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The effect of solvent dielectric constant on the frequency shifts and intensity of the electronic absorption
spectrum of a dissolved molecule is investigated using Wertheim’s dielectric model. The results show
significant differences from those based on use of the Lorentz-Lorenz and Onsager-Boticher continuum
theories, as well as from the results of a lattice model recently considered by Fulton.

I. INTRODUCT!ION

In a recent paper! we have studied the dependence of
light scattering intensities on the dielectric constant of
a nonpolar fluid as predicted by several “local-field”
models for dielectric properties. It was found that
Wertheim’s? model led to better agreement with experi-
ment than the results obtained with either the Lorentz-
Lorenz or Onsager—Bottcher models, It is of interest
to compare the predictions of these dielectric models
in a related application, namely, the influence of the
solvent on the electronic absorption spectrum of an im-
purity solute molecule.

Most previous investigations®*=7 have examined solvent
effects using Onsager’s dielectric continuum theory.
An exception to this is the recent work of Fulton, ® which
takes account of the microscopic structure of the medi-
um by modeling the solution as a rigid cubic lattice
whose sites are occupied by solvent and solute mole-
cules. An analogous microscopic treatment in the case
of a real liquid is much more difficult to carry out, ow-
ing to the occurrence of fluctuations in the positions of
the molecules. Hence we restrict our analysis to a
comparison of previous results with those derived
using Wertheim’s? approximate local-field model, which
we believe! to be more realistic than other continuum
theories.

ll. THEORY

We consider a system composed of one impurity sol~
ute molecule dissolved in a solvent of dielectric con-
stant ¢,. Near an isolated resonance the polarizability
a,(w) of the solute molecule, assumed isotropic, is of
the form®?

el &)

a,(w)=a, + wy= W =tyw ’

where f, is the oscillator strength of the transition hav-
ing resonance frequency w,; e and m are, respectively,
the electron charge and mass; y is a damping factor;
and a, is the background contribution of other transi-
tions,

The various local-field models (Lorentz-Lorenz, On-
sager—Bottcher, Wertheim) are based on a continuum
approximation of surrounding the solute molecule by a
homogeneous medium characterized by the dielectric
constant ¢,. These models differ in the constraints im-
posed on the “local electric field” acting on the molecule
due to the surrounding continuum.! In the presence of
an external electric field E,(w), the average dipole mo-
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ment u(w) induced in the solute is given according to
these models by the general expression

p(w)= 0, (WIE, (w)+bE(w)] , (2)
which can be written

Blw)= el (w)E (w), (3)
where

Apart from a change in the sign of b, we have followed
earlier notation.! By analogy with the Onsager—Bott-
cher model, the electric field E;(w) may be interpreted
as the “cavity field,” i.e., the field at the position of
the solute dipole resulting from modification of the ex-
ternal field Ey(w) by the surrounding solvent medium.
The factor bu(w) in Eq. (2) represents the “reaction
field,” i.e., the field due to polarization of the sur-
roundings by the dipole moment fi{w).

Using Eqs. (1) and (4), we obtain

N 1 Efo/m
au(@)-ab+(1+bo€?(w§—;"—ivw) ' ©
where
Wi of = DEFa/m (6)

°" 1-ba, °’

and ay= o,/(1 = ba,). The “cavity field” E,(w) does not
depend on the properties of the solute dipole. Thus
Egs. (3) and (5) show that w, is the effective resonance
frequency of the absorbing molecule in solution. Since
w?— B~ 2wy(w, - wy)=2w,Aw, the frequency shift may
be written

- ;Zguo (1 —bba,,) . ™

The absorption intensity in solution may be deter-
mined from the energy transferred to the solute dipole,
Since E; (w) is the field at the dipole due to modification
of the external field by the solvent continuum, an ele-
mentary calculation'® gives for the absorption cross
section o(w)

