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A theory for the concentration dependence of the rate of diffusion-controlled reactions is formulated. One
of the reacting partners is taken to be a collection of static sinks. The steady state situation for a random
distribution of these sinks is studied. The rate coefficient is predicted to increase with concentration of
sinks and the dependence on concentration is shown to be nonanalytic.

. INTRODUCTION

The theory of the rate of diffusion-controlled reac-
tions was first formulated by Smochuchowski.! The
basic idea is that the rate of a reaction can be domi-
nated by the slow diffusive motion required for react-
ing partners to approach each other, followed by almost
instantaneous reaction. Of the many applications of the
theory we mention growth of colloidal or aerosol par-
ticles, precipitation, catalysis and fluorescence gquench-
ing. An application on a more macroscopic scale is
combustion, in which the diffusing species is the oxi-
dant and the sink a fuel droplet. Smoluchowski’s the-
ory was extended by Debye? to include the effect of po-
tential interactions. The influence of hydordynamic
interactions on the reaction rate has also been studied.?
A quite general mathematical formulation was recently
given by Wilemski and Fixman,* They have applied
their theory to intrachain reactions of polymers.®

An aspect of the theory which so far has received
surprisingly little attention is the effect of concentra-
tion. In the dilute limit it suffices to consider a single
pair of reactants, but at higher concentrations the re-
action rate will be affected by the competition between
neighboring sinks. The present article is devoted to a
study of this effect. The effect has been investigated
by Frisch and Collins, ® but they predicted a decrease of
the reaction rate, rather than an increase as found here.

We make the following simplifying assumptions: One
of the reaction partners is assumed much larger than
the other, so that these particles can be regarded as
stationary and only the diffusive motion of the smaller
particles need be considered. We assume a steady-
state situation and leave time-dependent effects™® out
of consideration. Further we neglect direct potential®
and hydrodynamic interactions.® Incorporation of some
of the above effects can be accomplished if desired.

With the above assumptions our problem reduces to
solving Laplace’s equation for the density n(r) of the
smaller particles with prescribed boundary conditions
at the surface of the stationary sinks. Smoluchowski’s
original boundary condition requires n(r) to vanish at
the surface. Accordingly the problem has the obvious
electrostatic analogue of finding the potential for a col-
lection of ideally conducting grounded bodies with pre~
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scribed potential at infinity. The calculation of the re-
action rate then is equivalent to that of the average in-
duced charge. The electrostatic problem for a random
collection of spheres was considered in some detail by
Kynch, ?

Variational calculations of the reaction rate for the
case where particles are recreated at a constant and
uniform rate throughout the solution were made by Reck
and Prager.'® They have derived upper and lower
bounds, but unfortunately these widen rather rapidly as
a function of concentration. The variational method has
been reviewed by Strieder and Aris, !

We derive a hierarchy of equations for a set of corre-
lation functions and decouple by making a superposition
approximation. An important aspect of the theory is the
effect of screening analogous to Debye screening in a
classical plasma or electrolyte solution. Not surpris-
ingly, collective effects dominate the problem.

In Secs. II and III we describe the model and its
electrostatic analogue. In Sec IV we introduce the
statistical averaging procedure and discuss the mean
field approximation. Of the induced multipole moments
only the charges and the dipoles are retained. In Secs.
V and VI we discuss the effect of charges only. In
Sec VII we add the effect of dipoles. In the last sec-
tion we present and discuss the results.

Il. DESCRIPTION OF THE MODEL

In an idealized picture the systems under considera-
tion consist of three constituents which will be denoted
as fluid, particles, and sinks. The fluid serves mere-
ly as an inert solvent in which particles and sinks carry
out diffusive motion. A particle and a sink can react
and after reaction the particle disappears from the
system whereas the change of state of the sink is ne-~
glected. The particles are assumed to be much smaller
than the sinks, so that they diffuse much faster, since
according to Stokes and Einstein the diffusion constant
is inversely proportional to radius. As a further ap-
proximation we take the sinks to be completely at rest.
Thus the particle number density n(r, ¢) satisfies the
diffusion equation

9n/at = DyVin 2.1
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in the part of space occupied by the fluid. The effect of
reactions on the particle density must be expressed by
a boundary condition at the surface of the sinks, or by
an appropriate sink term added to Eq. (2.1).

