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The resummed molecular theory for the dielectric constant and light scattering in nonpolar fluids
developed by previous authors is generalized to account for arbitrary local field models in addition to the
Lorentz—-Lorenz model. In particular, it is shown that the Onsager-Bottcher and Wertheim models for

the dielectric constant may be encompassed by this theory. Expressions for Rayleigh’s ratio in the Born
approximation are obtained, providing a molecular derivation of the “local field factors™ for light scattering
consistent with these dielectric models. The results are compared with experimental isotropic Rayleigh
ratios, indicating that the Wertheim model provides the best agreement. The relation with Einstein’s

phenomenological theory of light scattering is discussed.

. INTRODUCTION

Microscopic theories of light scattering and the di-
electric constant in fluids composed of molecules char-
acterized by a constant scalar polarizability o data back
to the work of Yvon' and Kirkwood.? Yvon’s theory of
light scattering was reformulated by Fixman® and by
Mazur and Mandel, *° the latter authors also consider-
ing variation of the polarizability with intermolecular
distances. All these theories are based on expansions
in powers of the polarizability and evaluation of the
first few terms of the resulting series. Recently,
Bedeaux and Mazur® and Felderhof’ have presented the-
ories of light scattering and the dielectric constant
which partially overcome this limitation to small values
of ap, where p is the number density, by performing a
resummation of the Kirkwood-Yvon series. It is the
purpose of this paper to show that the “resummed” the-
ory may be generalized in a significant respect.

As discussed by Felderhof,? one can regard the re-
summation as being accomplished in two steps. In the
first step, one takes into account from the outset that
the local field acting on a particular molecule due to the
other molecules in the system is given to a good approx-
imation by the Lorentz local field E, =[(¢ +2)/3]E,
where ¢ is the dielectric constant and E the Maxwell
field in the medium. Thus the microscopic equations
are formally rewritten so that E rather than the vacu-
um field E, appears as the driving field, In the second
step, a resummation replaces vacuum electromagnetic
propagators by “renormalized” propagators accounting
for the fact that the fields propagate through the aver-
age medium rather than through vacuum. The resulting
equations for the average polarization and microscopic
polarization fluctuation are no longer series expansions
in powers of a, due to the dependence of the renormal-
ized” propagator on ap, and therefore may be used with
some confidence for larger values of the polarizability
and/or the density.®”

In this paper we note that the first step described
above can be accomplished in an infinite number of
ways, so that in addition to the Lorentz field any con-
tinuum model of the local field can be used as the driv-
ing field in the microscopic equations, This freedom
stems from the fact that for molecules with hard cores
of diameter 4, in an exact calculation there is no depen-
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dence of the final answer on the form of the electromag-
netic propagator F(r,r’) [see Eq. (I.2)} for separations
Ir—r’i{<d. Thus in the microscopic equations we may
replace F(r,r’) by a propagator which is arbitrary for
Ir—r’| <R, where R, can in principle be any distance
such that 0 <R, <d. This idea is similar to that em-
ployed by Hgye and Stell® in their recent discussion on
the static dielectric constant of rigid polar fluids.

In Sec. II we summarize Felderhof’s” formal re-
summed equations for the average polarization and po-
larization fluctuation, taking account of the available
freedom in choosing the propagator for separations less
than R.. In Sec. III we discuss three particular choices
for the propagator, which correspond to three ‘local
field’ approximations for the dielectric constant of non-
polar fluids; the Lorentz—Lorenz model (considered
previously by Bedeaux and Mazur® and by Felderhof"),
the Onsager®~Bottcher'® model, and a model which has
recently been proposed by Wertheim, !

In Sec. IV we use these results to derive the differ-
ential crosssection for Rayleigh light scattering in the
Born approximation, This is of interest for several
reasons, which are examined in the remainder of the
paper. There has been considerable controversy'?-1%
in recent years about the correct form of the so-called
‘local field” factor to describe isotropic Rayleigh scat-
tering intensities. According to Einstein’s'® phenom-
enological theory of light scattering, the intensity is
proportional to (8¢/8p)%. When the Lorentz-Lorenz
equation for ¢ is adopted, one obtains the well-known
(€ +2/3)* local field factor, which was shown by Fix-
man® to be valid to order a’. However, comparison of
observed intensities with those calculated using this
factor have shown that the latter are generally 10-20%
too large, !3'*17 which has spurred an interest in em-
ploying other model theories of the dielectric constant,
such as the Onsager-Bottcher model, in conjunction
with Einstein’s theory, This has culminated in a cur-
rent debate'® regarding the density dependence of the
‘cavity radius’ R, in the Onsager-B6ticher model.

