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We discuss the scattering of light by anisotropic impurities located at a fluid interface. Our aim is to
determine which type of information about the arrangement and motion of the impurities can be obtained
from precise light scattering experiments. Since the paper is intended to be exploratory rather than
exhaustive, we concentrate our attention on the simplest nontrivial case; a number of possible complications

are discussed in a more qualitative way.

. INTRODUCTION

There is considerable chemical and biological inter-
est in determining the arrangement and motion of im-
purity molecules that are constrained to lie in a fluid
interface. This paper is devoted to an analysis of the
possibilities for obtaining information about such sys-
tems by precise light scattering measurements. The
work was motivated by an interest in assessing the
prospects for new applications of modern laser light
scattering techniques."z To our knowledge there are
no reported experiments of the type considered here,
and our results are presented in the hope of stimulating
new experiments.

The model we adopt for the impurity—interface sys-
tem is not the most general that can be constructed;
the absence of data does not justify treatment of the
most complicated case. Rather, we will exhibit the
type of information that might be obtained under favor-
able experimental circumstances. We do consider par-
ticles with anisotropic polarizabilities, for simplicity
cylindrically symmetric, since for such particles light
scattering experiments provide information about orien-
tational distributions and rotational relaxation. The
corresponding, but more general, treatment of light
scattering from anisotropic particles in bulk fluids has
been presented by Steele and Pecora.® Since the results
of our calculations for the scattering cross sections at
different angles and polarizations are complicated, we
summarize here the main qualitative conclusions of our
inquiry.

(1) For a low concentration of impurities, one can
determine two parameters of the orientational distribu-
tion of a single particle at the interface., In addition,
some information about the degree of submersion of the
impurities may be obtained. This requires determina-
tion of the total scattered intensity at several angles
and polarizations.

(2) At higher concentrations similar scattering mea-
surements can provide information about the correla-
tions in position and orientation of the impurities, The
information can be expressed in a finite number of av-
eraged products of spherical harmonics of order 0 and
2, depending on the molecular orientation angles, over
the two-particle joint distribution of positions and ori-
entations. Since the experiment provides Bessel trans-
forms of these functions for wave vectors up to twice
that of the incoming light, one will only be able to de-
termine a few moments of these averaged distributions,
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unless the correlations are of unusually long range.
The moments ‘can be connected to some generalized
susceptibilities of the assembly of impurities with re-
spect to aligning forces.

(3) When the frequency distribution of the scattered
light can be resolved, one may obtain information about
the time dependent analogues of the correlation func-
tions mentioned in the preceding paragraph. In partic-
ular, measurements at low concentration provide infor-
mation about the diffusion of the impurities along the
interface and some information about their rotational
relaxation. Measurements at higher concentration
yield information about correlations in the motion of
different particles.

The most serious limitation of the simple model
adopted here is our assumption that the interface re-
mains flat, and that the degree of submersion of the
impurities is fixed and independent of its orientation,

In fact, fluctuations will distort the interface and induce
relative motion between the impurity and the interface.
This will influence the observed light scattering, par-
ticularly its frequency spectrum. This question is dis-
cussed briefly in the last section.

The treatment in this paper is also restricted to low
or moderate impurity concentrations, since we neglect
the field scattered by other impurities relative to the
incoming field. It is possible to take such effects into
account, but then the relatively simple relationship be-
tween the scattered light and the distribution function
for the impurities is lost.

Il. THE SCATTERING AMPLITUDE FOR A SINGLE
SCATTERER NEAR AN INTERFACE

The presence of an interface in the immediate vicini-
ty of a scatterer causes some modifications in the fa-
miliar expression for the scattering cross section of a
polarizable particle. We will consider a geometry in
which the interface coincides with the x—y plane and the
wave vector of the incident light lies in the x—z plane
and makes an angle 7—6, with the z axis. The two prin-
cipal modes of polarization are the parallel one, with
the electric field parallel to the interface, in this case
along the y axis, and the oblique one, with the electric -
field in the plane of incidence. The explicit form of the
three unit vectors (the direction of propagation E and
the two polarization vectors) are given in Table I, for
the incident beam and for a beam leaving the surface in
the direction (8, ¢). The scatterers are treated as
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TABLE I. The unit vectors in the direction of the wave vector
and of the two principal directions of polarization for both the
incoming and the scattered light. Quantities pertaining to the
incoming light are designated with a subscript zero. The ex-
pressions in column 2, 3, and 4 are the x-, y —, and z compo-
nent of the unit vector in column 1.

