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A many particle coupled translation—rotation diffusion model is analyzed in regard to single particle and
collective orientational correlation functions. This model contains a hydrodynamic mechanism which gives
rise to dynamical orientation correlations in solution. An approximate expression for the dynamical
correlation factor ¢ is derived in terms of the static pair distribution function. In contradiction to recent
arguments, ¢ does not vanish for this model. We also show that in the case where the pair potential of
the solute particles is spherically symmetric, the Debye relaxation law is unmodified by the long-range

hydrodynamic interaction.

I. INTRODUCTION

A complete understanding of the dynamics of a fluid
requires both a knowledge of the motion of individual
particles and also a knowledge of the way in which mo-
tions of different molecules are correlated. There is
much interest in understanding reorientational motions
in complex liquids and solutions. Many experiments,
such as NMR relaxation, Raman line shapes, and inco-
herent neutron scattering, are sensitive only to the sin-
gle particle motion, Other experiments, such as di-
electric relaxation, depolarized Rayleigh light scatter-
ing, and coherent neutron scattering, measure collec-
tive reorientational motions. A comparison of these two
types of measurements can then lead to information
about the degree of correlation of the motion of different
molecules in the fluid. An example of such a compari-
son is the work of Alms, Bauer, Brauman, and Pecora
on chloroform and nitrobenzene using a combination of
3¢ relaxation measurements and depolarized Rayleigh
light scattering' and the work of Rosenthal and Strauss
on chloroform using Raman scattering, infrared spec-
tra, and depolarized Rayleigh scattering,? Information
on the correlation of orientational motions can also be
obtained more indirectly by measuring a collective re-
orientational property as a function of concentration in
solution. Examples of such studies include the light
scattering work of Pecora and co-workers on solutions
of aromatic molecules® and Gierke and Flygare on MBBA
solutions. *

These light scattering studies are often interpreted
with the aid of the theory due to Keyes and Kivelson,®
In the “diffusion” limit this theory indicates that both
the single particle and collective orientational correla-
tion functions decay as single exponentials, In this limit
the Keyes~Kivelson theory indicates that the ratio of the
decay times for these correlation functions depends on
a static correlation function, analogous to the Kirkwood
g factor, and on a dynamic factor related to the time-
correlation functions of the angular momenta of differ-
ent molecules.

a’Supported in part by the National Science Foundation.
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In order to improve our understanding of the correla-
tion effects on rotational motion, we examine in this pa-
per a particular model of the coupled motion of mole-
cules in solution. In the model we consider the coupled
Brownian diffusion of solute particles interacting with
anisotropic potentials in a continuum solvent, the mo-
tion of which may be described hydrodynamically. Such
a model is most appropriate for macromolecular solu-
tions, but it may also contain many features relevant to
the more extensively studied solutions of small aniso-
tropic molecules. In this regard the success of hydro-
dynamic theories in explaining single particle rotational
motions is encouraging. ®

This model contains a hydrodynamic mechanism which
gives rise to dynamical orientation correlation. This is
manifest in the appearance of long-range off-diagonal
coupled diffusion constants in the N-particle transla~
tional-rotational diffusion equation describing the sys-
tem, These diffusion constants are related to the cor-
relation functions of angular momenta of different sol-
ute molecules,

The long-range gharacter of this type of correlation
does not emerge directly in the light scattering experi-
ment, The present model does, however, exhibit a
nonvanishing dynamical orientation pair correlation fac-
tor for solutions of symmetric top molecules, in con-
tradiction to recent arguments of Gierke.” A somewhat
more startling result is that if the potential of interac-
tion of the solute particles is isotropic, the rotational
hydrodynamic coupling has no effect on the usual two-
point correlation functions measured in linear response
experiments., This result is of some significance with
respect to recent hypotheses concerning deviations from
simple Debye relaxation observed in magnetic resonance
studies by Koenig et al. on aqueous protein solutions,®
There is, however, an effect on the four-point and
higher order correlation functions which are related to
nonlinear response phenomena such as the Kerr effect.

In Bec. II of this paper, we discuss the derivation of
the N-particle coupled rotational—-translation diffusion
equation. The hydrodynamic theory of the diffusion
tensors in this theory is also presented in Sec. II. In
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Sec. III an approximate treatment of the N-particle dif-
fusion equation is given which leads to an expression

for the dynamic correlation factor for collective orien-
tational motion in terms of the equilibrium correlations
of the system, The case of isotropic interaction poten-
tials is further developed in Sec. IV, Section V presents
a discussion of the results of this work and possible
further implications of this approach for the dynamics

of solutions of anisotropic molecules,

Il. COUPLED ROTATIONAL-TRANSLATIONAL
DIFFUSION EQUATION

Consider a collection of N Brownian solute molecules
labeled with positional coordinates X;, ¢=1,...N and
orientational coordinates Q;, ¢=1,...N. For infinitesi-
mal step Brownian motion, the configurational probabil-
ity density P{X,, ;}={Q}) is locally conserved and
therefore satisfies the equation

%%J:_pr“' Jx, + L) - Jq,], (2.1)
where Jg, and J,, are the probability current densities
along the positional and orientational coordinates of the
ith particle; L (i) is the operator u; x V,, where u, is a
unit vector fixed on the molecule.