We recall briefly the Smoluchowski theory! for the
steady-state reaction rate in a dilute system of spheri~
cal sinks, At sufficiently low sink density the competi-
tion for particles between sinks can be neglected and
one need consider only the effect of a single sink. One
assumes that a particle diffusing toward the sink is
absorbed instantaneously upon contact and expresses
this by requiring the particle density to vanish at the
surface. In a steady-state situation one therefore
must solve

V=0, n(r)=0at»=R, (2.2)

where R is the radius of the sink whose center we have
taken to be at the origin. For uniform density n, at
infinity the solution is

n(r) =ny— (n R/¥). (2.3)

The particle current density is given by j =~ DyVn and
integrating over the surface of the sink one finds for

the number of particles absorbed per second
J:4TTDORn0. (24)

On a macroscopic scale the equation for the average
particle density N={#) therefore becomes

8N/ ot = DyVEN - kgpN, (2.5)
with rate constant
ko =41 D,R (2.6)

and sink number density p.

In a concentrated solution the particle density #(r, )
varies rapidly on the microscopic length scale, i.e.,
on a scale of the average distance between sinks. Thus
it will no longer be correct to assume that the particle
density tends to a constant at a large distance from a
single sink. The magnitude of the effect of gradients
may be estimated by solving Eq. (2.2) with the condi-
tion at infinity n(r)~n;+e,+r. The solution is

n(r)=ny+ey-T —no(R/7)~eyr(R/7°). 2.7

The particle flux into the sink is still given by Eq. (2. 4)
and hence it appears that density gradients have no net
effect. However, the dipolar disturbance given by the
last term makes itself felt at large distances and,

when summed over a large number of sinks, contrib-
utes significantly to the average local particle density.

We shall replace Eq. (2.1) by a microscopic equation
valid for all space with added sink terms representing
the monopole and dipole contributions, namely

R

on/ ot =Dy [Van(r, t)~4g Z q;5(r - 1,)
31
N

+ 4 p,»VG(r—r,)]. (2.8)

j=1

The boundary condition =0 at a sink surface is omitted
and the monopole and dipole strengths g, and p; are
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chosen appropriately to account for this. One can de-
rive a macroscopic equation for the average density
N(r,t)=(n) by averaging Eq. (2.8) over volume ele-
ments, or more conveniently, over an ensemble

®(ry, ..., ry) of configurations of the sink centers. De-
fining

Q(r,t):@:; q,é(r-—r,)>, P(r,t):@pjé(r—r,>, (2.9)

one find the macroscopic equation

8N/8t=Dy[VEN~4nQ+ 47V - P]. (2.10)

On the macroscopic level one expects that the com-
petition for particles between sinks will change the
rate coefficient to a2 value 2(p) dependent on the sink
concentration p. At the same time the particles will
be affected in their diffusive motion and this alters the
diffusion coefficient to a new value D(p). Thus in a
concentrated solution one expects a macroscopic
equation of the form

ON/8t=V o [D(p)VN|~k(p)pN. (2.11)

This equation is identical with Eq. (2.10) provided we
can establish the relations

k(p) pN=41D,Q,

(2.12)
D(p) VN=Dy,VN+4rD,P.

In the present article we shall be concerned primarily
with the concentration dependent rate coefficient k(p).

In a stationary situation with a steady supply of par-
ticles at infinity, the time derivative on the left of
Egs. (2.8), (2.10), and (2 11) vanishes and the mono-
pole strength ¢; and dipole strength p; are determined
as in Eqs. (2.3) and (2.7), where now #, and e, must
be replaced by the sum of the density distribution im-
posed from the outside and the contribution from all
the other sinks.

