Competitive effects in diffusion-controlled reactions*
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We study diffusion-controlled reactions in a system of static sinks reacting with diffusing molecules and
investigate the competitive effects due to the global distribution of sinks. We also study the effect of
competition on growth or shrinkage of droplets in coagulation or burning.

1. INTRODUCTION

In a previous article' we have investigated the effect
of concentration on the rate of diffusion-controlled re-
actions and have shown that the rate coefficient in-
creases with concentration from its dilute limit value
as given by the classical Smoluchowski theory. Ina
system of static sinks reacting with diffusing molecules,
one would expect that the competition for molecules be-
tween sinks leads to a decrease of the total rate of re-
action, This competition arises due to the geometric
distribution of sinks as viewed on a macroscopic scale,
whereas the rate coefficient mentioned above measures
the rate in a locally uniform region, In this article we
explore the competitive effect due to the global distri-
bution of sinks on the basis of the macroscopic diffu-
sion-reaction equation for the average number density
of molecules. In Sec, II we describe the model in more
detaijl and in Sec. III we study shape factors for cata-
lytic pellets. In Sec. IV we investigate the effect of
competition on the growth or shrinkage of sinks in co-
agulation or burning, The results of this theory will
apply to a diverse range of physical and chemical phe-
nomena which involve diffusive transport as a rate lim-
iting step.

Il. THE BASIC MODEL

The basic model we consider is the steady state dif-
fusion of molecules {o a random array of 9 spherical
sinks contered at ry,...,ry. To lowest order the mi-
croscopic equations for this system are’

N

(1) = ng(r) = 2, 2

Dl (2.1)

where n(r) is the steady state concentration of mole-
cules at position r and g, is related to the flux into the
sink j; by

(2.2)

where D, is the unperturbed diffusion coefficient in the
medium. In Eq. (2.1), ny(r) is an arbitrary solution
of the homogeneous Laplace equation V"n°= 0. Usually
this solution will be fixed by specifying the conditions
at infinity, e.g., ng{7r)=n,=constant, In an electro-
static analogue g; may be called the “induced charge”
of the sink. An immediate extension® of the Smolu-

ji1=4mDyq, ,
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chowski theory of diffusion-controlled reactions leads to
self-consistent equations for determining the g¢;:

€
h1=a [no(r,) - Z Yot Qm] )

m(#2)

(2.3)

when the sinks are all perfectly absorbing and of iden-
tical radius a; in Eq. (2.3) 75, = [7,—7;1"". For the
more general case where the sinks have different radii,
Eq. (2. 3) is valid with a replaced by a,;, the radius of
the Ith sink,

While the principal application is to the case of sta-
tistically distributed sinks, it is important to note that
for regular arrangements Eq. (2. 3) can easily be
solved numerically and, in some favorable cases, ana-
lytically, For example when M sinks of equal radius a
are arranged in a regular planar polygon with sides of
length L then Eq. (2.3) can be solved by Fourier trans-
form.2? The total absorption rate for this array is

Jo=4nDoang[1+ (a/L)S(V] , (2.4)
where
9R-1 -1
St = sin(%) ; [sin(—"g%’-)] ) (2.5)

Thus in the special case of two sinks, the total absorp-
tion rate J,(L) varies with the sink separation L ac-
cording to

Jo(L)=2k,[1+ (/D) (2.6)

where k,=4nDya n, is the Smoluchowski absorption rate
for a single sink. Note that the absorption rate Jy is
less than the sum of the rates from isolated sinks.