For Brownian particles the probability current densi-
ties are linearly related to the deviation of the config-
urational probability density from its equilibrium value

Jx, == 2; [D73(Q) - (Vx, P+8P Yy, U)

+DFQ)- (L,P+BPL,U)], (2.2)
Ja, == 2 [DF¥(Q)- (Vx, P+BPVx, V)
+D$7(Q)- (L, P+BPL, )], (2.3)

where U(Q) is the potential of mean force of the system.
The equilibrium probability distribution P, (Q) is related
to U(Q) according to

P,.(Q) =const exp[~ BU(Q)] .

The diffusion coefficients are a function of the Brownian
particle system’s configuration. Because of the sepa~
ration of time scales of momentum relaxation and con-
figurational change in a dense fluid, these diffusion coeffi-
cients canbe expressed as integrals of the time-correlation
functions of the velocity v, and angular velocities w,

(2.4)

.

DI (Q) = fo " w0V, dt
DEQ)= [ WO w, ot ,
’ (2.5)
o (@= [ (@ Ov,d,

PR (@= [ (@i w,@odt .
0
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The average {.--)q is taken over an ensemble with
initial configuration @, The separation of configura-
tional and momentum relaxation time scales is only ap-
proximately valid. However, if the forces are not too
large and when the behavior at extremely short dis-
tances (less than a mean free path) is neglected, the er-
ror incurred should not be too severe. A more accurate
theory of many particle diffusion equations would lead
to a non-Markovian form of the diffusion equation and
the expressions for the memory kernels would involve
projected time correlation functions.®

In a hydrodynamic fluctuation model the velocity and
angular velocity correlations can be obtained from the
Langevin equation for the fluctuating velocity and angu-
lar velocity:

av;
my i L v+ 0 FilDman (2.6)
7
dw
1 DR v k8 0 T D - (227)
J

The drag coefficients in this Langevin equation depend
on the configuration of the solute molecules, The solu-
tion of these Langevin equations and integration of the
resulting correlation functions lead to a generalized
Einstein relation between the drag coefficients ¢ and
the diffusion constants:

D§f=kpT(EE] . (2.8)
where the matrix inverse is defined by
Mg - (BN =V 0,50y, - (2.9)

Ys R

Here D{f and ¢ff are 3x 3 matrices for each (4, j) pair.

The labels a, § refer to translation (X) and rotation (Q).

We can understand the origin of the coupled drag coef-
ficients with a hydrodynamic picture. The translational
or rotational motion of one Brownian particle causes a
flow in the surrounding solvent, The moving solvent
then exerts forces and torques on the other solute mole-
cules. The theory of this effect for translational motion
is quite advanced in polymer dynamics®®; this theory
can be extended to include rotational motion. The ex-
act treatment of hydrodynamic interaction for any arbi-
trary configuration of finite-sized bodies is extremely
difficult, ' but it is possible to develop a theory which
is accurate when the Brownian particles are well sepa-
rated. For simple geometries of two particles, exact
hydrodynamic calculations indicate that this approxi-
mate theory can be quite accurate.'?

When the Brownian particles are far apart, they can
be thought of as point centers of drag force and point
centers of drag torque acting on the fluid, In general it
is possible to treat the flow due to each solute particle
by a multipole expansion of the force exerted by its sur-
face on the solvent,!?

The velocity field induced in a viscous incompressible
fluid at point R by a steady point force F applied at point
R’ is

uR) =T**(R-R')- F , (2.10)

J. Chem. Phys., Vol. 67, No. 2, 15 July 1977

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



P. G. Wolynes and J. M. Deutch: Dynamical correlations in sofution 735

where TX¥ is the Oseen tensor

TXX(R) =(8rnR)  [1 +RR] . (2.11)
The Oseen tensor is familiar as the Green’s function of

the steady state linearized incompressible fluid Navier—
Stokes equations.

The velocity field induced by a steady torque 5 applied
at a point in the fluid is not so familiar, It is, however,
directly related to the velocity field induced by a sphere
with stick boundary conditions rotating at angular veloc-
ity w

wR)=a® wxR/R? | (2.12)
where a is the radius of the sphere. The torque exerted
by the rotating sphere on the fluid is 7=~ 8na® Ngw. Thus
the velocity field due to an applied torque is

u(R) = ~ (8m,R*) ' Rx7 =T**(R). 7 .