I1l. ELECTROSTATIC ANALOGY

As long as we restrict ourselves to steady-state
situations and neglect time derivatives our problem
has a simple electrostatic analogy. We must solve the
Laplace equation V21 =0 with the boundary condition
n=0 at the surface of the sinks, Thus our problem
amounts to solving the electrostatic problem of finding
the potential due to a collection of ideally conducting
grounded spheres in the presence of a given external
potential. It is slightly more convenient to define the
potential as ¢(r)=~n(r). If a constant value ¢, is pre-
scribed at infinity then for a finite collection of spheres
the potential falls off asymptotically as

¢(r)z¢o+(qtot/’r)’ as ¥—xo, (3‘1)

where g,¢ is the total charge induced in the spheres.
This is directly related to the total particle flux into
the system and we find the simple relation

J 1ot =4 DyCn g, (3.2)
where C=~ g,/ P, is the capacity of the collection of
spheres. Henceforth we shall use terminology sug-
gested by this electrostatic analogy.
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The solution (2. 7) represents the potential due to a
single grounded sphere centered at the origin and
placed in the external potential ¢4(r)=¢;-e,°r, It can
be written in the form

B(r) = do(¥) +(¢/ N+ (por)/¥3, (3.3)

where ¢ is the induced charge and p the induced dipole
moment, given by

q="7¢0, p=oae,, (3'4)

with capacity v=R and polarizability a =R,

In general higher multipole moments will also be in-
duced but experience in electrostatics leads us to ex-
pect that for a large number of spheres their effect is
small when the average distance is much larger than the
radius. We shall completely neglect higher multipole
moments in this article and restrict attention to charges
and dipoles. Then the potential due to a collection of
sinks centered at positions (ry, ..., Iy is given in
analogy to Eq. (3.3) by

+pr(r—r,)

ff v~ 7

Hr) = do(r) + D, —H—

2 T (3. 5)

where now we consider ¢(r) to be any solution of the
Laplace equation V?¢, =0, and where the charges g,
and dipole moments p, must be determined self-con-
sistently. They are given by the set of coupled equa-
tions

q;=-— '}’[‘%(!‘;) + Z L gp+ Z Fp ‘pu] ’
] 7]

(3.6)
p;=a [— V,04(1;) + Z Foq +Z The 'ph] s
Y Zy]
where we have abbreviated
Lin=75% Fp==ViLp, Tp=V,9,Ly. G.7

For convenience we assume the sinks to be of equal
size. Note that g; and p; depend implicitly on the co-
ordinates of all the sinks and on the external potential
¢4(r); in the sequel we shall apply statistical averag-
ing to the above equations.

IV. STATISTICAL AVERAGING AND MEAN FIELD
APPROXIMATION

The solution given in Eq. (3. 5) is valid for all points
of space for which |{r -r;|> R (any j), whereas ¢(r)=0
for ir-r,I<R. Like in Eq. (2.8), it is convenient to
summarize the solution in terms of a differential equa-
tion valid for all space,

RN N
V2p(r) = - 4p ;‘ 4,5(r —1,) +4x jZl P, Vh(r-r,), (4.1)

which clearly has a solution identical to (3. 5) in the
part of space outside the sinks. Averaging over the
ensemble of sink positions and using the definitions
(2. 9) one finds a differential equation valid on the
macroscopic scale

VEO(r)=-4nQ+4qV-P. (4.2)

The solution of this equation with the same externally
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imposed potential ¢(r) defines the macroscopic poten-

_tial &(r) =(P(r)).

According to definition & =— N and in order to re-
cover the steady-state version of Eq. (2.11) the charge
density @(r) and polarization P(r) must be expressed in
terms of the average particle density N(r). To this
purpose we must apply the averaging procedure to Eqgs.
(3. 6) relating charges and dipoles.

It is convenient to assume that the sinks are identical
and that their labeling is unimportant so that we may
work with a probability ensemble ®(ry, ..., r;) sym-
metric in the sink indices. Positional distribution
functions are defined by

qN

p(r) =<Z 5(r - !‘:)>,

i=1
R

p(r, r’) =<Z z &r -r;) 6(x' - rk)> ’

J=1 ksl
J#r
pe(r| ) =p(r, r')/p(x"),
etc. The conditional average of the charge of a sink,
given its position is defined by

(4.3)

7ip(r,) = snqu(v(rl, eey Tx) dry oo dry, 4. 4)

Similarly one defines
gy o(r, 1) =9 (m~ l)fqla’(rl, ceu, Bdr e cedy,  (4.5)

when two sink positions are specified, etc. The moments
q} and 5} are related to the average charge density Q(r)
and polarization P(r) defined in Eq. (2.9) by

Q(r) =p(r)f qid(r - r))dr,,
(4. 6)
P(r) =p(r)f pio(r -r,)dr,.