In this paper we derive the scattering crosssection
independently of Einstein’s theory, and obtain in Sec,
IV a general expression for the ‘local field’ factor. In
Sec. V we examine this factor for the three models in~
troduced in Sec. III, and show that in each case it may
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be related to the dielectric constant given by these mod-
els without specifying either o or R,, Assuming that the
latter can be fitted to give agreement between the model
expressions and experimental values for the dielectric
constant, we may calculate isotropic scattering inten-
siities from knowledge of the dielectric constant. Com-
parisons with experimental intensities indicate that the
Wertheim model gives the best agreement, These com-
parisons with experiment should be viewed with some
caution since the present theory neglects the variation
of the polarizability with interparticle separation,*1#

The relation of our results with those obtained using
Einstein’s theory is also examined in Sec. V. When R,
is regarded as a constant independent of density, we do
not obtain exact agreement with Einstein’s theory for
either the Onsager-Bottcher or Wertheim model, al-
though the discrepancy between these two approaches is
numerically small, As the present calculation is lim-
ited to local field approximations, no firm conclusions
can be drawn from these models concerning the validity
of the phenomenological theory.'® We note that some
previous authors?:?! have given microscopic derivations
of the Onsager—Bbttcher model and obtained density-
and temperature-dependent expressions for R, buta
corresponding treatment of the Wertheim model is pres-
ently unavailable,

Ii. FORMAL THEORY

We consider a system of N molecules in a volume V,
each characterized by a scalar polarizability a(w) and
subject to an external electric field E; of angular fre-
quency «w, The explicit frequency dependence of o will
be omitted in the following. Neglecting the Doppler ef-
fect due to the motions of the molecules, we may as~
sume that all quantities oscillate in time with the same
factor exp[-iwt], which is henceforth omitted. The in-
duced dipole moment y; of a representative particle i is
then given by*""

N
pi=aEq(ry, k) + o Z Fr,r;k) - py

(.1)
1)
where F(r,r’; &) is the vacuum dipole propagator
ingir-r’|
F(r,r'5 k) =(v, v, +E51) Em , (I11. 2)

with &, = w/C the vacuum wavenumber and 1 the unit dy-
adic, InEq. (IL.1) we have neglected the small (at light
frequencies) radiation self-reaction fields of the parti-
cles.

The approach of the Kirkwood?~Yvon! theory of the
dielectric constant is to solve Eq. (II.1) iteratively in
powers of o and subsequently compute the average po-
larization P,

P(r’ k0)=<p(r; ko» ’ (II'3)
where
N
p(r, &) =‘Z; p,or-r)) , (IL. 4)

is the microscopic polarization density., InEgq. (II.3),
the brackets ( ) denote an equilibrium ensemble average
in the absence of the external field E,, In this case, the

3871

molecules are assumed to interact by short-ranged, not
necessarily additive, forces including spherical hard
core repulsion, In the calculation of P, it follows that
there is no contribution from the propagator F(r, r’; k;)
for distances ir-r’| <d, where d is the hard core di-
ameter, due to the vanishing of the s-particle reduced
distribution functions, 2

ps(Ty ..o 1) =< > by - r,)8(r,—r,). .. 8(r,~ r,,)> ,
Bypigeee g

when any two of the particles are separated by a dis-
tance less than d. This holds also for the calculation

of the correlation {p(r)p(r’)), which is required in con-
sideration of light scattering intensities.

In an exact calculation, or in a series expansion of
the Kirkwood-Yvon type, there is consequently no ef-
fect on the calculation of average properties when
F(r,r’; k) in Eq. (I1.1) is replaced by the propagator
L, where

L(x,x"s k) =F(r,r" k) |[r-1'| >R, ,

=arbitrary |r-r'| <R, . (I1.5)

Here R, can be any distance such that 0< R <d. We
shall comment further on the choice of R, when we con-
sider particular models for the propagator L.

We now consider Eq. (II.1) with F replaced by the
propagator L of Eq. (II.5). Removing the restriction
j #¢ in the summation in Eq, (II.1), this equation can be
rewritten as

N
pi=a'Eq(ry, ko)*’alz L(rg, rsky) - uy , (IL. 6)
j
where o’ is a renormalized polarizability,
a’=a(l +ab)? | (I1.7)
and b is defined by
bl= lim L(r,r’;ky) . (IL. 8)

Ir=r]-0

Multiplying both sides of Eq. (IL. 6) by 8(r = r;) and sum-
ming over {, we obtain using the definition Eq, (II.4),

p(r, ky) =a 'n(r)Ey(r, k)
+ ' n(r) { Fr'Lir, 5 k) - pr k), (ILO9)
where
n(r) =2:vj 5(r-r,)

is the microscopic number density.
be written in short-hand notation as

This equation will

p=a’nEg+a’nL+p , (I1.10)

where the symbol * denotes the convolution,
frg= fd“r’f(r,r’) . g .

Consider the approximation whereby one averages
Eq. (II.10) and writes the average of the second term
on the rhs as a product of averages., This gives

J. Chem. Phys., Vol. 64, No. 9, 1 May 1976

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3872

P=~a'pE, , (I1.11)

where p={(n) is the average number density and E; is
defined by

E,=E,+L* P (11.12)

The approximation resulting in Eq. (II,11) amounts to a
mean field treatment in which intermolecular correla-
tions are ignored, which will henceforth be designated as
the “local field” approximation.