a a, a, a,

kg siné 0 —cosb

2p.0 0 1 0

é - cosf 0 sing
0.0 0 0

k sinf cosd sind sind cosf

ép - sing cosé 0

éo cosb cosd cosf sing —sind

point particles with a polarizability tensor that is in-
variant under rotations around the molecular axis:

a=al+ BRR-11),

where R is a unit vector along the molecular axis with
polar components (@, ®). The tensor & is an effective
polarizability tensor; it may differ from the polariza-
bility tensor of the isolated molecule due to local field
effects and modifications of the solvent in the neighbor-
hood of the impurity.

2.1)

The Maxwell field near the surface can be obtained
from the field of the incoming wave by application of the
Fresnel formulas.* For our purposes it is convenient
to write them in the form

2n cosgy

=g 3 Ey= .
Ee= cosfy +ncospl Yo Exo) @.22)
2 cosé,
= — E =Y E .2b
¥~ cosby+ncosel  * % Es» (2.2b)
212 cosé,
-2 7Y =
2" 1 cosfy + 7 COSH)) Ee=4Ero, 2.2¢)
or
E=R,- E,), (2.24)

where # is the refractive index of the fluid, 8; is the
angle of the refracted beam with the normal to the sur-
face, as determined by Snell’s law (sinfy =#nsingy), and
nZ has the value #? in the upper medium and 1 in the
lower medium. For a partially submerged scatterer
Eq. (2.2) applies with n%=p+#?(1 — p), where p is the
submerged fraction.

The induced dipole moment L of the scatterer is given
by

pu=a-E, 2.3)

with « and E given by Eq. (2.1) and (2. 2), respectively.
The field emitted by this dipole may be expressed con-

veniently in terms of the Hertz vector II(r),®
Es(r)=Vv=x VxII(r). 2.4)

For a dipole at the origin in a homogeneous medium,
the Hertz vector is

T(r) =t exp(ikr)u . 2.5)
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The form of II(r} appropriate for a dipole source in the
vicinity of an interface was derived by Sommerfeld.®
His expression is rather complicated, but the asymp-
totic form for large » may again be expressed in the
form (2.5), but with u replaced by

utt e, o) =R'6, ¢) - u, 2.6)

which depends on the direction (9, ¢) of the vector r
[the notation anticipates a relation between &’ and the
matrix R, in Eq. (2.2d), which is yet to be established].

When 4 is normal to the surface, u®fis also normal

to the surface; its value depends on the position of the
emitter with respect to the surface, but the various
cases can be combined in the formula

2n? cosf

I ey Sivonnyy ST VTN

n° cosf+ncosh’ @.7

where 7% has the same meaning as in Eq. (2.2c), and ¢’
is related to 8 by Snell’s law (siné=nsind’). For u
parallel to the surface, but perpendicular to r, u*‘is
again parallel to g and given by

oft 2 cosé

By = Cos6 1 ncose’ M (2.8)

= I’I‘Ly' 3
where y' denotes the direction perpendicular to r and
Z. For a p directed along the projection of r on the
surface (the x’ direction), Sommerfeld gives an expres-

sion for u®*‘, which has both an x’ and a z component”:
2 cosd
eff < LUSY
Hx' = Cos8+ncose’ M+ (2. 9a)
. 4
et = 2 sing cosd(n” - 1) 2. 9b)

~{cos6+ncosd’) (2 cosb+ necose’) M °
However, from Eq. (2.4) one sees that only the com-
ponents of u°f perpendicular to r have physical mean-
ing, and it is easy to see that an alternative form,

ots___ 2ncosg’