Averaging Eqs. (3.6) under the condition that the
position of sink j=1is fixed one obtains, in obvious
notation,

gi=-v [¢o(1>+ [Leadoelna®

+ f Flz ° 5ézpc(2 | l)d(Z)] ’
4.7
pi=a [‘ V1 90(1) +f Fi2950.(2]1)d(2)

+ f Tyz* D3%0(2 |1)d(2)] .

The right-hand side contains second order averages
which in turn are determined by third order averages,
thus defining a hierarchy of equations. A simple mean
field approximation is obtained by breaking the aver-
ages on the right-hand side of Eqs. (4.7) and writing
Qr)=—1p(r)d,(r), P(r)=ap(r) E.(r), (4.8)

with the Lorentz fields €. (r) and E,(r) defined by

<I>L(r)=¢>o(r)+limf L(r -r') Q(x')dr’
8-0 v
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+lim
60 Jy

F(r-r'). P(r")dr’, (4.92a)
E,(r) = - Vé,(r) + lim j F(r -1') (v’ ) dr’
60 Ju

+lim
6-+0 3]

T(r-r')P(r')dr!, (4. 9b)
where the subscript U indicates that a small sphere of
radius 0 has been excluded from the region of integra-
tion. These fields can be compared with the macro-
scopic potential ®(r) given by the solution of Eq. (4.2)

<I>(r):¢0(r)+fL(r-r')Q(r')dr'+fF(r-r’)-P(r’)dr'.

(4.10)
It is easy to see that for the propagators defined in
Eq. (3.7) the limits for the potential &, defined in Eq.
(4. 9a) can be taken without effect so that &,(r) = ®(r),
On the other hand for the macroscopic vector field
defined by E =—V® one has from Eq. (4.9b)

E(r)=-V&(r) =E.(r) - $7P(r), (4.11)

which is the familiar Lorentz local field effect. Com-
bining these results with Eq. (4. 8) one finds that in
mean field approximation

ap

== ypd, P=- vé
Q==17p _T_;,nap

(4.12)

Substituting in Eq. (4.2) and putting ® = — N one finds

V+[D(p)VN]-Fk(p)pN=0 (4.13)
with

D(p) = Dyo (p),

IolH g, (4.14)

k(P) =4’TTDQ‘)/=k0.

Thus in mean field approximation the diffusion coef-
ficient D(p) increases beyond its dilute limit value D,

by a factor o(p), which may be called the acceleration
factor. This factor is given by a formula identical with
the Clausius~Mossotti expression for the dielectric
constant of a polarizable medium, In the mean field
approximation the rate coefficient has the dilute limit
value. In the remainder of this article we shall investi-
gate the effect of correlations on the rate coefficient.

Before proceeding we generalize slightly by modify -
ing the boundary condition at the sink surface to ¢
= Ry(8¢/8n) at [r -1, | =R, corresponding to incom-
plete absorption of particles.®'® This leads to

=R[1+(Ry/RI?,
(4.15)
a=RY1-(Ry/R)][1+2(Ry/R)]",

so that the capacity and polarizability are decreased by
effectiveness factors. It is easy to see that the rest of
the calculation still applies with these new values of &
and 7.

V. THE EFFECT OF CORRELATIONS FOR CHARGES
ONLY

In our initial approach to the problem we shall com-
pletely neglect the effect of the dipoles and consider
charges only. This gives rise to appreciable simplifi-
cation of the equations. For a dilute sink system the
effect of the dipoles is small relative to that of the
charges. It will be shown that in the final result for
the rate coefficient the dipoles contribute a correction
which is of higher order in the sink density,

The first three members of the hierarchy of moment
equations for the case of charges only read