The field defined by Eq. (II.12) will be called the gen-
eralized local electric field, It is apparent that the cal-
culation of the average polarization in this approxima-
tion is no longer independent of the form of L, An anal-
ogous situation occurs in “mean-field” approximations
for the dielectric constant of rigid polar fluids,®

It will be useful for later purposes to relate the po-
larization in the same approximation to the external
field. One obtains from Eq¢s. (II.11) and (I, 12)

(1-a'pL)xP=a'pE, , (I1.13)

where 1 denotes the delta function 16(r —r’). Defining
the propagator U by

L+a’'pW)xl-a'pL)=1 , (I1, 14)

and multiplying both sides of Eq, (II.13) by (1 + o' pU),
we obtain

Px~a'p(l+d pU)*E, (I1.15)

We note that Eq. (II.14) is equivalent to the integral re-
lation,

U(r, 1’5 k) = L(r, r’; k)

+a'pfd3r"u(r,r"; ko) o L{x"", x5 Ry)
v

(I1.16)

The elegant theory presented by Felderhof’ provides
a method for embedding these local field relations in an
exact framework. This theory yields expansions in o’
(which is equal to the molecular polarizability o in Ref,
7) for the average polarization P and microscopic polar-
ization fluctuation p, =p ~P. These are not strictly
series expansions in powers of o', since they involve
the renormalized propagator U rather than L. For pres
ent purposes, we will consider simply the lowest or-
der result for p,;, and the first correction to the local
field approximation for P, One finds from Felderhof’s’

results,
pixa’(l+a’pU)xn E; | (I, 17)
P~a’'pE;+(@)®n, Un)*E
PRz b Um)+EL (I1.18)
=a’'p(1+C)*E, ,

where n, =n — p is the number density fluctuation and Eq.
(I1.18) defines the matrix €.

The susceptibility X, which is generally a nonlocal
operator in space, is defined by

P(r, ky) = fd“r’ X(r,r's k) \E(r, k) =X«E (I1.19)
v

Here E is the macroscopic (Maxwell) field in the medi-
um, which is related to the external field, from Max-
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well’s equations, by

E(r, k) =Eofr, ko) + f Pr'Flr, v’ k) Pt k) . (I1.20)
As discussed by several authors’?® some care is needed
in evaluating the integral in Eq. (IL. 20) due to the singu-
larity in the propagator F(r,r";k) as Ir—r'| -0, For
an arbitrary continuous function £(r) of r, we may write

fd3r’F(r,r'; ko) - f(r’)=[ d“r’F(r,r’;ko).f(r’)—%f(r),

where an infinitesmal sphere ¢ around r is excluded
from the integral on the rhs. With this interpretation,

Eq. (IL. 20) in concise notation is
E=E,+F*P (II.21)

Combined with Eq. (II.12), this provides an alternative
expression for E;,

E;=E +Gx*P | (I1.22)
where G is, explicitly
G(r,r's ky) =L(r,rs ky) = F(r,x's k) . (11.23)

We note, from the definition of L in Eq. (I.5), that
G(r,r’; k) is zero for Ir-r’| >R,.

As discussed by Felderhof, 7 the kernel (z, Un,) in Eq.
(I1,18), and at least two higher order terms in the ex-
pansion for P which are not explicitly shown in Eq.
(I1,18), have the property of being short ranged. Hence,
to the order of approximation with which we are dealing,
the susceptibility X may be evaluated for an infinite
medium. In this case it is convenient to employ a Fou-
rier transform representation, defining for example

i(k, ko) =f dr’ X (r, r'; kD) gk (rror)

=3 (b, ky) (1= KEK) + X' (, ko) kK

where k is the unit vector (k/k) and we have introduced
the transverse (tr) and longitudinal (I) components of the
susceptibility tensor. By Fourier transforming Eqgs.
(11.18), (II.19), and (II.22), we obtain

(&, ko) - [1+6 (K, k)« X(k, k)] =a’p[1+C (K, ko)) . (IL 24)

The corresponding expression when we use the local
field approximation for P, Eq. (II.11), is obtained by
neglecting € in Eq. (IL 24). The resulting approxima-
tion for the susceptibility, denoted by X,, is

Xo(k ko) - [1+6 (K, &) - X (K, B[t =a’pt . (I1.25)
The refractive index n(ky) is given by
n2(ky) = € (k(ky), ko) (11. 26)

where we have defined the dielectric tensor € by
ek, ko) =4m R (K, ko) +1=E7 (R, ky) (1= kK) +E"(k, R kK ,

and k(%,) is the solution of the dispersion relation
k2 (ko) = €' ((ky), o)

These results may be obtained by taking the solution E
of Maxwell’s equations to be the transverse plane wave

E(r, k) =Eae'trr (11. 28)

(1, 27)
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where k(k;) is a vector in the direction of propagation
with magnitude %(k,), 2 is a real unit vector perpendicu-
lar to k(k;), and E is a complex amplitude factor, Writ-
ing the local field E, (r, ;) in the same form as Eg.