’ —T_‘—— = ’
Fet = cos8+ neose’ Hx' ™ EHsts

2.10)
Mﬁ“ =0 s

differs from Eq. (2.9a) by a vector parallel to r.
Therefore, we may write instead of Sommerfeld’s ex-
pression (2.6), with ®' given by Egs. (2.7), (2.8), and
2.9),

LT =R, P) - u, 2.11)

with R defined by Egs. (2.7), (2.8), and (2.10). The
matrix R is obtained from R, in Eq. (2.2) by replacing
8y by ¢ and rotating the coordinate system over an angle
¢ around the z axis:

mo = 9!(90, 0) .
By combining the results of this section, in particu-
lar Egs. (2.5), (2.11), (2.3), and (2.2), we find for the
strength of the scattered electric field for sufficiently
large » (kr>>1)
E(r) = r-lexp(ikr)(1 - Tr) - R(S, O) - & - R(6,y,0) « B,
=7t exp(ikr) A8, $;0,,0) - Ey. (2.13)

We will call A the scattering amplitude matrix. In
terms of A, the scattering cross section for an incom-

(2.12)
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ing field with direction (7~ 8,,0) and polarization &, and
a scattered field with direction (9, ¢) and polarization
é is given by

%: |8-A-&|2=%"&- RO, ) a- ROy, 0) - &|%.
(2.14)
For the case n=1, the matrix R becomes equal to the
unit matrix and the expression assumes the familiar form

d_°=k4[é.a.éo‘z

9 (2.15)

for light scattering by a polarizable molecule in the di-
pole approximation. The relation (2.13) between the
matrices describing the modification of the incoming
and the scattered field by the presence of the interface
could have been expected on the basis of Lorentz’s rec-
iprocity theorem,® which states that the scattered sig-
nal stays the same when the positions (and polarizations)
of light source and light detector are interchanged.

A

App=Fyoy[acosg - 38cosd(cos?O — 1) — 28sin0 cos (28 — ¢)],
Apo=Fg{r'[asing - 38sing(cos? — 1) + $85in®0sin(@2® — ¢)] - §' sind cosO sind},
Aop=Hyltilasing - z8sing(cos®0 - 1) - 18sin?O sin@® — ¢)]+ 3/ sind cosO sin(@ - ¢)},

IH. POLARIZED INCOHERENT SCATTERING

In this section we will discuss the expression (2. 15)
in somewhat more detail for different choices of the
polarization vectors. In addition, we will consider av-
erages over an ensemble of scatterers with different
orientations of the molecular axes, described by a
probability distribution f(©, ). The resultthus obtained
will also be equal to 1/N times the scattering cross sec-
tion for N scatterers on a surface with a spacing large
compared to the coherence distance of the incoming
radiation. Corrections for closer spacing of the scat-
terers are considered in the next section.

We will determine the scattering amplitude A, defined
in Eq. (2.14), for initial and final polarizations either
parallel to the interface or oblique, using the polariza-
tion vectors of Table I and the expressions (2.2), (2.7),

Ago=F{~ a(rir’ cosd +343")+ BG4 cosd — 354’ ) (cos?@ - ) — 3Br)r’ sin®0 cos (28 - ¢)

+Bagr’ sin® cosO cos(d — ¢)+ Br)3’ sind cosO cosd},

where we used the abbreviations

' =rcos8, r{=r,cosé,,

(3.2)

3’ =3 sing, 3 = 3o sing, .

Another useful quantity is obtained by choosing the final
polarization in such a way that the isotropic component
of & does not contribute. For initial polarization paral-
lel to the interface we have to choose the final polariza-
tion along the vector €, cosy— &psiny with tgy=(¢'/p)tgd
The corresponding amplitude is

App = (t"*sin¢ + p? cos®¢) 2 gkPnyy

X (- zr’ sin®@ sin2® + 3’ sind cosO sind cos ). (3. 3)

The amplitude A, is not particularly simple and there-
fore not given explicitly.