For large o the result Eq. (2. 4) is®

In(L) = 4nDgng LR/ In

When the sinks are statistically distributed the aver-
age number density of the molecules N(r, ) satisfies
the macroscopic continuum equation

2.7
where D(p) is an effective diffusion coefficient in the
random medium, %(p) is the effective rate coefficient
and p is the number density of sinks. It has been shown
in I that in the mean field approximation, when both the
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FIG. 1. The ratio of the effective diffusion coefficient to the
unperturbed diffusion coefficient D (c)/D, versus volume frac-
tion ¢ of the perfectly absorbing sinks. In the mean field ap-
proximation when induced charges and dipoles are congidered
this quantity is given by the Claussius—-Mossotti function. Eq.
(2.10) exhibited above.

effect of included “charges” and “dipoles” is included,
one finds for the rate coefficient for completely absorb-
ing sinks

ky=4nDga , (2.8)

which is identical with the dilute limit value. When
correlations between sinks are taken into account the
rate coefficient becomes dependent on p. In I we have
found the rate coefficient to increase with the density p.

For the effective diffusion coefficient one finds in the
mean field approximation

D(p)=Dyolp) , (2.9)

where o{p) is an acceleration factor given by a Clau-
sius—Mossotti type relation

(0= 1)/(o+2)=4ma’p=c. (2. 10)

In Fig. 1 the effective diffusion coefficient is plotted
versus ¢, the volume fraction of sinks. Again when
correlations between sinks are taken into account this
result must be corrected, In this article we shall use
a value % for the rate coefficient and a value D for the
diffusion coefficient without specifying their density de-
pendence,

111. SOLUTIONS OF THE STEADY-STATE
CONTINUUM EQUATION

In the steady state the macroscopic equation becomes,
when E(p) and D(p) are replaced by their dilute limit
values,

DyVEN(r) = kgp(T)N(T) .

We shall be particularly interested in cases where the
absorbing sinks are distributed in a region of space V,
according to p{r). The total steady-state rate of disap-
pearance of molecules into the sinks J, is given by

(3.1)

Ip= kol p{rIN(r) dr . {3.2)

Deutch, Felderhof, and Saxton: Competitive effects in diffusion-controiled reactions

The differential equation (3, 1) may be transformed into
the integral equation

Ry

N(r)=N0(I‘)— m

1 ! ’ 14
[ memeemvanar, 6.9
where Ny(#) is an arbitrary solution of the homogeneous
Laplace equation VEN;=0. If we assume that Ny(7)
tends to a constant N, at infinity one has asymptotically
for large »

N(r)=Ny[1 -(1 /)], (3.4)
where [ is a “scattering length,”
1= (ko/41DyN) [ p(xIN(x") ar . (3.5)

Accordingly the volume V will absorb molecules at a
total rate

Jr=41DeNyl , (3.6)

which is equivalent to the classical Smoluchowski re-
sult for a sphere of radius ! with perfectly absorbing
surface. It follows that the total absorption J; may be
determined if the scattering length for zero energy s-
wave scattering from a potential p(#) can be found.
This analogy between quantum mechanical scattering
and the solution of classical transport equations arises
in approximate theories of frictional properties of di-
lute polymer solutions.?

As a special case we consider a uniform distribution
p of absorbing sinks within a radius E. For this case
we have

VEN(r)=k*N(r} for ¥<R,

3.7
vEN(r)=0 for ¥>R ,
where the shielding length «™ is defined by
%= kop/Dy=4map . (3.8)

The solution of Eq. (3.7), with the condition that N(#)
and N’(¥) are continuous at =R and that N(r) tends to
a constant at infinity is

N(rY=Asinh(kr}/(x¥) for 0sr<R,

Nr)=No(1 = (/7)) for >R, (3.9)
with ! given by
~ tanh(xR)] _
I=R {1 R ] =RF(xR) . (3. 10)

Accordingly, from Eq. (3.6), we find that the ratio of
the total absorption rate of the spherical region to the
absorption rate that would be obtained for a single
spherical sink of radius R is simply

Jr/{4mDuN,R)} = F(kR) . (3.11)

In Fig. 2 J;/(47D,RN,) is plotted versus (xR), We note
that

F(kR)~1- (kR)™+°+2 as kR~ ; (3.12)

in this limit J, approaches the classical rate for a sin-
gle absorbing sink of radius R. In the opposite limit,
(3.13)