Note that this result is independent of the radius of the
sphere—as expected, since the sphere was introduced
as a ficticious point source. This relation therefore
defines a “translation-rotation Oseen tensor,” T*?(R).
This tensor decays in space as 1/R?, more rapidly than
the usual translational Oseen tensor.

(2.13)

The force on particle i moving with velocity v, is
Fi=—tX fvi—u(x)], (2.19)

where £5* is the drag tensor for the particle and u(r;)
is the velocity field which would be present in the ab-
sence of the ith particle. This velocity field is related
to the forces and torques exerted by the other Brownian
particles

u(r;) = - Z (T (r;~ ;). F; + TX%(r, - r).1,].
iG0

(2.15)

Equations (2. 14) and (2. 15) combine to give a set of re-
lations relating the linear velocities of the Brownian
particles to the forces and torques on them:

Fy=-¢5%. [v,+ Z (T F,+TEP. ‘r,)] , (2.16)
J(#)
where
T =T, -r) and T (r, - 1) . (2.17)

In a similar fashion, the torqgue on a particle is deter-
mined by its angular velocity and by the velocity field
which would be present in the absence of that particle.
Indeed, if a particle is immersed in a solvent with an
inhomogeneous velocity field it will feel a torque. The
degree of inhomogeneity is determined by the vorticity
P=%Vxu, and the torque on a particle is

Ti==£5%. (W —9(ry) .
The vorticity field is given by

(2.18)

1
Wr)=-3 2 [V x T, = ). Fyj+ 9, x T, 1), 1,]

FGh
(2.19)
We can define in this way new tensors THoX
=5 VxT(r, _r)=T*? and T99 -5 VxTX®, Therefore

T = —tgn . [wi + Z (T?jx . F, +T?jn . Tj)] . (2 20)

J(#t)

The “rotation—-rotation Oseen tensor” T%%  which we will
use explicitly later, is particularly simple

(-1) 1 (. 3rr)
16mn, 7° =)

This tensor has just the same form as the tensorial
interaction between dipoles in a fluid.

ToUr)=5VxT*%= (2.21)

The relationship between these hydrodynamic tensors
and the drag coefficients in Eq. (2.5) is made clear by
rewriting Eqs. (2.15) and (2.20) in the form

V= EEENUF, - 2 (P F, T 7))

i)

=- 2[<c-*>ﬁx CFy YR LT, (2.22)
= _goet, ar,._ﬂg;) T F 4TI 7))
D (7 T A (2.23)

Therefore, combining these equations with the gener-
alized Einstein relation Eq. (2. 8), we see that the dif-
fusion coefficients in the many particle diffusion equa-
tion are directly related to the hydrodynamic interaction
tensors

DY =ksT(EF*) 16, +(1-8,) THF], (2.24)
D =k T(1-5,)T} , (2.25)
DY =kaT(1-0,)TH, (2.26)

Du =kBT[§gn)-16¢j+(1 _6H)T?!0] . (2.27)

The long-range character of T®® indicates that collec-
tive hydrodynamic effects lead to a correlation of the
angular velocities of distant solute particles. The other
diffusion coefficients D*® and D®* reflect the presence
of long-range correlations of the rotation and transla-
tion of different solute particles.

HI. SINGLE AND MANY PARTICLE MOTION IN THE
COUPLED DIFFUSION MODEL

In this section we are primarily interested in deter-
mining for the coupled diffusion model introduced in Sec.
II the relationship of correlation functions for single par-
ticle variables A, [= Y1m(2;), for example] to correspond-
ing correlation functions for collective variables of the
form A,=3{ A;.

In linear response theory, a correlation function of
the form (A(0)A(f)) can be written as the average of A(0)
over a time dependent ensemble density P(f)!%;

A©4] 1) = [ a0 Prae (3.1)
This density P(¢) is a solution of the many particle

diffusion Eq. (2.1) and has the initial value P(¢=0)
=A(0) P, (). Thus we may write

P(t)=exp(t£) [A(0) P,(@)) ; (3.2)
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where £ is the diffusion operator

£22 {%x,- [DFF - (Vx, +B(x,0) + DI (Ly + B(L,V))]

+Ly. [DFF . (x4 B, )+ D30 (LN} . (3.9)
The correlation function is
U AWD = [ A exp(tD)[A0) P @))dQ . (3.4)

It is convenient for our calcu}ations to introduce the
operator £ which is adjoint to £, so that Eq. (3.4) be-
comes

(A(0)A(#) = j P A(0) [exp(£8) A(0)] 4@
=(A| exp(t2)]| A) = (4| A(®)) . (3.5)