(11, 28), we obtain from Eqs. (II. 19) and (II. 22) relation

E.(r, ko) = [1+ G (R(ky), ko) X" (k(ky), RE (X, k) (I1.29)

We note that this equation involves the exact suscepti-
bility. When the latter is replaced by X;', we obtain the
approximate relation

EL(r, k) =[1 + G (k(ky), k)X (R(Ry), B)E(T, ko) ,  (IL 30)
which, using Eq. (II, 25), can be expressedas
1 .
EL(r, k) =5 X (k(ky), Bo)E (T, By) . (11.31)

Before proceeding to consider particular examples of
the local field approximation, it is worthwhile to make
the following observations. We note that G(k, ;) is the
Fourier transform of a function G(r, r’;k;), Eq. (II.23),
which is nonzero only for separations |r-r'| <R,
where R, is less than or equal to a molecular diameter,
Since at optical frequencies the condition 2R, <« 1 is sat-
isfied, the k, dependence of the propagators F(r, r';k,)
and L(r,r’, k) may, to an excellent approximation, be
neglected for the models considered below in computing
G(k, k,). Using the notation,

G(k)=limG(k, &) ,
- (11, 32)
XL(k)—“E-FOIXL(ks ko) ’

to an excellent approximation we may set &(k, kg) ~G (k)
and ¥g (k, &) st(k) The latter result follows from the
relation between x; and G Eq. (I1.25). In making these
approximations, we must remember that the polariza-
bility o is actually a function of &,, and that the above
limiting procedure should not be applied to a.

For typical fluids, the refractive index at optical fre-
quencies (away from resonances) is of the order of unity
80 that the dispersion wavenumber k(k), Eq. (II.27), is
of the order of %,. Since G(k) is an integral over the
volume of a molecular sphere at opt1cal wavelengths
the further approximation G[k(ko)] &(0) holds to an ex-
cellent degree. Hence defining

=1im otr — Vi OF
Xz =lim ;7 (k) = lim x; (®) @39
6 =1im 6 (k)
k-0

we may further approximate ¥ [&(kg)) ~x, = (e, = 1)/411.

1. LOCAL FIELDS MODELS
A. Lorentz model

The choice of the propagator L for this model has
been discussed by Bedeaux and Mazur® and by Felder-
hof?

L(r,r’;ko) =0 ll‘—!"|<Rc ]

=F(r, r';k,)

(mm.1)
|r=r'|=>R, .

We note that in this case the renormalized polarizability
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a’, Eqs. (IL.7) and (IL. 8), is equal to a. It has already
been mentioned that R, could have any value 0 < R < d,
where d is the hard core diameter, Bedeaux and Mazur®
take R.=d, while Felderhof chooses R, infinitesimal.
For calculating the local field dielectric constant in the
limit 2y R, «< 1 and kR, « 1, both choices give the same

answer, Using the static approximation, F(r, r’;k,)
o o T(r,r’), where
1
T(r, r')= VeV, ,T_-?;T (111, 2)

is the static dipole~dipole tensor, we obtain from Eqs.
(11.283) and (II1. 1), in the notation introduced previously,
G o) _ _

Fr'Tle,r')=%71. (I11. 3)

iP-r <R,
Substituting this into Eq. (II. 25) gives for £ R, <1,
kR, «1,

g -1 =47rap

vy (111, 4)

which is the Lorentz—Lorenz relation. Also using Eq.
(II1. 3) in Eq. (II.29), we obtain the familar Lorentz lo-
cal field,

EL(r, k) =3 [€7(k(Ry), k) +2]E(x, ky) ,

which contains the exact transverse dielectric constant,

B. The Onsager-Bsttcher model

In phenomenological derivations®!® of the Onsager-
Bottcher model for nonpolar dielectrics, a molecule is
represented by a spherical cavity of radius R, immersed
in a continuous medium characterized by a dielectric
constant €. The total local field acting on a point dipole
at the center of the sphere is composed of the cavity
field E,, which is the field inside the cavity due to the
macroscopic field in the surrounding medium, and the
reaction field R, which is the field at the center of the
cavity due to polarization of the surroundings by the di-
pole moment of the molecule, Standard treatments®:1?
show that the reaction field R results in an enhanced
polarizability of the molecule to a value

o’=a(l-aRr)? | (11, 5)

which is reminiscent of the general expression for the
renormalized polarizability, Eq. (II.7). Comparison
with Eq. (II.11), which defines generally the local field
approximation, suggests that we identify the local field
E, with the cavity field E_,

The cavity field at the center of a sphere of radius
R, can be related, at optical wavelengths kR <1, to
the average field in the medium by?%25

E, (v, k) =E(r, k) - f dr’[T(r,r") +R(r, "¢, )]

lr=r’ <R,

<P(r’, k), (1. 6)
where R(r,r’;¢;) - p is the reaction field at the center
of the sphere due to a point dipole p at the position r’
inside the sphere. Comparing Eq. (III, 6) with Egs.

(IL. 22) and (II. 23) (replacing F(r, r';k,) by T(r,r’) in the
latter), immediately suggests the identification
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L(r,r')=-R(r,r%s¢;), |r-r'|<R, . (11, 7)

Since the reaction field factor R in Eq. (IIL.5) is related
to the tensor R(r,r’;e,) by

lim R(r,rj¢;), (111, 8)

Irr’|-0
the last two equations show that Eq, (III.5) indeed agrees
with the general relation for the renormalized polariza-
bility o', Eq. (IL.7).

