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Approximate calculations of the hydrodynamic effect on diffusion controlled reaction rates yield finite
corrections to the Smoluchowski law. However, exact calculations using hydrodynamics with stick
boundary conditions have the unsatisfactory feature of predicting a vanishing coagulation rate. In this
paper it is demonstrated that this failure of the theory is due to the stick boundary conditions. It is shown
that hydrodynamic calculations with slip boundary conditions yield a finite coagulation rate. The exact slip
hydrodynamics result indicates a reduction of 29% in the coagulation rate of neutral particles relative to
the classical Smoluchowski theory. This is a smaller result than the 46% reduction predicted by the
approximate Deutch-Felderhof theory for particles with stick boundary conditions.

I. INTRODUCTION

For many fast chemical reactions in solution the rate
limiting step is the diffusional encounter of the reac-
tants. The classical Smoluchowski theory! of these dif-
fusion-controlled reactions models the random motion
of the reactants before reactive encounter with a simple
diffusion equation. The potential forces between reac-
tant particles were first taken into account by Debye. ?
In recent years, several authors have noted that the dif-
fusion of the reactant particles towards each other is
impeded by a hydrodynamic effect which arises because
the particles must force the solvent out of the path of
their mutual approach. The resulting drag force on
each particle is greater than if the particle was moving
by itself, this additional drag is referred to as the hy-
drodynamic interaction. This effect is taken into ac-
count by the use of a relative diffusion constant which
depends on the separation of the particles D(¥).

The treatments of the hydrodynamic interaction effect
due to Friedman® and to Deutch and Felderhof?! used a
form of D(v) derived from the Oseen tensor which is
valid for large separation. Honig, Roebersen, and
Wiersema, ® on the other hand, used a form of D(») de-
rived from an exact calculation of the drag on approach-
ing spheres due to Brenner.® This calculation, for
spheres of equal radii with stick boundary conditions,
indicates that viscous drag diverges strongly as the
spheres touch. In the absence of attractive forces
which become infinite at contact, this divergence pre-
vents the contact of the approaching reactant particles.
Naively, this indicates the rate of reaction would van-
ish. Even allowing for reaction before the reactant par-
ticles are in contact, this result would imply extremely
large corrections to the classical diffusion-controlled
reaction rate. The consequences of stick hydrodynam-
ics for diffusion-controlled reaction theory is extreme-
ly unsatisfactory.

While it may be necessary to describe the relative
motion of the reaction particles near contact on a mo-
lecular basis, in this work we note that the vanishing
reaction rate predicted by the previous hydrodynamic
theories is a result of the assumed stick boundary con-
ditions on the spheres. Here we show that hydrodynam-
ic calculation of the viscous drag on approaching equal
spheres with slip boundary conditions yields only a
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weakly divergent drag on contact and gives a finite hy-
drodynamic interaction correction to the diffusion-con-
trolled reaction rate.

It has been argued that the use of slip boundary con-
ditions is more reasonable than stick boundary condi-
tions in hydrodynamic calculations for small molecules’
and this view has received considerable experimental
support. It has long been known that translational dif-
fusion constants for small molecules satisfy relatively
well the Stokes-Einstein relation for slip spheres.®
Recent light scattering and NMR measurements of ro-
tational relaxation times by Bauer et al.® agree in most
cases, where hydrogenbonding with the solvent is unim-
portant, with the hydrodynamic calculations of Hu and
Zwanzig!'? for slip ellipsoids. Hydrodynamic calcula-
tions by Youngren and Acrivos'! using a more realistic
molecular shape for benzene also agree rather well
with experiment.

The extraordinary agreement of continuum hydrody-
namic calculations with experimental measurements of
molecular transport properties is enigmatic, and the
application of such calculations to relative diffusional
motion at small separations extends, perhaps reckless-
ly, this view to its extremes. However since the differ-
ence between “slip” and “stick” boundary conditions
makes such a qualitative difference on the predicted
rate of diffusion controlled reaction (in the idealized
case where direct forces may be neglected) experimen-
tal tests may be a severe check on the application of
hydrodynamics to molecular phenomena.

In the next section the theory of diffusion-controlled
reactions is briefly reviewed. Section III is concerned
with the hydrodynamic theory. The qualitative reason
for the divergence of the drag in the stick case is dis-
cussed and the results of the slip calculation are ana-
lyzed. The final section discusses the result for the
hydrodynamic effect on the diffusion-controlled rate and
compares it with other theories.