In order to obtain the scattering cross sections one
must square the expressions (2.2) and (2.3) and aver-

Opp= k“?gba{coszd’[dz - %01342*' Bz(i‘ls“*s% gz + 52'5 a)]+ Bz(il's - 52‘1 92+ :sls )},
Opo= klnta)f'z{smzd’[dz - %01&12+ 132(4_15 +¢% g2+ 5'25 q4)] + 32(i1'5 - Ezi g2+ :71544)}+ kll)(zy 3’252(I1§+ 2!1 gz~ 54‘5 ),

0op= kI v sin*¢[0® ~ §aBg, + B2E+E d2+ £ 0]+ B35~ & 42+ 3 9u)}+ F 3520282 (% +3 - %),

(2.8), and (2. 10) for the distortion factors. In this way
we obtain
(3.1a)
3.1b)
(3.1¢)
(3.14)

)

age the result over the probability distribution (0, &)
for the orientation of the molecular axis. This is most
easily done by rewriting Eqs. (3.1) and (3.2) in terms
of spherical harmonics, as is done in the Appendix.

When we assume that (6, ) is independent of &, as
is to be expected from symmetry considerations, then
f(8, &) enters into the final expressions only through the
quantities

ar- j J’ £(®, 8)P,(cos0) sin0dedd

=[4n/(21+1)]'/2 f f (8, 8)Y (6, ®) sinodeds (3.4)

for =2 and 4. These coefficients vanish for an isotro-
pic distribution and assume the value unity when all
molecules are aligned along the z axis. In terms of the
quantities (3, 4) we obtain for the cross section per
scatterer with specified initial and final polarization

(3.5a)
(3.5b)
(3.5¢)

4 2
opp=Rt* 1 Hcos? o0 - SaBg, + B2+ & o+ 0]+ BEG - & o+ s a0} + B 24 24 420D+ A s - = q.)

+ B3P0 + JaBay + 4B+ & 42+ 5 4]+ K'rhas e’ 4’ cosp[20% + ZaBg,+ B2E &g, -%q)],

and

0pp=E'D30(r"? sin®e + y? cos?o 18212~ F da+ 5590+ 42 (T + 31 02 - 5 4s) cosp].

(3.54)

(3.6)
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In Eq. (3.4) and (3.5) we assumed that @ and 8 are real
quantities; this means that the frequency of the scat-
tered light should not coincide with any of the absorp-
tion frequencies of the impurity,

In analyzing experimental data for the scattering
cross sections we may consider the distortion factors
By 9, Ly, and r’ as completely known functions of 9 and
8y; the factors 3) and § contain the factor %, which con-
tains the submersion factor p, and is therefore in gen-
eral not known a priovi. A complete experiment yields
the following five quantities:

1 1
d1=138% - #B%+ 58%as
4
dy =ng($sB% + 718% - %8%q4) ,

2
dy=a’ - 3apa,+ 58%+ &Bay+ &B%,, 3.7

dy=ng(a®+ ;70’&12 + ;‘:5/32 + %ﬁsz + 3%32114) ’

ds =ng(o” + Yapq, - £6° - 538°0, - 8%qs) -
The quantity d, follows from o, at ¢ =+1/27; once d,
is known, d, follows from o, at any other ¢, and d,
from 0,4 O 05p at ¢ =0 (or any other ¢, when the
known value of d; is used); d, and (d, + d;) then follow
from the ¢ dependence of o, at fixed 8, and 9. Notice
that a complete experiment requires only measure-
ments at one fixed value of 8; and 9; variation of these
two quantities yields no independent information, but

may serve to confirm the model used for describing the
impurities.

From the quantities d,, ... ,d; we can determine the
five unknowns a, 8, n, g, and ¢,. This is perhaps
done most easily by assuming a value for ni,- this re-
duces (3.7) to five linear equations with unknowns a?‘, g2,
afBqs, B2qs and B%g,. One then varies »Z until the con-
dition B2 (afg,)’ = a®(B%g,)? is met. In choosing between
multiple solutions one may employ the conditions

18] <3]el;

1 .
—3sq <l

1< nf, <nt;

s 3.8)
—-TS q4 < 1 y
which follow immediately from the various definitions.