Here we have introduced bra-ket notation for the scalar
product with respect to the equilibrium probability den-
sity P,,. The adjoint diffusion operator £ is explicitly

L=Lrr+Lyp+Lar , (3.6)
with
Lor =;[V.-- DI V,~p(vV, ). DYV, (3.7
J ; [L,. D} . v, - B(L,U) . D¥X. v,
+V,. DI L, - BV, ). DR L L, {(3.8)
Son=0 (L. DI . L~ A(LD). DI . L]. (3.9

Y]
In terms of this operator, the variable A satisfies the
equation
-]
o Ay =gla@y . (3.10)
In general it is not possible, for an arbitrary potential

of mean force U, to exactly evaluate (Alexp(t£) | A) or,
equivalently, to solve Eq, (3.10).

In order to gain some understanding of the effect of
dynamical correlations on the relationship of single par-
ticle and collective correlation functions, therefore, we
must resort to an approximate solution of the many par-
ticle diffusion equation. The approach we use is a pro-
jection operator technique similar to that used in the
formal theory of Keyes and Kivelson. 18

We select as variables in this projection operator
scheme A,, the single particle variable, and the collec-
tive variable

A=A, -4, A4 lap4, . (3.11)
These variables are chosen so as to be orthogonal,

(A;1A) =0. The projection operator onto this set of two
variables therefore has a very simple form

P=|Ay@,la) @Al +lay@layal . (.12

We introduce also the orthogonal projector @ =1-P, In
order to obtain relaxation equations for A; and A,, we
operate on Eq. (3.10) with the projection operators P, @,

: Dynamical correlations in solution

to obtain the equations

= PlA®) = (PEPVPlA®) +(PLQIQIAM) ,  (3.13a)

= QlA(0) = (@LQ)e| () +@EP)PlA®) . (3.13b)

We solve Eq. (3. 13b) for @{ A(¢)) and substitute this
into (3. 13a)

E?'t P|A(H)=(PLP) P| AD))

t
+f0 ds P£Qexp[QLQ(t - 9] QEPP| A1) . (3.14)
where we have assumed the initial condition Q| A(0))=0,
Equation (3. 14) is exact,

The approximation'we introduce is to neglect the mem-
ory term. Thus we will be concerned with the dynami-
cal equation

= PlAW) = (PP P| AW) . (3.15)

This approximation is identical to the approximation
used by Bixon'" and by Zwanzig'® in deriving the Rouse—
Zimm theory of polymer chain dynamics from a many
particle diffusion equation. We also note that the ne-
glect of the memory term in Eq. (3. 14) is exact at short
times. This approximation is therefore also equivalent
to the moment theory approximation made by Ackerson
etal.,¥and to a decoupling approximation of Alten-
berger and Deutch? in their theories of the concentra-
tion dependence of the diffusion coefficient and light
scattering from polymer solutions. Neglected in this
short-time approximation are correlations with other
variables which would build up on the time scale of the
diffusion process. The inclusion of this memory term
would lead to nonexponential decay of the time correla-
tion functions.

The operator Eq. (3.15) leads to a relaxation equation
for the correlation functions of A4, and A,, which in terms
of the components A, = (4,, A,), has the form

o (Ao | PAW) = ; Tap (Ag| PA (1) . (3. 16)
The relaxation matrix is
L Adeldy Alelay | | A ]apt 0
Alela)y (Alela) 0 (Aap™
(3.17)

The matrix elements exhibited in Eq. (3. 17) can be
written as averages of one and two particle properties.
We shall use the notation

g= <Az' A (4, | A1>-1 ,
2= (4, L£| A4y (4] 2| A)?

In terms of these two expressions the relaxation matrix
is

(3.18)
(3.19)
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1 £-8
NRZNEIPN, <1+Ng) (3. 20)
WA | g (L222)

This matrix is of the same form as that appearing in
the Keyes—Kivelson theory. The solution of the relaxa-
tion equation therefore leads to the same conclusion as
in the Keyes—Kivelson theory, i.e., the single particle
and collective correlation functions both decay as single
exponentials with correlation times 7 and 7, respec-
tively, and the correlation times satisfy the relation

Ts/Tc 2[(1 +Ng")/(1 +Ng)] . (3. 21)

In the Keyes~Kivelson theory and in the application dis-
cussed here the single particle functions A4; are chosen
to be spherical harmonics of the orientation angles of
the sth particle.

The quantity g, a quantity of order 1/N, is identical
to the static orientation factor, analogous to the Kirk-
wood g factor, used by Keyes and Kivelson. The quan-
tity ¢, also of order 1/N, is an approximate expression
for the dynamical orientation correlation factor intro-
duced by Keyes and Kivelson. While in the formal the-
ory of Keyes and Kivelson the dynamical orientation
correlation is undetermined, our approximation expres-
sion Eq. (3.19) may be evaluated in terms of static cor-
relation functions.