Il. DIFFUSION-CONTROLLED REACTION THEORY

We assume?*? that the distribution function P(r,, ...,
r,, ) in the 3n-dimensional coordinate space of n Brown-
ian particles satisfies a coupled diffusion equation
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%:ZVJADM-VkP({r,,},t)—EV,"[A,-P], (2'1)
ik i

where Dy, is the diffusion tensor which couples the mo-
tion of the particles and the streaming term A; is re-
lated to the interaction energy of the » Brownian parti-
cles by:

A,=(kBT)“szjk- v, udr.) .

If the concentration of reactants is low the distri-
bution function can be approximated by a superposition
of two-body distribution functions which satisfy a re-
duced equation

oP
'g(ru T 1) =V (D (Vi +8Y,Upp) +Dyp* (Vo4 8V, Up)) P

+Vy+ (Dgz- (V3+ 8V, U} +Dy, - (V,+8V, U P,

where 8=(kzT). @.2)

We consider explicitly the case where the reactant
particles are identical and react on contact and where
the two particle potential U,, is spherically symmetric,
Up(ry,r)=U(lr, ~1,!). In this case, to determine the
reaction rate we need only spherically symmetric solu-
tions

P(ry,ryt)=P(lr;~1,0 =7,¢) . (2.3)
For solutions of this form, Eq. (2.2) reduces to
(aP/8t) (r, 1) ==V - j(r, ) , (2.4)
where the current j(r, ¢) is
j(r, ) == (D, + Dy ~ 2Dy,) [V P+ B(VD) P]
=-D(»)- [VP+p(VI) P] . (2.5)

These equations are solved with an absorbing bound-
ary condition at contact P{ =2¢) =0 and the boundary
condition that P(r) tends to the equilibrium distribution
nf exp - BU(r) as ¥— ©, where n, is the reactant concen-
tration. According to Eq. (2.4) the steady state flux
through any spherical shell is a constant J. Thus the
radial current density is

. J apP du
Jp= -'4”—1,5=D(r)[;+ B(;)P} .

The steady state solution to Eq. (2.4) satisfying the
boundary condition at infinity is

2.6)

o eﬂ ulr')

28Ut _ -BU(r)f ,
P@r)=nie 4 € i 7*——12D(r,)dr

po 2.7

In order to satisfy the absorbing boundary condition
on contact the flux must be

2 © eBU(r) -1
J =nj 41r[j;a T———-zD(r)d'r]

The chemical reaction rate coefficient % is related to
this flux by k= (J/n?).

(2.8)

In the Smoluchowski model I/ =0 and there is no dif-
fusive coupling between the particles. For this model
Dyy(7) =Dyp(r) =D, a constant and Dy, =0, In this case
we obtain the classical Smoluchowski rate constant.

Rgy = 47(2D) (2a) . (2.9)

I1i. HYDRODYNAMIC CALCULATIONS

A generalized Einstein relation connects the diffusion
tensor D, with the friction tensor ¢,, which relates the
drag forces on the Brownian particles to their veloci-
ties:

Fi=_§;§n°Ulz .

The generalized Einstein relation indicates that the
diffusion tensor is k;7T times the inverse of the friction
tensor. !?

(3.1)

For the hydrodynamic calculation of D{») for equal
spheres it is convenient to write the relation between
the drag forces in the following way

F1=_trel° (U1"U2)“:o' (U1+Uz) »

(3.2)
Fo==§is (U= ~ {4 (U +U,)

It can be shown that the relative diffusion constant is
related through an Einstein relation to ¢, :

D(T) =_.__kLL .

7o ;rel' r (3. 3)

The relative drag coefficient (£,,,),, is thus related
to the drag force experienced by two equal spheres ap-
proaching each other with equal but opposite velocities.
The hydrodynamic calculation of the drag on approach-
ing spheres has been treated by many authors. 1314815

The steady low Reynolds number Navier-Stokes equa-
tions for an incompressible fluid are

nViv-Vp=0 , (3. 4a)

vV.v=0 , (3. 4b)

where v is the velocity field, p the pressure and 7 is
the shear viscosity. These creeping flow equations are
solved with appropriate boundary conditions on the mov-
ing spheres. There is a kinematic boundary condition
on the velocity component normal to the spheres:

(v-U)-i,=0 , (3.5)

where U, is the velocity of sphere a and i, is the normal
to the sphere. In macroscopic hydrodynamics one usu-
ally takes the stick boundary condition on the tangential
velocity component

(v-U,)* iy =0 , (3.6)
where i,,, is a vector tangent to the sphere. The slip
boundary condition, requires that the tangential stress
component vanishes at the surface of the spheres:
O=m,, =n(0v,4/8n) . (3.7
The creeping flow equations for the case of two equal
spheres moving along their line of centers can be solved
using a bispherical coordinate system which is fully de-
scribed in Ref. (13) Appendix A.19. Using these solu-

tions of the creeping flow equations, Brenner has given

an exact series expression for {,,,:
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B(r) = ~ ) ‘smhaz(znn(n+1)

Eret(? ) 1)(2n+3)
X(4c95h2(n+§)a+(2n+1)2 s.inhza_1> (3.8)
2sinh(2n + 1) ~ (2n+ 1) sinh2a ’
where a is defined by
cosha = (»/2a) (3.9)

At large distances only the first terms of the series
are large and the limiting form is

Br)=1+(3a/27)++ - (3.10)

The Deutch—~Felderhof approximate treatment of hy-
drodynamic interaction treats the spheres as point cen-
ters of drag and thereby reproduces this large distance
limiting form when the drag coefficients onthe individual
particles are given by stick boundary conditions.

While the Deutch—Felderhof drag remains finite at
contact, the exact 8(») from Eq. (3.8) diverges at con-
tact. Near contact the hyperbolic functions in (3.8) can
be expanded in power series in a. One finds

B(’l’)=[a/2(’r—2a)]+e..

This strong divergence in the drag causes the inte-
gral in Eq. (2.8) to diverge and thus predicts no coagu-
lation.

(3.11)

The origin of this strong divergence lies in the use of
stick boundary conditions as we can see from qualitative
arguments of lubrication theory.!* When the two
spheres are close together there are large velocity gra-
dients in the gap between the particles. We see from
Fig. 1 that if the gap /=7~ 2q¢ is much less than the
sphere’s radius the spherical surfaces in the gap region
can be replaced by planar surfaces. As the spheres
move together the incompressible fluid in the gap re-
gion must be pushed out, The amount of fluid expelled
per unit time is approximately Au where « is the veloc-
ity of approach and A is the effective surface area of
the parabolic surfaces of the sphere in the gap region.
This area is of the order A ~al because of the near pa-
rabolic equation of the surfaces. The velocity of the
expelled liquid », must then be of the order Au/A’,
where A’ is the area of the sides of the gap region 7ol
=a/213/2 Thus the velocity of the expelled fluid which
is approximately parallel to the near contact surfaces
of the spheres is

v, _~__u(al/al/213/2)=u(a1/2/l1/2) .

Because of the stick boundary condition the velocity
1

(3.12)

FIG, 1,
surface area of gap surfaces, is proportional to»;. A’, the
area of the sides of the gap region, is proportional to 7,l.

The gap between two spheres near contact.
2

A, the

tangential to the spheres must vanish at their surface.
The velocity gradients in the gap are therefore of the
order v,/l = ua'/?/I*/% These large velocity gradients
give rise to a large amount of dissipation. The energy
dissipation is

T$=fd3x%anv|2 (3.13)

This dissipation is therefore of the order

Lo, /1R AL~ 5 ma/1%) - al - 1 =5 muP(a®/1)
The energy dissipated 7§ is also one-half the product
of the drag force and the velocity Fu/2. Therefore

(@®/Du (3.14)

Thus we see that the divergent drag coefficient is due
to the large velocity gradients which arise because of
the stick boundary condition,

With slip boundary conditions such large velocity gra-
dients do not arise and the drag coefficient is not so
strongly divergent,

Using bipolar coordinates Wacholder and Weihs!® have
investigated the drag on two fluid spheres. In the limit
where the viscosity internal to the fluid spheres is zero,
the drag reduces to the drag for the two spheres, with
slip boundary conditions. One obtains in this way a
series expansion for the relative drag g(»);

e-(n+3/2)a

B(r) = sinho.

£416(2n +1) sinh(n - 3)a sinh(z + 3)a

~[(2n = 1) et/ B _ (29 + 3) e~ "*3/2)% | [ginh(n + $)a — sinh(n ~ %)oz]} .