Aw=

otw)= 212 | Bl ¥ 1o
_4ne’fy | Eglw) |21 WPy
= E’J(w) a- ba;if((wg A wz,yz) , (8)

where c is the vacuum speed of light. The field E; (w)
may be related to the Maxwell field E(w) in the medium
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TABLE I. Solvent effects according to local-field models.
Lorentz—Lorenz Onsnger—Bt.).ttcherb Wertheim®

H E53_2 253;51 V(-8

b 0 ?-Z(E-:—f]i)) 1—;5 16¢/R}

samt o G M v

AglA, n]_s 5-‘;—2) ’ i(z—zn—g’/‘i—s) nl—s{q(— £){1 ~16£a,/RE}?

% = —e’fo/ miRy.

€, and ¢ are related by Eq. (14),
®:2 is defined by Eq. (13).

by the expression
E (w)=HE(w) , (9)

where H is a function of the solvent dielectric constant
€, whose form depends on the local-field model being
considered. Using the result!*

E{w)
Eyw)
1/2

where n, = €,/ is the solvent refractive index, we obtain
for the integrated cross section A4, = [ dwo(w),

aref, 1 ( H )2
A= — .

me  ng \1-ba,
The vapor phase result for the integrated cross section
A, of the solute is found by letting e, ~ 1. In this limit,

b—~0 and H—1; hence the ratio of solution and gas phase
cross sections is

L(_#
n \1-bay

The expressions for the frequency shift, Eq. (7), and
for the intensity ratio, Eq. (12), are the central results
of this analysis. These results are in a form that per-
mits comparison of the various local-field models. Ex-
plicit expressions for the functions H and b are collected
in Table I, along with the resulting expressions for Aw
and A,/A,. We draw attention to the following: (1) The
parameter b is zero in the Lorentz- Lorenz model, so
that this model does not predict a frequency shift. The
corresponding expression for the intensity ratio A,/A4,
agrees with the result of Chako® and Polo and Wilson, *
(2) We define the “internal” refractive index z, of the
solute by

2

1 (10)
nS

(11)

Ag/A = (12)

2
m=-1_0 13
n+2 R (13)

where R, is the solute “cavity radius.” The resulting
expression for AS/A, in the Onsager~Bottcher model
agrees with Person’s® result, while in the case n§= 1
(@, =0) the result for Aw agrees with that obtained by
Bayliss.® (3) The variation of Aw and A;/A, in Wer-
theim’s model with the solvent dielectric constant ¢,
can be determined by inverting the relations?

(1+28)
CI(E)=(—1—_—£F— ’

to give £ and g(- £) as functions of €,. These results
are discussed in the following section.

€. =q(28)/q(- £), (14)

: Solvent effects on electronic spectra

i1l. DISCUSSION

For the case a,=0, Wertheim’s model gives Aw/k
=8¢, This is plotted as a function of the “Bayliss pa-
rameter” y=|[(e, - 1)/(2¢,+1)] in Fig. 1, on the curve
marked W, The corresponding result in the Onsager-
Bottcher model is Aw/k=y, shown by the dashed line in
Fig., 1. As y increases, there is an increasing positive
deviation of 8¢ from the value y. By inverting Eq. (14),
we find for small y

509

8£:y+%y2+—a-y3+... (15)

As ¢,~ <, y attains the limiting value of }, whereas Eq.
(14) shows that 8¢ approaches its maximum value of 4 in
this limit.