When one drops the requirement that « and g are
real, one must make the substitutions

g2~ |8l%;
aB—~Re(a*g).

da_ ‘a‘a;
(3.9)

Now the system of Eqs. {3.7) is underdetermined. In
order to extract the required information, one may
combine measurements at different frequencies, pro-
vided the ratio 8/a varies with frequency. In that case
each new frequency introduces four new equations (the
ratio d,/d, is frequency independent), and three new un-
knowns: la(w)1?, |B(w,)!% and Re[o*(w,)B(w,)].

Now a practical method to determine all required
quantities is to solve for |a(w,)?l, g;Re[a*(w,)B(w,)];
and | B(w,) Iz(%5+6—2§q2+§a-5q4) from dy(w,), dyw,), and
dy(w,) = ds(w;), with an assumed fixed n%, and subse-
quently to adjust #2 until the value of |8(w,)!/!B(w,)I?
agrees with the one determined from d;(w,)/d;(w,).
Once 72 is determined the system of Eq. (3.7) deter-
mines all required quantities.
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IV. COHERENT SCATTERING

In the preceding section we calculated the scattering
cross section of an assembly of impurities by adding the
contributions from the individual scatterers, This
treatment is justified when the distance between the
scatterers is large compared to the coherence length of
the light, or when the positions and orientations of the
scatterers are completely uncorrelated. Moreover, we
neglected any contributions of multiple scattering (or,
alternatively, of modifications of the local field by the
presence of other impurities). Complications of the
latter kind will not be considered in this paper, except
briefly in the concluding section. In the present section
we will review the modifications of the results of Sec.
1T due to interference between light scattered by differ-
ent impurities.

In the limit when the distance from the scattering re-
gion to the detector is large compared to the dimensions
of the scattering region, the scattering cross section
for N scatterers is [cf. Eq. (2.15)]

do -t g 8,8 é
_ ﬁl TG, gL BB a, - &, .1
“rz

a4
where k and k, are the wave vectors of the scattered
and incoming light, respectively; & and &, are the po-
larization directions; and r; and &, are the position and
the effective polarizability tensor of the ith molecule.
We assume that the polarizability tensors «; are all of
the form (2.1), with identical constants @ and 8, but
each with its own orientation of the molecular axis
R;=(0;, ®,).

It is convenient to separate the cross section Eq.
(4. 1) into two parts, an incokerent part consisting of
the terms with 7=j and a coherent part consisting of the
terms with 7#j. The ensemble average of the incoher-
ent part contains only the distribution function for the
orientation of a single molecule, and it is equal to the
quantity calculated in the preceding section, apart from
a factor N. The ensemble average of the coherent part
contains the two-particle distribution function f,(r,, ©,,
®; 1y, 0,5, 8,), which gives the probability of simulta-
neously finding impurities at specified positions in the in-
terface z =0 with the specified orientations. The func-
tion f, is normalized such that

J . f f, d%ryd?r, 5in®, dO, d®, Sin®, dO, d®, = N(N - 1).
(4.2)
Notice that we assumed that all impurities are located
exactly at the interface, and that the vectors r; and r,
are treated in Eq. (4.2) as two-dimensional vectors.

The scattering cross sections may be expressed in
terms of the quantities

S m (r, r')= 4771]‘] fz(r, Oy, <I>1;r', 5, q’z){gLM(el’ &1)

X 40 e (Oz, ®,) SinGO, dO, dP; 5InO; dO, dP,,
.3)
where 4,y are the real spherical harmonics (with
Yy, .1 CONtaining the factor cosM® and 4, _ 4 contain-
ing the factor sinM®) in a coordinate system with z axis
normal to the interface and x axis along the vector r’
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x>
-
.

