions the result 
of the calculations depends strongly on the models used for 
the interpenetration of the macromolecules, the draining, and 
the segment distribution. Besides, for hard spheres the effect 
of the correlation between the positions of the particles in a 
shear field gives rise to different results. 

Some results compiled from the literature are given in Table 

‘I - TO 

c-0 ‘Ioc 

1. 
For hard spheres the calculations of Peterson and Fixman 

appear the most reliable; for deformable and interpenetrable 
coils the results of Sakai can be used with some confidence. 

For a dilute ternary system we can write in analogy to (1) 

’I = T o i l  + [‘IllCl + [‘Il2c2 + K1[‘I1l2Cl2 

+ K2[‘1122c22 + 2~12[sll[’Il2clczl (2) 

where the symbols need no explanation. The coefficient K12 
is often12-’6 called the “interaction coefficient”, but incor- 
rectly. 

If we call the total polymer concentration c and the intrinsic 
viscosity of the mixture [‘I],,, we have 

c = C I  + CZ; [ ~ l m c  = [allcl  + [ ‘ I I ~ c z ,  (3a) 