At large separations the first terms dominate and
B(r) is asymptotically

Br)=1+(a/r)+-+- | (3.186)

n(n+1) 1 (e-(n-l/Z)a_
2n-1

2713 )[(Zn +3)2 sinh(n + $)a — (22 — 12 sinh(n - $)a]

(3.15)

r

which is the asymptotic form predicted by the Deutch-
Felderhof theory using the slip value for the individual
drag coefficients.

In order to find the asymptotic behavior of the series
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3.0

EXACT SLIP

DRAG

2.0 f——————

D.F sup/

FIG. 2. The drag ratio A(r)
versus gap length z=»—2a.
The curve marked “D, F.
stick” is that computed from
the orginal Deutch~Felderhof
theory. The curve marked
“D, F. Slip” is that computed
by modifying the Deutch—
Felderhof theory for slip
boundary conditions. Notice
that the exact slip B(r) is a
linear function of 1n(24/1) for
small I, as predicted by Eq.
(3.18).

1.0 L } i L I L
1072

1073 5x1072 5x1072 107!

£/2a

at small separation we expand the hyperbolic and expo-
nential functions in power series. This gives the series

“1n(n+1) (22 +1)

L2 (n— TP(n+ 3R (3.17)

glr)=

This series diverges as the harmonic sum 35, (1/2).
When na > 1 the terms in the series Eq. (3.15) rapidly
become small, We may therefore neglect them and for
n<1/a we may use the power series expansion, The
series then has an upper cutoff

1n(n+1)@e+1) 21
Blr) = Z;z(n-z)(mz) Z;‘ In(t/a) .

Thus the drag coefficient diverges only logarithmical-
ly near contact 8(»)~In(» - 2a)™, This weak divergence
is integrable in Eq. (2.8) and therefore yields a finite
coagulation rate.

(3.18)

A graph of 8(r) for slip spheres computed numerically
from the exact series expansion is presented in Fig, 2,

1V. RESULTS AND DISCUSSION

When the reactants have no interaction potential the
exact slip calculation gives %2/kg,=0,71. Thus the hy-
drodynamic effect is less than that predicted by the
original Deutch—Felderhof theory for stick spheres,
k/kgy=0.54. However, modification of the Deutch-
Felderhof treatment by use of slip values for the indi-
vidual drag coefficients gives k/kg,=0.72, which is ex-
tremely close to the exact value,

In Fig, 3, we graph the reaction rate for ionic sys-
tems where we assume a Coulombic interaction U =q1qz/
€r. The exact slip answer for reasonable values of
X =q.q,8/2¢a lies between that predicted by the Debye
theory, which ignores hydrodynamic interactions, and
the original Deutch—Felderhof theory. The modified
Deutch~Felderhof treatment is within a few percent of the

5x107" 1.0 5 10

exact slip result. Only for extremely repulsive inter-
action potentials would the logarithmic divergence of the
drag for slip spheres lead to a major departure from
the modified Deutch~Felderhof result.

It is interesting, that while the exact stick drag re-
sults differ considerably from approximate treatments
using the Oseen tensor, the exact slip drag results are
quite close to the Oseen tensor theories with slip bound-
ary conditions except when the particles are very close
together (see Fig. 2). Slip boundary conditions are only
reasonable for molecules with smooth surfaces. The
effect of hydrodynamic interactions on diffusion con-
trolled reactions of molecules with rough or “porous”
surfaces, will be considered in a future publication. '8

In summary, the use of slip boundary conditions re-
moves the unsatisfactory, unphysical features of hydro-
dynamic effect on diffusion-controlled reactions caused

x

SM

S 4 L s { Ty
-30 -20 -1O0 0.0 1.0 20 30
X
FIG. 3. The rate constant for coagulation versus the Coulomb

parameter x=¢(q,/2€a. The dashed curve is the Debye result
which ignores hydrodynamic interaction. The dotted curve is
the Deutch—Felderhof result for stick spheres. The solid
curve is the present exact calculation for slip spheres.
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by stick boundary conditions. It is of considerable in-
terest to test the slip form of the hydrodynamic inter-
action experimentally by steady-state and transient
measurements of diffusion-controlled, e.g., radical,
reactions or by computer simulations in simple fluids,
We are presently considering how existing molecular
dynamics data may be exploited to yield information
about diffusion-controlled reactions,
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