~k sin 8,

FIG. 1. The two-dimensional scattering vector k, its azimu-
thal angle ¢, and their relation to the quantities 2, 6,, 6, and
¢. The relations {4.7) and (4. 8) express simple geometrical
relations in this figure, [Equation (4.8) is obtained by equat-
ing two expressions for the length of the dashed line.] All vec-
tors in this figure lie in the plane of the interface,

—r. The factor 47 is chosen such that gy, (T, ') is the
customary two-particle distribution function. In view
of the definition and the supposed invariance of the en-
semble of scatterers under translations and rotations
that leave the interface invariant, the functions g .7/ 4
(r, r') depend only on Ir-r'l; moreover,

ngL'M'(!r -r ' )= (- 1) gL'M';Lu(|r -r |) . 4.9

Finally we may assume that, certainly in the absence
of magnetic interactions between the impurities, the
function f, is invariant under the simultaneous change
in sign of ¢, and &,. This implies that g;,; ;. vanish-
es unless M and M’ are either both negative or both
nonnegative.

By using the expressions derived in the Appendix for

]

4o pp/d2= NE*9iy*[cos®d DY+ cosd cos (29— ¢)D%+ D

9+ cos(ap-2)DY],

1899

the scattering amplitudes in terms of the spherical har-
monics, Eq. (A2), we can now express the coherent
part of the scattering amplitude in terms of the func-
tions (4.3); the functions gy . ;.. always occur in the
combination

[explitho -1 tlggusw S Wraray, @5

where f(x) is some function of the angle x between r and
the projection of k; on the interface. The x integration
can be carried out; for this purpose we write

(k, - k) - r=—krcos(x—1), (4.6)

with  the length of the projection of k — k, on the inter-
face and ¥ its angle with the projection of k, on the in-
terface (see Fig. 1),
k = k[sin?6, + sin%6 ~ 2 sing, sind cosp]'/?, (4.7)
sing, sing = sind sin(y — @), 4.8)

and use the standard integral formula®

ar
J‘ expl- ikr cosa] cosna da =2n(~ )" J,(k7), (4.9a)
0

2r
J exp[- ik¥ cosa|sinnada=0, (4. 9b)
0

with J, the Bessel function of nth order.

The final expressions for the averaged coherent scat-
tering cross section will therefore contain the quanti-
ties

Fne poa () = 21rf0 Eruszow W, (kr)y dr . {4.10)

In terms of these, quantities for various cross sections
may be expressed as

4.11a)

dopo/dQ= Nk'5r'?[sin¢ D3 + sing sin(@¢~ ¢)D}+ D} ~ cos(4¥ - 2¢0)D4]+ NE*n332[ DY+ cos29D2] ~ NE*D3t's’ sing sinyD?,

{(4.11b)

dogp/d2= NE't Py ¥ sin®p DY - sin¢ sin(2¢ — $)D3+ DY - cos(4y-2¢)D}]+ NEY 2y’ [ D3+ cos 2y~ 2¢)DE]

+ NE*r{ady? sing sin(yp— ¢) D1,

dogo/d= NE i r'? cos®d DY+ 3524"2DS + 2553513’ cosp (D2 + DY+ Ne*r 2

(4.11¢)

t’¥[D%+ cos(dy—2¢)D4]

+2NE 144083’ cos (29— ¢)D5+ N (852 2+ £523'2)D 3 + (342 1'% cos (2 ¥~ 20) + £l? 3% cos2y]DZ}
- N [£5%1 cos ¢ cos (29~ ¢)D+ 1d 45 13" cos@¥— @)D 3]+ NE (he’ cosd+ 833" )[a4¢’ cos (Y- ¢) + £4 4’ cosylD?,

and, for the completely depolarized direction of polarization,

do pp/d2= N W[ 1'% sin’¢ + v% cos®p T [12(D 3 — cos4yD ) + 3% cos?p (DY + cos2yD?)].