We leave the tedious but straightforward evaluation
of the matrix elements involved in g to the Appendix.
The result is

. Qa 3 w 2.
Ng=—%[-—~—~—3§° ]3"—1{(1)]0 ~—f(l’i gy

8nmea” 5 4m 8.22)

where K(f) is a (nonzero) constant factor dependent
only on the [ value appropriate to the orientational
property considered (=2 for light scattering, I=1 for
dielectric relaxation, etc.) and f(l, [, 2; ry,) is related to
the invariant expansion of the two particle distribution
function® often used in equilibrium statistical mechanics
of complex fluids. The invariant expansion of the two
particle distribution is written

g(ry, @y, ry, Q)= ”Zl Fllels; 715) ¢111213(91, Q,, Q45)
14283

(3.23)
where ry,, §,, are the spherical coordinates of the vec-
tor rp-ry. The spherical invariant ¢;,;,;,(Q,, @2, 1)
is
L I
D111213 (B, Rz, Q) = Z

mymamsg

(- 1)
-—mz m Mg

X Y11m1(91)Y1 zmz(nz)Y'; amg (Q42)

(3.24)

The coefficient (I, 1, 2; r,) is involved in ¢ because of
the tensorial character of the rotation-rotation Oseen

: Dynamical correlations in solution 737

tensor. For comparison we note that the static corre-
lation factor g is dependent on the coefficient f(Z, [, 0;72)
Ng=o [ £, 1,0 9737, (3.25)
47 0
Expression (3.22) for ¢ is the primary result of this
section. Its numerical evaluation involves a knowledge
of the pair distribution function of the fluid, but several
qualitative conclusions can be drawn from this expres-
sion. These will be discussed in Sec. V.

IV. NONINTERACTING COUPLED ROTATIONAL
DIFFUSION MODEL

In this section we explore the consequences of the ro-
tational hydrodynamic interaction for a different model
system: spherical macroparticles in an isotropic fluid
where direct interaction between the particles is absent
and, accordingly, equilibrium angular correlations are
not present. In this model the appropriate diffusion
equation includes both translational and rotational dif-
fusion with hydrodynamic interaction. For simplicity
we shall ignore translational diffusion and focus on the
crossrotational effects. Since we neglect the effect of
direct interaction, our model should be restricted to
dilute systems. This restricted model is described by
the diffusion equation

aP(¢#) - (&

Y] +£,) P{f) = Lgp P(1) ,

(4.1)

where £, is the rotational diffusion operator for the in-
dividual particles
N
£q=2_ Do L(i) (4.2)
=0
with Dy = (2T/87ma% equal to the rotational diffusion coef-

ficient as given by the Debye Law, for independent par-
ticles, and

L¥(z)= V3, (4.3)

is the angular Laplacian operator. In the diffusion equa-
tion, Eq. (4.1), the operator £, describes the hydrody-
namic interaction between the particles; from Eq,

(2.27) one has

£ = > L) - . L(j) (4.4)
ETFAS L))
where
D] =k TTES . (4.5)

We are interested in evaluating correlation functions
of the form

Ca,5(t)={(4,(1) B,(O))) , (4.6)

where A,(f) denotes a function of the orientation of »n par-
ticles at time {, The double angular bracket signifies

an average over interparticle positions and over particle
orientation. Since the equilibrium distribution for this
N-particle disordered system is

P (@Y)=(dn)™ , 4.7)

the correlation function C,, g(f) may be expressed as
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Ca,s(0)= [ a0 P @) BLA™) exp(£) A,@") . (4.8)
The angular bracket in Eq. (4. 8) denotes an average
over the positions of the particles; the distribution of the
center of mass of the particles is considered to be inde-
pendent of particle orientation, consistent with neglect-
ing direct particle interactions in Eq. (4.1).

We shall evaluate correlation functions of several
cases of interest. Before proceeding, it is important
to note that the diffusion operators £, and £, commute
since

[L3(3), L()]=[L%), L(j)]=0. (4.9)
Accordingly, Eq. (4.8) may be expressed as
Can(t)= [ 40" P @") BL@")
X [(exp(£42)) exp(£ql) 4,(Q7)] . (4.10)

This simplification greatly facilitates evaluation of the
correlation functions of interest.

A. Two-point correlations

For this case, the dynamical functions A and B each
depend upon the coordinates of a single particle,

A=Y,.Q,); B=Y,.,&), . (4.11)
Since

Lo Y1(R,) = = Dol(1+ 1) Y1, (R,)
one finds

C,,,(t)=exp[ - Dyi(1+ 1)¢]

x j 49" P (@)Y, (R,) (exD(L11) Y1 (@) .