1-—}/[ 1)+fL12q2 pc(le)d(Z)], (5. 1a)
qi=- 7[¢o(1)+L1z q; +fL13 75%po(3 ' 12) d(3)]
(5.1b)
g3’ =- 7[%(2)+L21ﬂ2+f1423 57p:(3 |12)d(3)] :
(5.1¢)
Eq. (5.1a) can be rewritten
-7[¢¢(1)+ J Lm(Eéz—a‘?)pc(zll)d(Z)], (5.2)
where
PalD) =9o(L)+ [ L7302 | 1) d(2), (5.3)

which we shall call the direct potential, Since p,(2|1)
tends to p(2) for large separation of 1 and 2 it is clear
from Eq. (4.9a) that the direct potential is a slight
modification of the Lorentz potential ®,(r) for the case
P=0. Hence ¢,(r) will differ only slightly from the
macroscopic potential #(r). Since the integrand in Eq.
(5. 2) will be shown to be short ranged, the right-hand
side of this equation contains only local quantities, This
is important, because as a consequence one does not
have to worry about the shape of the macroscopic
sample. The elimination of ¢, by the definition (5. 3)
and by the proof that &, =% amount to an application

of the extinction theorem to the present case.

We obtain a set of equations for the integrand in Eq.
(5. 2) by subtracting Eq. (5.1a) from (5. 1b), and chang-
ing indices

—12 -1
-4

- v{L126;2+ [ 223[ 73503 |12) - 780(3 | 1)] d(s)},
(5.4)
9:° - 43
=- Y{Lm‘h + szs 73%0.(3 , 12) - g¥p,(3 IZ)] d(3)} .
At this point we break the hierarchy by making a super-
position approximation which we expect to be exact in

the limit of low sink density. Explicitly the superposi-
tion approximation is

73%p:(3[12)~ g3 p(3) +[ 730.(3 |1) - 73p(3)]

J. Chem. Phys., Vol. 64, No. 11, 1 June 1976

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8. U. Felderhof and J. M. Deutch: Rate of diffusion-controlled reactions

+[7%p.(3]2) - 30(3)]

=g5%0.(3 | 1) +7%0,(3|2) - g3p(3).

Upon substitution in Egs. (5.4) one obtains the closed
set of equations

(5.5)

T -7 {Lad s [ LulaFe]2) - T3000) ),
(5. 6)

gy ~q5=- Y{Lzlai% [ Ll @803 11) - 73003)] d(3>} -

These equations describe two important effects. First,
the direct interaction between a pair is taken into ac-
count to all orders of “reflections,” Secondly, the in-
fluence of the other sinks leads to the effect of screen-
ing. That screening occurs is clear from.a macro-
scopic consideration. If we place an additional exter-
nalcharge inour system then the sinks in the immediate
neighborhood will acquire induced charges to a total
amount exactly equal and opposite to the external
charge. As a result the Coulomb potential of the ex-
ternal charge is modified to a potential of the Yukawa
form. The effect is completely analogous to Debye
screening in a plasma or an electrolyte solution,
Mathematically the screening leads to a relation be-
tween moments which we shall call the screening rela-
tion. From Eq. (5.6) it follows that if g2 -7} is to
fall off faster with distance than the Coulomb potential
L,5, then one must have

7i- [ 175 - 78,2 | V] d2). (5.7)
This relation will be verified from the explicit solu-

tion,

Henceforth we restrict attention to a region which
is spatially uniform, where the density p and the
charge density @ are constant and pair correlation
functions depend on spatial distances only. Thus we
can write

-1 _—2_
(11—42-Q/P, (5.8)
712=95=(Q/p)[1 +f(m2)].

The pair of Eqs. (5.6) reduces to a single equation for
the correlation function f(7;,), which can be written

(1 +yLya) f(7) = - 7[1("'12) + [ Ly f(732) p (3 | Z)d(3)] ’

(5.9)
where

I0n) = Lo+ [ Lis(p(3 |2) - p) (). (5.10)

In relative coordinates r =r, - r; and r’ =r; ~r;, these
equations become

[L+(/DNf () == vI(r) = vF(¥),
(5.11)
IP=r"+¥(y),
where we have introduced the functions
F(») = ff: )prflr ) ar', ¥(r)= fﬁTi_—"_)T,'lB dr'.  (5.12)
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Because of the spherical symmetry of the functions
F{r") and p,(r’), the functions F(r) and ¥(7) clearly
depend on the radial distance 7 only.