In Eqs (4.11) and (4.12) we used the abbreviations
=35 8|25}z +32 22 (4.13a)

Do 20400
z-"&(ﬁl (383021 +3524;2-1)

(4.11d)
(4.12)
i
= | @|®788200 - ‘/— Re(a*B) itz + & B1%8900, (4.13c¢)
(4.13b) DY=|al?iQ ou+‘7‘= Re(a*B) jils0 + & | 815900, (4.13d)
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, 1 , .
DY= I a l2][§8300+ 375 Re(d*ﬁ)]ég;)ao - 4_25| B‘zfz(g;)zo , (4.13e)

D} = Tm(@* jihar (4. 130
D} =t Re(e*0)ifiea — 1o | 81782 (4.13g)
Dg::’;%‘Blz(jz(i;)al—ja(z-)l;zq) , (4.13h)
D%:% Re(d*ﬁ)jé%;)zz’f’l';ﬁlB\zjég;)zz: (4.131)
D=5 BI*(G3hle — F52as2-0) - (4.139)

A complete experiment allows one to determine these
ten quantities as functions of « for the values 0 <k <2k.
For example, op, allows one to determine D9, D3, D4,
and D2, When these are known, op, determines D}
and D%, and 0p, Or 0,p determines D}, The remaining
three quantities, DY, DY and D2, then follow from
analysis of the part of ¢4, that is not yet accounted for
by the terms already determined.

For the purpose of devising a measurement strategy
one may use Fig. 1 to determine the values of 8, and 9
that correspond to the desired values of ¢, ¥, and ¢.

In the preceding discussion we have assumed that «,
B, and n2 are known quantities, measured from the in-
coherent part of the cross section in the way pointed
out in Sec. III. The coherent and incoherent parts of
the cross section cannot be separated when one con-
siders only measurements at a single density of scat-
terers; one sees by comparing Egs. (3.5), (3.6), (4.11),
and (4.12) that the quantities to be determined occur in
the combinations d, + DY, dy+n%DY, ds+ D3, dy+n8DY,
and d;+n DY, However, the coherent quantities depend
on the density of scatterers, and they vanish in the low
density limit. A separation of coherent and incoherent
contributions to the scattering cross section is there-
fore possible when one is able to vary the density of
scatterers,

The behavior of the functions jii), .., (k) for low « is
of particular interest since it can be tied to various
thermodynamic quantities for the assembly of scatter-
ers via thermodynamic sum rules.'® As a preliminary
to discussing the low-x behavior, we note that the func-
tions i1} 1+o(k) contain a 5(x) term due to the fact that
the underlying functions gy, ;+o(7) approach the constant
value p[2L+1)@2L' +1)]*2 q,q,., for large » [cf. Eq.
(3.4)], where p is the number of scatterers per unit
area. In practice, this § function is replaced by a peak
with a width which is the inverse of coherence length
or the dimension of ‘the scattering region, whichever is
smallest. The nonsingular part of ji). ., will be of
the order (kl; ;4 ) for small k, where Iy, ., is the
range of the correlation function,

The small-« behavior can therefore only be measured
with any accuracy when Iy, is small compared to
both the coherence length and the dimensions of the
scattering volume,

The « -0 limit of j§)y, is related to the difference be-
tween the “isothermic compressibility” of the assembly

of scatterers and the corresponding ideal gas value. !
Similarly, the x —0 limit of j’,, is related to the ex-
cess in the susceptibility of the assembly of scatterers
to an aligning force with 2,0 tensor character over the
isolated particle value. The x —0 limit of jég,’zo relates
to the cross effect, i.e., the change in 2,0 alignment
due to an increase in the pressure, or the change in
pressure due to a 2,0 aligning force. The combinations
of j functions DY and DY, respectively, are related in
the ¢ -0 limit to the excess susceptibility for aligning
forces with a tensor character described by any linear
combination of either V,, andy,_, (for DY) or V,, and
Yy (for DY) with respect to a coordinate system with
space fixed axes, of which the z axis is normal to the
interface. (In order to find this relation one has to
transform from the system with x axis along r, in
which the functions g, ;.. are defined, to the space-
fixed system in which the aligning force is described.)
These susceptibilities are independent of the precise
linear combinations chosen, owing to the invariance of
the ensemble of scatterers under rotations in the plane
of the interface. Physical interpretations for the low-¢
values of the other j functions may be given, but the
matter will not be pursued here any further.