Rl=

An expression for R(r, r’;¢;) valid at arbitrary wave-
lengths has been given by Titulaer and Deutch.?® At op-
tical wavelengths this reduces to the familiar result,

2(e,-1) 1
~ S\
R(r,r’se,) e e, 71) R3| . (111, 9)
We then find that

G(0)=_.f dr' [T, r)+R(r,r¢,)],

Ir=r? |<R.

47

_(2€L+1)| . (I11.10)

In the limit 2 R. <« 1 and 2R, <« 1, we obtain using Eqgs.
(II1. 10) and (IL, 25)

(2¢p +1) (ep ~1)

Tane, =a'p , (I 11)
and from Eqs. (III,5) and (IIL, 9)
2(e;, -1 «
= — b
a’ a[l Ge, 1) R] . (1m.12)

The last two equations are the usual expressions'’ for
the dielectric constant of a nonpolar fluid according to
the Onsager-Bdttcher model., From Egs. (III,10) and
(11, 30), or taking

P(r' k) =x, E(r, k) (111, 13)

when Ir-r’| is of the order of R, and using Egs.
(II1,10) and (I11.13) in Eq. (III.6), we obtain the familiar
result for the cavity field for this model

3¢
LI
E (r, k) %e, +1E(r, k) .

This is only an approximation, consistent with Eq.
(I11.13), since the local field given exactly by Eq. (I1.29)
will depend also on the exact transverse dielectric con-
stant,

Qur purpose here is to show that the Onsager—Bott-
cher model can be obtained by making an appropriate
choice for the propagator L, namely Eq. (ITII.7). Apart
from this “justification” for choosing L, we shall not
dwell upon the physical motivation for this model. Hgye
and Stell® have discussed at length the rationale for the
Onsager model in the case of rigid polar fluids, and
their discussion can be applied to nonpolar polarizable
fluids in the limit 2y R, «< 1 and kR, <« 1 with appropriate
translation of the physical quantities that enter.

Boticher!® has shown that Eqs. (II.11) and (II,12)
may be fitted to experimental values of the dielectric
constant with R, having values intermediate between the
molecular radius and molecular diameter. The present
formalism gives no prescription for determining R,

D. E. Sullivan and J. M. Deutch: Local field modeis for light scattering

which is an artifice that would not appear in an exact
calculation of the dielectric constant, Several au-
thors®2 have considered alternative, but somewhat re-
lated, methods of embedding the Onsager—B8ttcher mod-
el in a microscopic theory of the dielectric constant with
the aim of deducing a priori the value of R_.

C. The Wertheim model

The final local field model we shall examine is moti-
vated by consideration of the relation [Eq. (II, 15)] be-
tween the external field E; and the average polarization
in the mean field approximation. In explicit notation
this is

P(r, ky) = @ pE,(r, ko) + (o) f Pr Ur, v'sk,) - By(r, ko)

(II1,14)
Wertheim!! has examined diagramatically the Kirk-
wood-Yvon series expansion (at wavelengths large com-
pared with V, so that the radiation propagator F may be
replaced by T, Eq. (IIL 2)), and obtains an exact rela-
tion between P and E, of the same form as Eq. (I1.14),
In his notation,

P(r,ky) = BEy(r, k) + B fdsr'H(r,r';ko)eEo(r', ko) .
(Im.15)

For molecules with hard-core diameter R, H(r, r ;%)
satisfies the core condition,

H(r,r;k)=0 |r-r'| <R, . (111, 16)

Tentatively assuming, on comparison of Eq. (III, 14)
and (I, 15), that the renormalized functions o ’p and U
are approximations to B and H respectively, the last

equation suggests imposing the condition on U
u(r,r’sk)=0 |r-r'| <R, . (I1.17)

In principle, we can determine U(r,r’;k;) for (r—r'|

>R, and L(r, r';k,) for |r-r'| <R, from Eqs. (IIL.17),

(I1,5), and the integral relation Eq. (I1.16). Solving
these equations yields both U and L for all separations
Ir-r'|; these functions depend parametrically on a’p.
A closed set of relations for the latter are obtained by
invoking Eqs, (II,7) and (IL 8),

One may verify that this model is equivalent, in the
static limit 2;,~ 0, to the approximate model considered
by Wertheim. (In this case, L corresponds to the
function denoted as € by Wertheim.) At optical wave-
lengths kg R, <<1, Wertheim’s results'! should provide a
very good approximation to the propagator L(r, r';ko) for
separations |r—r'l < R.. It follows that his expressions
for the static dielectric constant may be employed for
the optical dielectric constant ¢, according to this mod-
el, Wertheim’s results for the dielectric constant are
summarized in the equations:

_q(28) (1v22f
“w=oh » 1OToEr

where the parameter ¢ is determined from the relation

(O1.18)

4rap

(1- 1643157R'?1

The fact that the present model follows from the condi-

q(28) - q(- &) = =47a’p . (I1,19)
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tion on U, Eq. (III.17), which is imposed by analogy
with the exact core condition Eq. (III.16), leads one to
expect that this model for ¢, is the most realistic local
field approximation,

It should be pointed out that Wertheim takes R, =d,
the exact hard sphere diameter, since it is for this
choice that Eq. (III.16) is exact, In the context of this
paper, however, R, may be regarded as a parameter

which could have a value less than d. To our knowledge,

no work has been performed on fitting Eqs. (III.18) and
(II1.19) to experimental dielectric constants similar to
investigations based on the Onsager-Bottcher model,
although Stell and Rushbrooke?® have presented some
numerical calculations of Wertheim’s equations.