By applying the Laplace operator in Eq. (5.12) one
finds for F(¥) the ordinary differential equation

d®F 2 dF

2;2+1,d2=—4ﬂf(7’ pe(7), (5.13)
with solution
F(¥)=(Fy/7)+ F(7), (5.14)
where
F,= J‘u° dnf(r") plr') r'2dr’,
0 .
Fo= [ aarorneury vt ar (5.1)
—rtf aaf (o) ar,
Similarly one has
U(7) = (To/7) + ¥(9), (5.16)
with
Y= [ anlpr) - p)rtar, (5.17)
[4]
‘17(r)=f 4n(pg(r') = p) ¥’ dr’
= aalour) - p) 7 Rar,
The screening relation (5. 7) can now be written
Fy+¥+1=0, (5.18)
and Eq. (5.11) becomes
L+ (/PN f(r)==y[F(r)+ Fr)]. (5.19)

We must show that this equation has a solution f(7)
which vanishes sufficiently rapidly at infinity. By dif-
ferentiating Eq. (5.19) twice with respect to 7 one finds

(r+7)( i )+2( f)—%ymc(r)f=41rw[pc(r)—p]-

(5.20)
Since p.(7) rapidly tends to the constant p it follows
that Eq. (5.20) has a solution which is exponentially
damped f ~exp(— k7) with a screening length « ™! given
by

k2 =4g1p. (5.21)

At low density the screening length is large, and in
this case we can expect the superposition approxima-
tion (5. 5) to be valid. Because of the long range of the
interaction collective effects predominate.

The integral which we need in Eq. (5.2) reduces in
the uniform case to

41(Q/p) j; i FPorirdr. (5. 22)

For this we must solve Eq. (5. 20) for f(»), but unfor-
tunately the explicit solution can not be obtained in gen-
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eral, Therefore we now specialize to a particular
choice for the conditional pair correlation function p,{7).

ViI. EXPLICIT SOLUTION FOR THE CHARGE
CORRELATION FUNCTION

In order to make further progress we assume that
the sink system is dilute so that the pair correlation
function p(7) can be replaced by

plr)=p forr=d,
=0 for »<d, (6.1)

where d=2R is the sphere diameter. Then Eq. (5.20)
reduces to a homogeneous equation. Introducing

x=kr, Flx)=flr), (6.2)
one can write it in the dimensionless form
(x+©f" + 2/ ~xf=0, (6.3)

where a prime denotes differentiation with respect to

x and €=¢y. Equation (6. 3) is related to the equation
for the confluent hypergeometric function'® and the solu-
tion with desired behavior at infinity can be written

fx)=2(a)Ua, 2,2(x+ €)) ™ | g=1-%e, (6.4)

where the overbar denotes that we have chosen a con-
venient normalization, In fact, in our problem the nor-
malization of the solution #(x) is prescribed by the
screening relation (5, 18) which presently reads

Fylkd)=(8¢c—-1)e , (6.5)
where
Fyfx)= f Flxx? dx’ (6.6)
x
and
c=4$mR®, €=xy. 6.7

Here c is the volume fraction occupied by sinks and €
is related to ¢ via Eq. (5.21) by

€=31%¢, {(6.8)

where T is the effectiveness factor defined by y=1"'R
and given by Eq. (4.15). The parameter ¢ is therefore
at most equal to kR, where k™! is the screening length,
and is small for small volume fraction.