F(kR)—5 (kR)*— &(kR)*++». as (kR)-0,
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FIG. 2. The ratio of the total absorption rate J; of a spheri-

cal region of radius R containing a uniform density of absorb-
ing sinks to the classical Smoluchowski rate as a function of
kR where k™ ig the penetration length of the diffusing mole~
cules into the region.

so that
JT nd (41TDOaN0)E)-L )

which indicates that the sinks are sufficiently dilute that
the total absorption rate is simply 9, the number of
sinks, times the absorption rate for each individual
sink, It is clear that the physical interpretation of x™!
is that of a penetration length. For (kR)< 1, the dif-
fusing molecules penetrate into the spherical region
without appreciable interference and one recovers the
result of absorption into independent sinks. For (kR)

> 1 the diffusing molecules are absorbed directly on en-
try into the absorbing region and one recovers the re-
sult for an absorbing spherical region of radius R.

(3. 14)

It is also of interest to inquire how much the absorp-
tion rate J; is reduced by the random removal of ab-
sorbing sinks from the region V. Consider the spher-
ical region V of radius R to be constructed from ab-
sorbing sinks of radius ¢ in closest packing, The re-
sulting assembly has an effective radius R’ =(R + a).
Since the volume excluded by each spherical sink is
(4V24%), the maximum number density of sinks is
px=[4V2a%]"", 1If a fraction of the sinks ¢ is randomly
removed the resulting density will be p=p,(1 - £). Ac-
cording to Eq. (3.8) we have

kR’ =[(n/V2)(1 - £)]2(R'/a) , (3.15)

so that the total absorption rate when ¢ spheres are
randomly removed J4(£) is

Jo(£)/[4nDyNoR’ ] = F(kR’) . (3. 16)

For cases where (R/a)> 1 for a wide range of ¢ i.e.,
0<£<[1~ (a/R)] an adequate approximation is

Jr(8). a 1
v (7)| 1 (@.17

—_— .
/ 7z (1-9)

In Fig. 3 the ratio [J(£)/J(0)] is plotted versus £ for
(R’/a)=10, according to Eq. (3.16). The remarkable

feature of this result is the slow falloff in absorption
rate with the fraction of spheres removed. For exam-
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ple one finds that the total absorption rate is only re-
duced by 10% when 90% of the spherical sinks are re-
moved, This result reflects the huge excess of sinks
that are present when kR’>> 1., In this case the mole-
cule density is low and the reacting molecules are ab-
sorbed close to the surface of the spherical region.
However, even for a spherical shell the reduction in ab-
sorption is small when a fraction of the spheres is re-
moved, as has been shown for a very similar effect
which arises in frictional properties of dilute polymer
solutions. ** Here, the hydrodynamic interaction
strongly modifies the free draining flow of solvent
through polymer segments and, as a result, the trans-
port coefficients are quite insensitive to the fraction of
segments removed from the polymer structure.

The results of this section can easily be extended to
the case where the coefficients for absorption and dif-
fusion have values % and D in the region with uniform
distribution of sinks and values k, and D, outside this
region. In the following section we give explicit results
in this case for the total reaction rate of the uniform
sphere [Eq. (III.6)].

IV. SHAPE FACTORS FOR CATALYTIC PARTICLES

It is evident that solutions of the steady-state contin-
uum equation, Eq. (3. 1), will depend upon the shape of
the region V that contains the density of absorbing sinks
p{7). Accordingly regions of different shape V will ex-
hibit different total absorption rates Jr. In chemical
engineering science one encounters this problem in the
determination of “shape factors” for porous catalytic
pellets of irregular geometry® when diffusion to the
catalytic pellet is the rate determining step.