IV. LIGHT SCATTERING IN THE BORN
APPROXIMATION

We now employ the results obtained in previous sec-
tions to discuss Rayleigh light scattering, Departing
somewhat from previous approaches, *” we compute the
light scattered from a macroscopic region within a sam-
ple to a point outside the sample, Examination of this
actual situation in light scattering experiments will en-
able us to obtain refractive-index-dependent correction
factors to the usual scattering formulae, "2

A narrow beam of light which is assumed to be a
plane wave

Eo(r, k) =Egae'’™ (Iv.1)

is incident on the sample fluid which fills a cell of vol-
ume V. Here K, is a vector of magnitude %, in the di-
rection of propagation of the incident light in vacuum,

a is a unit vector (“polarization” vector) perpendicular
to k;, and E, is an amplitude factor. The scattered
light is detected at an angle g relative to k; and ata
large distance from the sample. An aperture placed
between the cell and the detector allows only the light
scattered from a subvolume ¢ of the sample to be de-
tected.! As an idealization, we assume that only a small
region within §, denoted by V,, is illuminated by the in-
cident beam. The scattered electric field e,(r, k,) at the
detector due to the molecules in ¢ is given by”

e,(r, ky) = f dr'F(r,r'ky) - py(r', ko)
4

kz ixgR .~ ' . , ,
_ﬂ__( “qq) fda -'qupl(riko)r

(v.2)
where the fact that the detector is far from the sample
permits F(r, r';k,) to be approximated by its asymptotic
form. InEq. (IV.2), §=(R/R), where R is a vector to
the detector from a conveniently chosen origin within
the illuminated volume V,. As is customary, it is as-
sumed that R is much larger than the dimensions of .

In the Born approximation, the microscopic polariza-
tion fluctuation p, is given by Eq. (II.17). In explicit
notation, this is

P, k) = a'm (r)E  (x, ko) +(aPp fdsr, u(r, r ko)
v
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e VE, (), k), (1v.3)

where we have uged the fact that the macroscopic fields
in the sample are nonzero only within the illuminated
volume,

The detector measures the component of the scattered
light polarized in a direction b perpendicular to q.
Substituting Eqs. (IV.3) into (IV, 2) and interchanging
the order of inbegration over y and V,, we obtain

b . e,(r, ky) =22 iR fd"r ny(r Y[beitod =

+c¢'p fdar"ﬁ- U(r",r';ko)e"'ﬂ“""]
(]

E r' k). (1v.4)

From Egs. (III.14) and (II.11), one sees that the term
enclosed in brackets in Eq. (IV.4) can be written, to
terms consistent with the Born approximation,

beite +a'pfd3r"b- Ur’’, r'sky) e ot
(7

—-r—r E (' L kg) .

o (Iv.5)

Here 'E,(r,k,) is the local field in the medium due to a
fictitious external transverse field 'E,(r, k,) incident on
the sample from the direction of observation, which
within the region occupied by the sample is described
by

Ey(r, ko) = 'Eqbe ™% p(r)

where

h(r)={1 ringy

0 otherwise

(Iv.8)

We shall assume that the macroscopic fields within
the illuminated volume may be represented by plane
waves, Congistent with the Born approximation, the
local fields E, and E; are related to corresponding
Maxwell fields E and E ' by Eq. (I, 31), where the wave-
number k() in the medium may be approximated by %,
defined as

(v.m)

In general the directions of propagation and polarization
of the macroscopic fields within the medium are not
identical to those of the external fields, and must be de-
termined by solving Maxwell’s equations with the ap-
propriate boundary conditions. We shall, however, as-
sume that these differences may be neglected, in which
case we obtain using Eq. (II, 31),

2 2
kRr=e kg .

E;(r, k) =2 paeter
P (IV.8)

BL(r, k) =24 'E "beirrir
ap
where k; is a vector of magnitude %; in the same direc-

tion as k, fcf. Eq. (IV.1)], and E, 'E’are amplitude fac-
tors for the Maxwell fields in the medium.,

Using Egs. (IV.5) and (IV.8), Eq. (IV.4) becomes
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~ 2 p2 gk E R’ et
b e(r, ko) =)§¥ R cos¢ f d’r'ny(r") 'SR |
o

R vy
. (Iv.9)
where cos¢ =4+ b and Ak, is the scattering wave vector,
ok, =k; - %, q . (Iv.10)

The ratio of the intensity of light scattered into the solid
angle dQ; to the intensity of the incident light is given by

I <lb e, (r, ko) 1%

I, |Eg 12 (av.11)
Using Eq. (IV.9), we thus obtain

R:I (xz k2> \ S(ak,)

Vi, \a'p/ |E, Eq P2 av.12)
where

S(Akz,) = f &r I(m(r) n1(r')> it SR (Iv.13)

The term |E ‘E'/E, 'E,1*=1/C, inEq. (IV.12) is a re-
fract1ve-1ndex—dependent correction factor, Under the
agsumption that reflection losses are negligible, and
with the previous approximation that the directions of
propagation of the fields in the medium are identical to
those of the external fields, conservation of energy!:?®
leads to

[

E| | E|_1
-E—o _-’E; —;}7‘5 , (Iv.14)

where #; is the (local field) refractive index of the sam-
ple fluid. Under these conditions, C,=n%, in agree-
ment with the correction factor obtained previously by
several authors.?”’#® A more rigorous derivation of C,,
avoiding the approximations made here, can in principle
be achieved by solving Maxwell’s equations taking ac-
count of the geometry of the scattering cell.