The integral we need in Eq. (5.22) can be written

4rQ f wf(?’)rdr=(Q/pY)I:‘1(xd) , (6.9)
where
Fo= [ Fawax . (6. 10)

If we work with a function f(x) with normalization dif-
ferent from Eq. (6.5), and with corresponding integrals
F,(x) and F,(x), then we have

F(kd) = [Fy(xd)/Fy{xd)] (8¢ - 1)e . (6. 11)

We wish to evaluate this expression for small €, which
implies small xd=27e,

B. U. Felderhof and J. M. Deutch: Rate of diffusion-controlied reactions

From the known series expansion of the confluent
hypergeometric function® one finds for the behavior for
small x+ € of the function f(x) defined in Eq. (6.4)

F(x)=(x+ € - eln(x+€) =1
—€(yg+In2)+3¥(x+ ) In(x+€)+ O(x+€), (6.12)

where y=0.57721... is Euler’s constant. The as-
ymptotic behavior of the solution for large x is given by

=%+
f_(x)=2‘/21"(1— 5)%7)[14-0(::")] as x—o ,

2
(6. 13)
This confirms the exponential behavior previously
stated but provides a more accurate estimate, The re-
sult (6. 13) shows that the characteristic decay length
of the function f(#) is indeed given by the screening
length «™*.

The integral equation (5. 18) from which Eq, (6.3) has
been obtained can be written in the present case
(x+ € F (&) = Fy(%) - xFy(x) .

Differentiating with respect to x one finds that F,(x) can
be expressed in terms of f{x) and f/(x) by

Fy(x) =~ f(x) = (x+ ) F(x) .

The functions F,(x) and Fy(x) are needed for a value
x=ve, where v is of order unity (=27) and ¢ is small.
From the known series expansion one finds for such
values of x

(6. 14)

(6. 15)

Fy(x)=1+eln(x+€) - x+ elyz+ 1In2) + (e Ine) ,

(6.16)

Fy(x)=1-¢€+0(e®lne) , € small, x=ve.

The ratio of these expressions can be used in Eq.
(6.11), Before deriving the final result for the rate
coefficient we study the effect of the dipoles.

VIi. CHARGES AND DIPOLES

We now consider the additional effect of the induced
dipoles. In many respects the calculation is similar to
that of the preceding sections. As a starting point one
uses Eqs. (4.7) for the induced charge and dipole mo-
ment of a sink 1, given its position r,. One then pro-
ceeds as in Sec, V and derives a hierarchy of equations
which is decoupled by making the superposition approx-
imation (5. 5) for the charges and analogously for the
dipole moments.

In a spatially uniform region the sink density p, the
charge density @, and the macroscopic potential & are
constant, whereas the macroscopic electric field E and
polarization p vanish. For the first order moments
one has g =(Q/p) and pi=0. Moreover, the pair cor-
relation functions depend only on the vector distance
r,—r,, One defines the radial correlation functions

f(7yz) and g(#y,) by

qi? = a2 =(Q/p)[1+ f ()] ,
(7.1)

Pi*= - Bi=(Q/0) (1, — 1) g(r1a) -

The correlation functions f(») and g(7) satisfy the cou-
pled equations
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[1+ /D f @) == 1)+ Fr) =7 g(7)
- G(¥) - n{dG/dr)] ,

[1+(2a/P)] gy =a]-vNdl/dv) -2 ap{r) g (7)
+ 7% (r) - ¥"W(dF /dr)] ,

where I(7) and F(7) are defined in Eqgs. (5.10) and
(5.12) and G(7) is defined by

(7.2)

Glr) = fg(—rlleﬂ(f—) ar’ . (7.3)

lr—r']
The integral which is needed in Eq. (4.7a), reduces in
the spatially uniform case to

47r(Q/p)fw LFn) =g pr)rdr. (7.4)
0

Specializing to a dilute sink system one replaces the
pair correlation function p(r) by the expression given
in Eq. (6.1). Introducing

x=kr, F=f0), =g, (7.5)

one can now write the integral equations (7. 2) in the
dimensionless form

(x+ €)f (x) = €g(x) = Fy %) = xFy(x) + xGy () ,
~F () +[(0+2 €) £+ 2€%] g (x) = = EF,(x)

(7.8)
with the definitions

F= [ vy, Bo-[ #war
e ) (7.7)
Gl(x)=f *'g{x")dx’ .