(4.12)
However, £, vanishes when it operates on any function
which depends upon the orientation of just one particle,
since this operator always contains products of the an-

gular momentum operators of two particles. Thus
C;,(t) = exp[ - Dol(1+ 1)¢]
x f a9 P, ()Y (@)Y, (@)
= exp[— Dypl(I+1)#]8,; 611+ S e + (4.13)

This result is identical to the result of the indepen-
dent particle Debye rotational diffusion model; self-
correlations decay exponentially and crosscorrelations
are not present. We may conclude that the rotational
hydrodynamic interaction that exists in the fluid is not
manifest in the two-point correlation functions when
translational motion is ignored and the rotational diffu-
sion coefficient is given by the longrange asymptotic
form discussed in Sec. II and explicitly displayed in
Eq. (2.27).

B. Four-point correlations

In this section we demonstrate that four-point corre-
lation functions are influenced by crossdiffusional effects
in the simplified model where D;, is given by Eq. (4.5),

when translational effects are ignored. The four-point
correlation function

Calt) = (YT (@) Y Ty, (02,)

x Yllml [ﬂl(t)] Ylgma[ﬂz(t)]>> ’

when expressed in terms of its Laplace transform

(4.14)

64(Z)=fwexp[—zt] c,()at, (4.15)
a
takes the form
Cy2)=Co2)+nC(2). (4. 16)

We shall show that in contrast to the case of two-point
correlations, the hydrodynamic interaction introduced
through £, influences C4(Z). An exact evaluation is not
possible, so we shall employ perturbation theory.

From Eqs. (4.14) and (4. 15) one has

CiZ) = Y omy Y iy [Z = Lo - &4 Vi Yigmy)) - (4.17)
We employ the operator identity
[Z - 85— &, =[Z - £ [1+ £4(Z - £ - £))71] (4.18)

to obtain an expression for the propogator to second or-
der in £,:

(Z-Ly-L)=(Z - L)+ (Z-L) (2 ~ £y

+ (Z —-eeo)-l £1(Z -430)-1 £1(Z - £D)-1+ P
(4.19)
When this expression is substituted into Eq. (4.17), one
finds
Co@)= Y Tomi Y iomp @ ~ £0)™ Yiimy Yigm)

={Z - o[l (4 + D)+ (I + 1)]}-16111161zléémlmiémamé

(4. 20)
and
ACZ)={Z - D[, (I + 1)+ L(ly+ )]}®
X (Y Fomt ¥ Tomg ©1£0) Yiymy Yigmy) (4.21)

where use has been made of the fact that £y and £, com-
mute. In Eq. (4.21) the inner angular bracket denotes
an average over particle positions and the outer angular
bracket denotes an average over particle orientations.
The linear term in £, from Eq. (4.19) does not contrib-
ute to AC(Z) because it vanishes when isotropically av-
eraged over particle positions.

The onlyterms in (£,£;) that make a nonvanishing con-
tribution to AC(Z), Eq. (4.21), are those that depend
upon the orientations of particles 1 and 2. Thus we may
take

(@180 = kTP (L(1) - TH5' - L(2)H .
A tedious but straightforward calculation leads to

2
(€420 = [—k—l] (;lg;)% [LPLE@)]+ (L) - L)

1677,
(4.23)

Accordingly, the correction term in Eq. (4.21) is
equal to

(4.22)
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AC(Z) = ks T/(167mp)F <—T—1§—z>{z +Do[ L (1l + 1) + L(L+ VI
X {2 3 (I + 1)Ly + 1) 6111 81555 Gmym Omam
+% Umi; Gmy|[L(D) « L2)F| imy; Lmo}

where we have introduced a Dirac notation for the re-
maining angular integrations.

(4.24)

_J

AC(Z)=[kpT/ (1671710)]2<—15->{Z + Dol L (I + 1) + LT+ DIY®
71z

x{% L+ 1) Il + 1)+§15 E{[F(h 1) = L5 +1) =

Thus for the symmetric four-point correlation func-
tion one finds that the simple exponential decay expected
on the basis of independent rotational diffusion,

Co(t) = exp{~ Dol 1y (1 + 1)+ Ip(l,+ V)] #} (4.27)

is modified by a time-dependent correction factor that
includes the effects of hydrodynamic interactions

t T
AC(#) = (const) l ar [ asflt-7) Fr=9)7(s),  (4.28)
0
where

F@)=exp{- D[y, (1, + 1)+ LI, + 1)} £}

and the positive constant equals

2
{const) = [1’2’; io] <;%;>{% L{l+ 1) {1+ 1)

(4.29)

+2—22__‘; [FIF+1) = 4l + 1) - LI+ 1)]?