For a single catalytic pellet the shape factor 7 is de-
fined as the ratio of the total material reacted in the
catalytic pellet J; to the material that would be reacting
at perfectly absorbing spherical pellet of the same vol-

ABSORPTION RATE OF
4 SPHERICAL ASSEMBLY
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FIG. 3. The ratio of the absorption rate of the spherical as-
sembly Jr(¢), where a fraction ¢ of the sinks has been random-
ly removed to the rate when £ =0. The dotted line is the pre-
dicted dependence if there were no interaction among the
ginks.
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ume. Thus for a pellet of volume V and arbitrary shape

n=J,/(41DRN,) , (4.1)

where R is determined by (47/3)R*=V. Clearly the
shape factor n will depend upon both the pellet geometry
and the porosity. For example, the analysis presented
in the previous section leads to a value of 7 for a uni-
form spherical distribution of sinks according to Eq.
(3.11),

n=F(kR) , (4.2)
where kR =+v 4rapR and
Flx) =1~ 2008 (4.3)

Some years ago Aris’ presented the following expres-
sion for the shape factor for a porous sphere

94 =[(kR) coth(kR) — 1]= E(kR) . (4.4)

Aris arrives at this result by solving Eq. (3.7) with the
boundary condition that the ambient concentration N,
was maintained at the surface of the spherical pellet.
As a result

N(r)=N, (4.5)

sinh(kR)\7

sinh(x7) (R )

and the shape factor Eq. (4.4) is obtained. In fact the
two shape factors do differ dramatically. The function
E(x) behaves as

x4

T o(x®) asx-0,

xZ
E(x) - -—3—
which is similar to F(x) [see Eq. (3.13)]. However as
kR = x becomes large E(x) - x, while D(x) -1 [see Eq,
(3.12)]. Of course the difference between these two re-
sults has its origin in the difference in the treatment of
diffusion external to the pellet,

We have so far considered the case where the diffu-
sion coefficient inside the particle D is identical to the
diffusion coefficient outside the particle D,. Aris as-
sumes that the ambient concentration is maintained at
the pellet surface amounts to the statement (D,/D) -,
i, e., diffusion is not a limitation in mass transport to
the pellet. Such an assumption seems plausible at first
sight in the context of the primary engineering applica-
tion of packed catalytic beds where the reacting fluid is
passed through the bed at an imposed flow rate, How-
ever, for a single pellet fixed in the flow of the reacting
fluid, it is not true that a uniform concentration is es-
tablished at the pellet surface.® For a bed of pellets
the mechanism by which a uniform surface concentra-
tion would be established is by no means clear.

Of course it is possible to determine the shape factor
for a spherical pellet for arbitrary ratio (D/D,) of the
diffusion coefficient outside the pellet D,. The result is

__(D,/D)[1 - tanh(kR)/(kR)]
"= T1-11-(D,/D)] tanh(xR)/(«R)} ’

where now «* = kp/D = 4ya,.p with effective sink radius
@gty. For (D,/D) -1 we recover our result Eq. (4.2)
while for (DG/D) - we recover the result of Aris Eq.
(4.4). It should also be kept in mind that the general

(4.6)
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theory we have developed® [see Eq. (2.9)] suggest that
(D,/D)<|, which will lead to a more extreme departure
from the Aris result than from Eq. (4.2).

V. COAGULATION AND BURNING

In two applications of classical diffusion controlled
reaction theory there is a direct relationship between
the absorption rate and the change in volume and mass
of the sink, The first application concerns coagulation
where the flux of particles absorbed causes the growth
of the colloid particle, The second application arises
in the simplest theory® of combustion where one imag-
ines that the rate at which a liquid drop is burned away
is determined by the diffusion rate of oxidant to the
flame surface,

When a single spherical sink is present the rate of
growth or decay of the spherical region is given by

pdV/dt) = = 4uDyNymalt) , (5.1)

where p, is the mass density (assumed constant) of the
sink material, N, is the ambient number density of the
particles absorbed, m is the mass acquired or lost in
a single reaction event, V is the volume of the sink:

V() =4 ma®(t) (5.2)

and the positive and negative sign refer, respectively,
to growth or shrinking of the sink volume. The differ-
ential equation (5. 1) may be re-expressed in terms of

the radius squared &*(¢) as

da(t) _ o, (DNgm\_ A ,
dt Py 4
which may easily be integrated to yield the well known
“d? linear law” for the diameter d=2qa

d¥t) - d¥0)=xxt, (5.4)
where X is the constant defined by Eq. (5.3). The d°

law holds surprisingly well for both coagulation and
combustion. !¢

(5.3)

Of course the association of the steady-state diffusion
rate with the particle growth rate is necessarily ap -
proximate. Any change in the radius of the absorbing
sink will require an adjustment in the density profile
outside the sink. The approximate picture adopted here
is that the time required to reach the steady state ap-
propriate to a new particle size is very short compared
to the characteristic time for the sink to change its size
by an appreciable amount. Such a separation of times
can be achieved provided (Nym/p,) is sufficiently small.

If more than a single sink is present one can expect
deviations from the simple linear law Eq. (5.4) due to
the competition between the sinks, The growth rate for
the volume V(#) of sink [, according to the microscop-
ic model, is

pAdV,/df) =+ 4 xDymq,; = £ mj, , (5.5)

where use has been made of Eq. (2.2) and the + and —
sign refer, respectively, to the case of growth or
shrinkage of the sink. For 91 spherical sinks one finds
from Eqgs. (5.5) and (2. 3) the coupled microscopic
equations
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N
o, dV.
pr%ltﬁ=:t41rDoNoma,(t)— S alde, dV; (5.6)

i@y T dl
In the case of two sinks one obtains the following modi-
fied rate equation for the sink radii:

ddi _ A ay daj(t)

at "3 Ty, at (5.7)

where a, (a,) refers to the radius of sink 1 (2). An
identical equation holds when the subscripts 1 and 2 are
interchanged in Eq. (5.7). Hence one deduces:

4 [df(t)+ %‘ dg(t)] =tX,

P - (5.8)

which clearly exhibits the modification to the linear d*
law. Thus due to competition, the sinks grow or shrink
less rapidly than they would individually,

The influence of the changing size of the absorbing
sinks on the continuum description presented in Sec,
I will be substantial, The major effort is to introduce
an explicit time dependence into the local shielding
length which is defined, in analogy to Eq. (3.8), as

k¥, 1) = ky(r, Dp(r)/D, = 4mp(r)alr, &) ,

where p(r) denotes the number density of sinks and

a(r, t) denotes the spherical radius of the sink located at
position r at time ¢, Qualitatively this time dependence
of the shielding length arises because the absorptive
capacity of a small region of the medium depends upon
the size of the sinks which in turn depends upon the
prior history of diffusion and growth in size of the sink.
Clearly it is not necessary that the initial distribution
of sink sizes in the medium remains undistorted over
time, We do not pursue this point further here except
to note the connection to kinetics of precipitation from
supersaturated solutions. !

VI. CONCLUDING REMARKS

A vast variety of phenomena of physical and chemical
interest rely on the theory of diffusion controlled reac-
tions. These phenomena include colloid coagulation,
precipitation, intrachain reactions of polymers, burn-
ing, mass transfer in catalysis, as well as the more

familiar application to chemical kinetics, Most of the
treatments that employ diffusion theory neglect the in-
teraction between absorbing (or emitting) sinks and in-
vestigate only the limit of infinite dilution. In a pre-
vious article a general theory was developed to handle
the higher concentration effects. In this article some
of the implications of the competition between many
sinks was explored. Future work will be concerned
with kinetics of precipitation, burning, or chemical re-
action where these concentration effects cannot be ig-
nored. Special attention'? will be devoted to the differ-
ence between single droplet and spray burning. The
burning rate of a spray is not simply the sum of the
burning rates of the individual drops in the spray, Sig-
nificant effects arise from the competition for oxidant,
which under restricted circumstances, is governed by
a diffusion process. The effect of heat flow in the
spray can be considered in a similar manner. 1
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