Furthermore €=y is the previously introduced small
parameter, and 6=(y%/a) is equal to unity for complete
absorption, and otherwise is given by Eqgs. (4.15). It
is easily shown that 8> 1. In deriving Eqgs. (7.6) we
have made use of the screening relation (5. 18) which is
again valid, This provides the normalization condition

Folkd)=(8c-1e , (7.8)

identical to Eq. (6.5). The required integral (7. 4) can
be written

410 [ L)~ g0V lrdr= @/l ) - Gyt

(7.9)
It is again more convenient to work with functions with
arbitrary normalization and we shall denote these by an
overbar. From Eq. (7.8) we find the relation

Fy(kd) = G(kd) = [(Fy(kd) - Gy(xd))/Folxd)] (8¢ = Ve .
(7.10)
The integral equations (7. 6) can not be solved exactly.
For the asymptotic behavior of the functions f_(x) and
g(x) for large values of x one finds

F(x)=Ae™ x=* F(x)= — Ale?/pr) e™x 81, as x—wo,

7.11
where A is a normalization constant and ¢ )

A=[1-(/p)M2
B=1-3ex,

4557

p= 042k, (7.12)

The behavior of the functions F,(x), F,(x), and
El(x) for small values of € can be found by a perturba-
tion expansion. The calculation is lengthy and we shall
omit the details. Choosing a normalization correspond-
ing to that of the preceding section one finds for values
x=ve , wherevisof order unity and ¢ is small,

F(%) - El(x) =l+eln(x+€) - x+e€(vg +1n2)

+€J(v, 6) + O(€® In¢), (7.13)
Fp(x)=1-¢€+0(®In¢), € small, x=ve,
where
® widu
J(V,G)—JV iR (7.14)

Thus the ratio needed in Eq. (7.10) has a value only
slightly different from that given by Eq. (6.17).

Vill. RESULTS AND DISCUSSION

We now summarize our results The generalization
of Eq. (5.2) to the case including dipoles is given by

7= 7[00+ L@ -GDp2 D dR)

+fFla° (Eéz—iz)pc(zll)d(z)]. (8.1)

In a spatially uniform region this can be written with
the aid of Egs. (7.1)

Q=—¥pd, —%YQL [f(712) - 8(712)] pe(2 | 1) 7y d7y.

(8.2)

With the density correlation function given by Eq. (6.1)
one finds for the direct potential
by =® - 21d2Q. (8.3)

Substituting in Eq. (8.2) one finds the constitutive
equation

Q=-a(p)p?, (8.4)
where a(p) has the dimension of length and is given by
a(p) = ¥[1 - 2126 + By (kd) - G, (k)] (8. 5)

The corresponding reaction rate coefficient is given by

k(p) =4n Dyalp) . (8.6)
Inserting Egs. (77.10) and (7. 13) one finds
a(p)=v{l+e+€®lne + 1 -27+27% 49,
+1n(2 +47) + J(27,0)]+ O(e® Ine)}, (8.7)

where 7=(R/v), 6=(¥*/a), and ¥ =0.57721... is
Euler’s constant, In the fully absorbing case one has
7=1, 8=1, and € =Ky can be expressed in terms of the
volume fraction ¢ =4p R® by € =(3¢)}/2, In this case
the result (8. 7) can be written
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a(p) =v{1+@BcP%+ Eclnc

+3c[1+ 7 +In2 +¥ In3+J(2, 1))+ O(c3/21nc)}. (8. 8)

From Eq (7.14) one finds that the correction term
J(2,1) due to the dipole moments is given by J(2, 1)
=0,31907,...

From Eqs. (8.6) and (8. 8) it follows that the rate
of reaction increases with increasing density of ab-
sorbers. This result is confirmed by a simple cell
model calculation, which however leads to a c!/3—
rather than a ¢2—correction term. A variational
calculation'* applied to the cell model also leads to a
cl/3 correction term.

Finally, we note again the approximations made in
the present calculation. First, we have assumed that
induced multipole moments higher than the dipole can
be neglected. Since the major contribution to the inte-
grals comes from the screening range this assumption
seems well justified. Moreover, we have shown that
the dipole moments contribute an order higher in the
density compared with the monopoles and it seems
likely that a multipole expansion is directly coupled to
a density expansion. Secondly, we have made the
superposition approximation embodied in Eq. (5. 5).
We expect this to be valid for low density, but a sys-
tematic parameter expansion analogous to the theory
of the classical plasma would be desirable.
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