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and Ni(110) surfaces. The change in the work function
with coverage A¢ can, with some reservations, be
identified with a quantity proportional to the quantity of
hydrogen adsorbed, and thus with the conventional iso-
therm equations as developed by Langmuir and later
workers, and put on a sound theoretical basis by Fow-
ler. (Fora concise account see Ref. 2, pp. 825-838.)

The results of dynamic and equilibrium measurements
on the Ni(111) and (100) surfaces were quite similar to
each other. Isosteric heats were substantially constant
between A¢ values that would correspond to fraction
coverage 6 between 0. 2 or less and about 0.6 to 0. 8.
These results indicate that the surface can be consid-
ered uniform, over a wide range of coverage.

The rate of adsorption, which depends on the hydro-
gen pressure, can be characterized by a function of 6
and other variables. The sticking coefficient s is con-
veniently written as the sticking coefficient of a bare
surface s, multiplied by 7 (¢) which is unity at zero cov-
erage and zero at =1, but otherwise unspecified. The
rate of desorption can likewise be characterized by a
function g(6) which multiplies a rate constant § that is
independent of coverage.

Independent kinetic measurements lead Christmann
et al., to the conclusion that adsorption is first order
and that £(6)=1- ¢ and that desorption of H atoms to
form H, is bimolecular or g{0)=6% These assignments
lead to an isotherm of the form C™[6%/(1 - 6)]=py,,
which is in reasonable agreement with the isotherm
data.'

The mechanisms for adsorption and desorption ad-
duced do not form a balanced pair and therefore cannot
constitute the basis for an equilibrium isotherm. (See
Ref. 2, pp. 659-660.) Thus the functions f(6) and g(6)
are not independent of each other, except at some dis-
tance from equilibrium.?® It is clear that in this simple
case that the mechanism for adsorption requires two
sites for H and is also bimolecular so that f(8)=(1 - 6)%

This change in 7 (6) gives as the adsorption isotherm
the Langmuir equation for dissociative adsorption 6/(1
-6)=(py,/C)/?.* This equation also fits the data ade-
quately in the intermediate range. The isotherm equa-
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tion used by Christmann ef al., and the Langmuir equa-
tion fit the data equally well because they differ very
little except at high coverage where the isosteric heat
is dropping and neither equation is applicable.

In the simple case above, when the energy of adsorp-
tion is constant, and interaction between H atoms can
be neglected, the Langmuir equation is inescapable
for the case of localized bonding, but what of more
complex models? The introduction of nearest-neighbor
interaction with an interaction measured by an energy-
of-interaction parameter y; was used by Langmuir and
Fowler to work out the simplest theory of the surface
critical phenomenon. In the Bragg-Williams approxi-
mation, the adatoms are still distributed at random, so
that 7(8) still may be set equal to (1 - 6)%. The isotherm
has the form, (valid for very small values of x,/%£T only)

pu,/C=[6/(1~6)? exp[~ 26x,/kT] .

Thus g(#), in addition to the factor 6% contains an ex-
ponential term, which still implies a bimolecular pro-
cess but with an (average) activation energy that varies
(slightly) with coverage.

For the case where there is strong attractive inter-
action with 2D phase separation as is observed on the
Ni(110) face, condensation and evaporation only along a
line between the phases is an adequate balanced mecha-
nism, even if one that is not realistic. This mecha-
nism would suggest a zeroth order rate, rather than the
first order evaporation rate observed by Christmann
et al. Further analysis is suggested. Regions of inter-
mediate interaction with incipient segregation are ex-
tremely difficult to discuss, even in the equilibrium
state.

I am indebted to Professor S. Fain for valuable dis-
cussions.

K. Christmann, O. Schober, G. Ertl, and M. Neumann, J.
Chem. Phys. 60, 4528 (1974).

’R. H. Fowler, Statiscal Mechanics, (Cambridge University,
Cambridge, England, 1936).

3L. Onsager, Phys. Rev. 37, 405 (1931).

4. Langmuir, Proc. Nat. Acad. Sci. 3, 141 (1916); J. Am.
Chem. Soc. 54, 2798 (1932).

Hydrodynamic boundary conditions and polymer dynamics*
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It is usual in polymer dynamics to picture a polymer
chain as a connected sequence of segments immersed in
a viscous medium. Kirkwood—Riseman (K/R) theory!

treats these segments hydrodynamically as point centers

of friction. In extending K/R theory, many authors
have attempted to take into account the finite size of the
segments,? In this note we focus on qualitative aspects
of treating the segments as extended bodies and on the
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role of hydrodynamic boundary conditions.