The isotropic Rayleigh ratio, R,,(Q;), is obtained by
averaging Eq. (IV.12) over all directions of the detector
polarizer,® We use

cos¢ =siny; cosds ,

where i; is the angle between the polarization direction
a of the incident light and the scattering direction g,
and ¢g is the angle between the detector polarizer b
and the plane determined by & and {. Averaging Eq.
(IV.12) over ¢;, the result may be written

is(Qq) ( >fz 211)« S(AkL) , (Iv. 15)
where
_ 1\
f =%&—%)L s (IV.16)

is a “local field factor’ which will be examined in the
next section. In Eq. (IV.15), the factor C, has been
subsumed in the definition of R;.

The turbidity 7 is obtained by integrating Eq. (IV.15)
over all solid angles dQ;.3° Alternatively, the turbidity
is given by®7

T =2k, Imn(ky) = 2k, Im[ € (k(k,), ko)]V/2 . (Iv.17)

D. E. Sullivan and J. M. Deutch: Local field models for light scattering

In the Born approximation, the dielectric constant may
be obtained from Eq. (II. 24), employing the matrix ¢
defined in Eq. (II. 18). Techniques for evaluating the
turbidity from these formulae are described in Refs. 6
and 7, and are omitted here. The result agrees with
that obtained from Eq. (IV.15), apart from the implicit
presence in the latter equation of the factor C,. Since
this factor is due to refraction effects at the boundaries
of the scattering cell, it is not expected to arise in a
calculation of the shape-independent dielectric constant.

V. LOCAL FIELD EFFECT ON LIGHT SCATTERING

According to Einstein’s?® phenomenological theory of
light scattering, the Rayleigh ratio is given by an ex-
pression similar to Eq. (IV.15), where f is replaced by
the density derivative [p(ae(ko)/ap)r], with €(k,) the real
part of the optical dielectric constant at wavenumber k.
While values of R;; computed from this theory using
measured values of [8€(k,)/9p], agree well with experi-
mental Rayleigh ratios, *17 the agreement has not been
as good when (9¢(k;)/9p) 7 is computed from theoretical
equations of state for e(k,).

Most investigations®®*~!® have considered the Lorentz
and Onsager~Bottcher models for the dielectric con-
stant in order to evaluate [8¢(ky)/8p],. Equations
(IV.15) and (IV.16) provide expressions for R;, in the
Born approximation consistent with these models, as
well as with the Wertheim model, and it is natural to
inquire into the relation of the local field factor f and
the density derivative (p 9¢./8p), of the local field di-
electric constant ¢, ,

In computing (9¢,/9p), from the expressions in Sec.
1II, the molecular polarizability « is treated as a con-
stant independent of density, consistent with the model
we have adopted for a polarizable fluid; the parameter
R, will also be regarded as density independent.

The comparison of f with (p 8 €,/8p) for the three
local field models is given in Table I. The results may
be presented in a number of ways; for convenience we
have adopted the following approach. In Eq. (IV,18) for
f we substitute results from Sec. III which express a'p
in terms of the dielectric constant for the respective
local field models. Thus f is related to the dielectric
constant €; for each model and it is not required that «
or R, be independently specified. This cannot be
achieved in the calculation of (p 8¢,/9p), for either the

Onsager—Bottcher or Wertheim model, Instead, we
have set
aeL)
=) =2&f, (v.1)
p( 9p /¢

and determined expressions for z interms of the vari-
ables €; and ap. Table I presents results for the quan-
tities f and 2,

In the case of the Wertheim model, Eq. (III. 18) can be
inverted numerically to determine the parameter £ and
hence g(~ £) as functions of €;,. Equation (III. 19) can be
written

ara’p=(e,-1)q(- &) , (v.2)
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TABLE 1. Local field factors for light scattering according to various models.
Model f 2
Lorentz (iz.:_1>3£J.+_2> 1
Onsager—  3egle;—1) 1+ —1L € +2)~ e, ~D\|[™?
Bottcher (2 +1) (e, +1) \ E 4rop
ter—1) €rqg(—E}[A{E) + BlE)]
q(-¢) le LAE) + B(E)+ [(ep— 1) /N1 ~ (e y ~ Dg{— &)/ 4rar p)]
‘Wertheim

(e=q(28)/q(— &)
Al) = 16(1+£)

(1—2£)(1+4¢)

B --42=8)
(1+8)(1-2¢)

which upon substitution into Eq, (IV. 16) gives the result
for f shown in Table I.