X I <ll1‘n1; la"’lz. llle, M) ‘ 2 }. (4. 30)

In summary, we find that in this simple model where
translation is neglected, anisotropic forces are ignored
and only the longrange part of the hydrodynamic inter-
action is retained, the interparticle correlations in the
fluid will be manifest in the four-point correlation func-
tions but not in either the “self” or “cross” two-point
correlation functions. It is just these two-point correla-
tion functions that arise in depolarized light scattering
or magnetic and dielectric relaxation experiments.
Thus for systems which conform to the rather stringent
conditions of this idealized model, we would expect to
see no effect from the rotational hydrodynamic interac-
tion which is present between the particles. It is amus-
ing to note, however, that four-point functions of angu-
lar position arise in mode~mode coupling theories® of
the two-point orientational correlation function. We ex-
pect that the hydrodynamically induced correlations dis-
cussed here will be physically present in the systems
considered by these investigators.

C. Relaxing the assumptions of the model

The startling result of this simplified noninteracting
coupled rotational diffusion model is that the two-point
correlation function is unmodified from the independent

739

The matrixelement in Eq. (4.24) can be evaluated us-
ing angular momenta coupling F = L(1)+ L(2) and angular
momenta coupling coefficients

(WioF, M| lymy; Lymy)

The result is simplest for the symmetric case ;= 1,
m= m)'.’ b= lé’ me= m;

(4.25)

lg(lg+ 1)]2 \ <l1‘Wl1; lzmzl l1le, M)\z}} . (4- 26)

r

particle Debye rotational diffusion model [see Eq.
(4.13)]. This will not be the case if some of the as-
sumptions of the model are relaxed.

At first glance one might well assume that if the dy-
namics of translation (£r1+ £13) were included explicit-
ly in Eq. (4.1) in addition to £gg, that a different out-
come would be reached. However, this is not the case
for two-point correlation functions where the dynamical
variable of interest A is a spherical harmonic of the
orientation of a single particle. The reason for this
Yin(®R,) is an eigenfunction of the coupled nonintevacting
diffusion opevator. Thus®

[Erp+ Brr+Lra] ¥in(®,) = - Dol(1+ 1) Y, (&,) (4.31)

and )
exp[(Lrr+ L1r + Lrr) 1] Y, = exp[— Dol(l+ 1) 1] ¥, , (4.32)

where the operators are defined in Egs. (3.6)~(3.8)
with U=0 for this noninteracting case. Accordingly we
may conclude that the results of Sec. IV. A, in particu-
lar Eq. (4.13), will not be modified by including trans-
lational diffusion.

One might well inquire about what will cause a devia-
tion from the independent Debye rotational diffusion re-
sult in this model. In Sec. IO it has been demonstrated
that the presence of anisotropic interparticle forces
will cause deviation. However, there is another possi-
bility. Our derivation of the coupled diffusion coeffi-
cients p},”, DIF, D§,, is based on an approximate hy-
drodynamic treatment where the particles are consid-
ered as point disturbances that give rise to point sources
of force and torque in the fluid. Such a picture can only
be correct when the particles are separated by a dis-
tance much greater than their size. In this limiting
case one finds D};” = D, (rotational) for isotropic par-
ticles; the “self” diffusion coefficient is unmodified from
the Debye value Dy=[kT/877,a%] by the presence of the
other particles. However, in a more complete hydro-
dynamic calculation of the interaction between particles
[see, e.g., Refs. (11) and (12)] valid for closer inter-
particle separations, one would find, even with U=0,
the result that D§;" is an explicit function of particle
separation. This will have two important consequences.
First, Y,,(8;) need no longer be an eigenfunction of £z
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and second, the “self” two-particle correlation function
C,;(8) [see Eqs. (4.6) and (4. 11)] will no longer relax as
a single exponential.

Finally we note that if the particles are not spherical-
ly symmetric and therefore are characterized by a ten-
sor single particle rotational diffusion coefficient Dy,
then the analysis of the coupled, noninteracting diffusion
model presented in this section must be modified.

V. DISCUSSION

The hydrodynamic mechanism developed in this paper
provides a concrete model for which previous concep-
tions of dynamical orientation correlations can be
tested. The model is realistic for macromolecular so-
lutions but it should be applied to molecular solutions
with caution, because of the use of hydrodynamics at a
microscopic level.

Several experimental determinations of the dynamical
orientation correlation factor ¢ have concluded that g is
much smaller than the static correlation factor g. In
order to explain this observation, Gierke has recently
put forward an argument based on symmetry principles
which concludes that g vanishes for symmetric tops.’
This is not the case for the present model, because
Gierke’s assumption that the correlation of the angular
velocities of two different molecules is not related to
their relative positions and orientations, does not hold.