For a, >0, the behavior of Aw/k in Wertheim’s model
is similar to that for the case o, =0, with the deviation
(Aw/k - y) at fixed y increasing as o, increases. For
a, =0, the Onsager—Bottcher model also predicts a posi-
tive deviation from the Bayliss result Aw/k=y, although
showing less dispersion as a function of @, than does
Wertheim’s model. One should note that for (a,/R3)
=1/8, both Aw/k and A,/A, in Wertheim’s model di-
verge as ¢ approaches the value (16a,/R3)™!. Restrict-
ing ourselves to values of £ =< (16qa,/R3)™?, for given q,
we find (Aw/k) (Wertheim) > (Aw/k) (Onsager),

This behavior of the frequency shift in Wertheim’s
model differs significantly from the predictions of Ful-
ton’s lattice calculation.® The present results for Aw/k
may be compared with Eq. (70) in Ref. 8, upon identify-
ing Fulton’s parameters d2 and v (volume of primitive
cell) with e?f,/2mw, and 47R3/3, respectively. For
given a,, (Aw/k) (Fulton)< (Aw/k) (Onsager), while as a
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FIG. 1. Frequency shifts according to Wertheim’s model

(W) and Fulton’s model (F), for o, =0, as functions of the Bay-
liss parameter (€,—1)/(2€,+1), Straight dashed line of unit
slope is the prediction of the Onsager~Bottcher model.
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FIG. 2. Ratio of solution to gas phase integrated intensities as

functions of solvent dielectric constant, for o, =0, as given by
the models Lorentz~Lorenz (LL), Fulton (F), Wertheim (W),
Onsager—Bottcher (OB).

function of o, Fulton’s result for Aw/k shows less dis-
persion than does the Onsager—Bottcher approximation.?
This contrasting behavior of the frequency shift if Ful-
ton’s model for the case @,=0 is shown in Fig. 1, on
the curve marked F.

As Fulton® has observed concerning his results, for
small ranges of ¢, the relation between Aw and y in
Wertheim’s model is approximately linear, although a
linear extrapolation of the curves back to y =0 does not
pass through the origin. Such behavior is often observed
experimentally. ''** However, quantitative comparison
between experiment and the theoretical results discussed
here hinges on determining the parameters R, and a,,
which cannot be specified unambiguously.

When a,=0, the relative behavior of the three local-
field model predictions for the absorption intensity ratio
A,/A, is similar to that found previously! for light scat-
tering intensities. For all ¢, we find

(4,/4,) (Lorentz) > (4,/A,) (Wertheim)
> (4,/4,)(Onsager) .

Curves of (4,/4,) as functions of ¢,, with a,=0, are
displayed in Fig. 2. When o, >0, the trend (4,/4,)
(Wertheim) > (4,/A,) (Onsager) is maintained, although
for low values of e, one or both of these can exceed
(4,/4,) (Lorentz). As ¢,—~«, these functions behave
asymptotically as

(4,/A,) (Lorentz)~nd/q , (16a)

5317
n2+2\% 1
(4,/A,) (Onsager)~ -—15— el (16b)
S
while using Eq. (14),
81 3 (16¢c)

(A,/A,) Wertheim) - 2751~ 80, /R37 s

For a,=0, these results for (4,/4,) are compared in
Fig. 2 with those derived by Fulton.® The latter agree
most closely with the results given by Wertheim’s mod-
el for the moderate values of ¢, considered; however,
(A,/A,) according to Fulton’s evaluation grows as »} for
large n,, similar to the behavior of the Lorentz-Lorenz
model.

The differences between the predictions of the local-
field models, in particular Wertheim’s model, and Ful-
ton’s lattice model may be attributed to the approxi-
mate nature of the former and to the different physical
situations described. At low to moderate solvent den-
sities we expect that fluid translational fluctuations,
which are partially accounted for in Wertheim’s model,
should lead to differences from a model based on a rigid
lattice structure for the solution, At high solvent den-
sities, presumably corresponding to high values of ¢,,
the fluid structure should more closely resemble that
of a close-packed solid and the predicted behavior ap-
proach that discussed by Fulton. (In this regard, it
should be noted that the numerical results presented in
Ref. 8 involve several approximations which affect the
high ¢, behavior. ) In a real fluid, however, the be-
havior at high density is probably more sensitive to a
number of unaccounted effects (e.g. , short-range over-
lap) which diminish the validity of the model considered
here and in Ref. 8, employing point dipoles with con~
stant polarizabilities.
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