The factor z is unity in the case of the Lorentz model,
so that R;, computed from Eq. (IV.15) agrees in this in-
stance with Einstein’s theory for scattering from a med-
ium with dielectric constant €, satisfying the Lorentz-
Lorenz relation, Eq. (II1.4). The result has already
been noted by Bedeaux and Mazur® and by Felderhof.’

Neither the Onsager~Bottcher nor the Wertheim model
lead to a value of z equal to one. Since the Lorentz-Lo-
renz relation is usually a good approximation to the ac-
tual dielectric constant, however, we see from Table I
that z corresponding to the Onsager-Bottcher model will
not differ from unity by more than a few percent. While
it is not immediately apparent from Table I that a simi-
lar result will emerge from the Wertheim model, the
numerical examples presented below indicate that z dif-
fers only slightly from unity for this model also.

The Rayleigh ratio R, () is usually measured at a
scattering angle of 90° in the plane perpendicular to the
polarization vector & of the incident light, so that y;
=90°, It is usually assumed that the correlation length
of fluctuations is much smaller than the wavelength of

light, in which case S(Ak;) may be approximated by its
value for Ak, =0

S(0)= [ ' (ny(x) 2y = g ka TBy

where ky is Boltzmann’s constant, T the absolute tem-
perature, and B, the isothermal compressibility.

With S(Ak,) approximated by S(0), Eq. (IV.15) may be
written as

2 MR, (90%)
T Fal
where A =2n/k, is the wavelength of the incident light.
The rhs of this equation, denoted by f?(exp), contains
experimentally accessible quantities, while the lhs can
be related to the dielectric constant €, using the local
field expressions given in Table 1.

(V.3)

In Table II we list some values for f%(exp)!obtained
using data in Refs. 15 and 17. Values of f2 for the var-
ious local field models are calculated in the manner in-
dicated above, using values of the dielectric constant
given in the preceeding references. Included in this
table are the factors z for the Onsager—Boéttcher and

TABLE II. Comparison of experimental and theoretical local field factors.

f Xexptl) r? z
Onsager— Onsager—
Molecule Ref. 15 Ref. 17 Lorentz Bottcher Wertheim Bdttcher Wertheim
Benzene 2.70 2.74 3.20 2.39 2,75 1.012 1.019
Carbon tetrachloride 2.09 2.12 2.43 1.89 2.14 1.003 1.007
Chloroform 1.89 s 2,21 1.74 1.96 1,029 1.039
Carbon disulfide 5.55 5.62 6.76 4.45 5,43 0.988 0.992
Chlorobenzene 3.29 v 3.57 2.62 3.04 1.006 1.012
Toluene 2.47 2.50 3.12 2.34 2.69 1.011 1.019
Nitrobenzene 3.83 4,54 3.21 3.79 1.017 1.029
Cyclohexane ve 1.66 1.93 1.55 1.73 1.011 1.019
Isooctane . 1.32 1.50 1.24 1.36 1.014 1.019
n-hexane 1.16 1.32 1.11 1.21 1,007 1.010
n~octane 1.39 1.58 1.30 1.43 1.009 1.013
n-decane ° 1.59 1.76 1.43 1.58 1.010 1.014
Methyl ethyl ketone ves 1.28 1.38 1.15 1.25 1.011 1.016
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Wertheim models, which were calculated from the ex-
pressions in Table I employing values of the dielectric
constant and polarizability ¢p listed in the above refer-
ences,

It is seen that in most cases the Wertheim model
gives values of fZ in closest agreement with the experi-
mental values, This observation is consistent with the
expectation that Wertheim'’s is the most realistic local
field model.

VI. CONCLUDING REMARKS

As mentioned in the introduction, the comparisons
presented in Table II must be viewed with some caution,
since it is known!® that the polarizabilities of molecules
in a fluid are distorted by interactions between the mole-
cules, However, treatments of this quantum mechani-
cal effect in the case of dense fluids are unavailable,

A classical model which approximately accounts for
distortion effects replaces the idealization of a point
dipole by a polarizability uniformly distributed through-
out the molecular sphere., Such a model was used sev-
eral years ago by Levine and McQuarrie® in a discus-
sion of the pair polarizability of gases, and work is in
progress to extend the present treatment along these
lines.

With regard to the comparisons in Table II, we note
that most of the molecules listed display considerable
optical anisotropy, and hence the assumption of a scalar
polarizability is untenable. Nonetheless, it is straight-
forward to show that the results for the isofropic
Rayleigh ratio are unchanged when the formalism is
generalized to molecules having an orientation-depen-
dent point polarizability tensor with a spherical core, 3
provided the factor f is expressed in terms of the di-
electric constant in the manner employed above. As
one expects, the Rayleigh ratio calculated in the Born
approximation now contains, in addition, a depolarized
component. Previous authors® %1 have indicated that
reasonable agreement with experimental depolarization
ratios is only obtained when the local field models take
into consideration nonsphericity of the molecular cores,
although there is evidence® that polarizability distortion
may also be a significant factor. This provides further
motivation for investigating a model which can account
for these distortion effects in dense fluids.
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