The present calculation immediately suggests one ex-
planation for why g usually is less than g. The static
correlation factor g can become quite large if there is
incipient long-range order in a fluid. It diverges for a
fluid approaching a liquid crystal transition point, such
as MBBA in the studies of Gierke and Flygare. * our
expression for g shows that this quantity is only weakly
influenced by long-range correlations because the hy-
drodynamic interaction between two molecules decreases
with increasing separation.

In Sec. IV we have specialized the coupled diffusion
model to the case where hydrodynamic interactions are
present for both rotation and translation, but where no
direct interaction is present between the particles. The
somewhat surprising conclusion of the analysis is that
the Debye law for two-particle orientation correlation
functions is not modified by the hydrodynamic mecha-
nism. This result is pertinent to some recent NMR re-
laxation experiments and their interpretation by Koenig
on aqueous protein solutions.® One qualitative explana-
tion put forward to explain observed deviations from
the Debye law for the water molecules involved long-
range hydrodynamic interaction between the spherical
protein and the water.® This explanation is not in ac-
cord with the present model, but of course, the diffu-
sional model may not be totally adequate since the ori-
entational relaxation time of the water molecules can
be comparable to the angular momentum relaxation time
of the protein molecules.

While for the isotropic case the two-point functions,
related to linear response measurements, are unchanged
by the hydrodynamic effect, four-point functions, re-

: Dynamical correlations in solution

lated to nonlinear response experiments, are modified.
This illustrates the difficulty in inferring details about
microscopic motions from comparisons of nonlinear and
linear response measurements, ?* It also illustrates a
potential weakness in simple decoupling schemes often
used in mode~mode coupling theories to relate multi-
point correlation functions to simpler correlation func-
tions.

Finally we wish to point out that the many particle
coupled diffusion-rotation model which we have dis-
cussed in this paper is a reasonable starting point in
the examination of many other problems where the ef-
fect of rotational motion on transport phenomena is of
interest.

APPENDIX

The matrix elements that interest us are of the form
My(l, m| U, m")= f AQY F (Q)[LY, 0 Q)]P. (@), (AD)
Myl m| ', m') = f 4Q Y (Q))[£Y,.,.. ()P, (@) .  (A2)

In evaluating these matrix elements it is advantageous
to perform some partial integrations to yield

My, m|l', m')

= - fdQ[L(l)Y;‘:n(Qo] . D?lrz . [L(l)Yl'm’(nl)]Peq(Q) >
(A3)
Myo(L, m|U'm")

=— fdQ[L(l)YTm(nl)] -Dfs - [L(2)Y;: 0 (R) P, (Q) .

(A4)
We have simplified these expressions by using the
fact that the variables Y,;,(Q,) are independent of the po-
sitional coordinates X;. It is very easy to evaluate the
one particle matrix element M,;; when the fluid is iso-
tropic:

W(I+1)
47

My, m |, m')=- D§%5,,06pme - (A5)

In order to evaluate the two particle matrix element
M,, we write the vector operator L in the basis
€,:€=¢,, et:q:(exiiey)/‘/_z— .

This gives

Miz= = 2 (LoD 1n(@0)F Drald| 4N Ler ()7 10w ()]

(A6)
where

(A7)

Using well-known angular momentum algebra, M;, can
be written as

Mip==2 (- D= 1 VI D VT + 1)

Dyy(q|q")=e,-DF . ek,

X(Lm+gq 1, —gq|ll, m* (U, m" +q'; 1, =" |1, m")
X (Y?.m*q(gl)plz(qlq')Yt‘.m‘Oq'(Qa» . (AB)
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We employ the notation and conventions of Edmonds. #
Using the explicit form Eqgs. (2.21) and (2. 27) for
D{¥, we find that D;,(q! ¢") can be written as

Dyylalq)= 59 320 (- 1)*
Y12 %3
1 1 2 1 1 2 *
A9
(02000 8 Pvsew, e
where ¢=— (kgT/1677,).

Thus M,, involves equilibrium averages of the form

Z = (Y @) ;15; (1) Yiv mrogr @) - (A10)

We can use the invariant expansion of the distribution
function® to write this average as

Z=4cV(BE1/2) (- 1)'""1f”f_(M dr
0

v
Xz;(; —lq’ ;)(_(m'l:,q') (miq) 2) (a11)

This expressicn, combined with Eqs. (A9) and (A8),
yields an expression for M,, as an integral over

(1, 1,2;7). When this result is specialized to the case
I=1', we obtain

Myl m | I, m)= <A2‘£‘A1)

=-cll+ I)K(l)(‘fsfﬁfow 1@, 1;2; D gy
(A12)
Since

Mt m| 1, m)= Ay 2] 4= - KD pge g5

we then obtain Eq. (3. 22) for ¢ where the coefficient
K(l) is

K1) = (A14)

1 1 1 2
@+ ni+niyr 1 1
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