The dynamics of a polymer chain are described by a
diffusion equation for the configuration probability dis-
tribution P{R,}, #)

—a;t’:Zv,.- D, - [V, P-(ksT)Y(V, V) P] , (1)
Jk

where summations run over the N segments of the chain,
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U({R,}) is the interaction potential, and D,, the many-
particle diffusion tensor, which is proportional to the
inverse of the many-particle friction tensor D, =k T
X(&)7-
In K/R theory the diffusion tensor is approximated by
D, =kgT[ 55 0,1+ (1= 8,) TR, , (2)

where ¢, is the friction coefficient for an individual seg-
ment and T(R) is the Oseen tensor

__1 [,,RR
TR g [n Rz] , (3)

which approximately describes the velocity perturbation
induced at point R due to a force exerted at the origin
on an incompressible fluid of viscosity 7.

While asymptotically exact when the segments are so
far apart as to be treated as point centers of force, the
Oseen tensor is a severe approximation to the hydrody-
namic interaction that would exist between two spherical
beads of finite radius “a”, For neighboring segments a
question arises about the consequences of an improved
description of the interaction between the segments, At
first glance the answer to this question is not reassur-
ing. While it is not possible to solve exactly for the
flow profile around all segments, it is possible to exam-
ine the case of radial motion of two segments. This
should capture the essential limiting features since,
when two segments come together and deviate strongly
from the Oseen description, the presence of the
other segments will not be crucial. In the case of rela-
tive radial motion, the strongest deviation from the
Oseen approximation occurs., This motion, which
arises in the nonsteady motion of the polymer, is de-
scribed by a reduced diffusion equation.

0Py _o . 2ksT
#—V, igoﬁ(y)[vrprol_(vrlj) Prol]} s (4)

where we have used Eq. (2) for the case of the relative
diffusion constant and write for the relative friction co-
efficient (£,/2)8(»). According to the conventional wis-
dom one adopts stick boundary conditions on each seg-
ment; we may then use the exact series solution® for
B(»). At large separations the limiting form for stick
B(r)=1+(8a/27) is in agreement with Eqs. (2) and (3)
when the stick expression for the segment friction coef-
ficent is employed, &, =677a. In contrast, at small
separations, the exact expression for 8(») diverges
strongly as the spheres approach contact: 5(#)
~a/[2(r - 2a)]. This divergence is due to the large ve-
locity gradients which arise between the segments. The
deviations between the large separation limiting form,
which in the Oseen approximation is assumed to hold at
all separations, and the exact expression become pro-
gressively larger near contact and one might anticipate
large deviations from the predictions of conventional
polymer dynamics as are seen, for example, in the
theory of diffusion controlled reactions. *

It is tempting to inquire if this situation would be sub-
stantially altered if one assumed slip boundary condi-
tions in place of stick for each segment, The use of
slip boundary conditions when hydrodynamics is applied
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at the molecular level has recently been receiving a
good deal of experimental support.® In the context of
conventional K/R theory, with the Oseen approximation,
the net effect is to replace the stick value by the slip
value ¢, =41ma in Eq. (2). Such a scale change can be
accomodated without discomfort. On the other hand,
the resulting situation, when one examines corrections
to the large separation Oseen approximation, is a good
deal more reassuring. For a pair of spheres the re-
sults of Wacholder and Weihs® for slip boundary condi-
tions show at small separations B(#)~1ln(r - 2a)™, which
is a much weaker divergence than the stick case. The
divergence is sufficiently weak to give a finite coagula-
tion rate in contrast to the stick case.” Despite the
logarithmic singularity, the difference between the ex-
act B(R) for slip and the large separation Oseen form
B(R)=[1+(a/7)] is so slight that one may plausibly be-
lieve that the Oseen approximation is not too severe,

The differences between stick and slip boundary con-
ditions are not as pronounced in the steady flow fric-
tional properties of polymers. The translational fric-
tion constant, for example, does not involve the rela-
tive motion of the segments. For translation of two
spheres along their line of centers, the exact result?
for the drag on stick spheres is finite and differs from
the Oseen approximation at contact by only 10%. The
Wacholder and Weihs result for slip spheres is closer
to the Oseen approximation, differing by only 5% at con-
tact. While exact results for other steady flow friction-
al properties are not available, it is unlikely that strong
differences between stick and slip will arise, in con-
trast to the case of internal dynamies.

In summary, in this note we raise the possibility that
in polymer dynamics slip boundary conditions should be
imposed at the segments. At the level of the Oseenap-
proximation this modification requires little quantita-
tive adjustment, but, perhaps, a qualitative change in
our image of solvent flow through a polymer. We have
presented a heuristic argument that large quantitative
differences between “stick” and “slip” will emerge for
descriptions of internal polymer motions that are more
accurate than the Oseen description. In contrast with
stick, the results of a more accurate theory with slip
is apt to agree within a few percent with the results of
the Oseen approximation with slip.
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