In order to estimate the relative importance of the
various terms in the coherent cross sections (4.11) and
(4.12) one must know something about the forces ex-
erted by the scatterers on one another. For example,
when these forces do not depend on the orientation of
the scatterers, there is no mechanism for establishing
orientational correlations, and all D} except D}, Dﬂ,
and D? vanish. Moreover, one has the relations

]'ég;)ao = QZjég;)oo ’

:(0) 2 :(0) (4.14)

20520 = (@2)" Jooso0 -
In particular, this means that the completely depolar-
ized cross sections have no coherent part in this spe-
cial case.

V. FREQUENCY RESOLVED SCATTERING

In this section we shall discuss the frequency depen-
dence of the scattering that arises from the translation
and rigid rotation of the impurities at the interface.

The explicit expressions for the differential cross
section for frequency resolved scattering can be ob-
tained along the same lines as those for the total elas-
tic scattering in Secs. III and IV. The analogue of the
starting equation (4.1) is

2 w
d°o =ij* dt et . ot (k) [r 0)-r4(£)]
dQdw 27 -0 {091

X&. a¥(t)- & e- a,(0)- &, (5.1)

where d%¢/dQdw is the cross section for scattering in

the direction Q with a frequency shift w. It is easy to
check that

* 4l do

. _——dﬂdw dw_ﬁl-’ (5.2)

with the rhs given by Eq. (4.1), in view of the identity
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ij eiwtdwzé(t)_ (5.3)
27 ).

The subsequent development closely parallels that of
Sec. IV; one introduces the two-point correlation func-
tion

f2(ry, D1, BTz, O, B5t)
which specifies the probability of finding a particle at
]

grmroy @, r’ )= 47TJI[ folry, ©1, @517, 5, By 1)1 (B4, 1) Yy e (O, B,) SINO, dO; AP, 5InO,dO,dd,,

with the coordinate axes for the spherical harmonics as
in Eq. (4.3). When f, depends only on Ir' -=r’|, the
same is true for g;,; ;4. If, moreover, f, is indepen-
dent of the choice of the zero in time and invariant un-
der time inversion, we have

grwrw(r-1'|,0=(- DY o u(|T -1, 0).
(5.5)
Finally, when f, is invariant under a simultaneous
change in sign of ®; and ®,, i.e., under reflection with
respect to the plane through r — r’ normal to the inter-
face, gy, -y vanishes unless M and M’ are either
both negative or both nonnegative.

When all these conditions are met d%0/dQdw has
exactly the same form for the different choices of po-
larization as do/dQ in Egs. (4.11) and (4.12), with the
single modification that the j{. ;.,.(k) in Eq. (4.13) are
replaced by

Ji ek, ) = f dt e‘“”J Y ar gryspow s T, (k7).
- 0 (5.6)
We remind the reader that the functions g, ;-4 7 ¢)
contain both a coherent and incoherent part; as a con-
sequence, integration over frequency of the expressions
obtained by substituting Eq. (5.8) for j{.,.,. in Eq.
(4.13) results in

Idw DMk, w) =D (k) + n;4' ™4, 6

mn, 0

(5.7

with d,, defined in Eq. (3.7), and I(m)=0 for m=1 or 3;
lm)=1for m=2 or 5, and I(m)=2 for m=4. Unlike
the incoherent contributions to the frequency-integrated
differential cross section, the incoherent contributions
to the frequency-resolved cross sections do depend on
the scattering vector «.

The general expression for the incoherent (single
particle) cross section is still rather complicated owing
to the possibility of coupling between the rotational and
translational degrees of freedom. However, in the ab-
sence of such coupling one obtains rather simple re-
sults, since the joint probability distribution £*(0, ©,,
®y;1, ©,, B,; ¢) for finding a particle at 0 with orientation
(©y, ®,) at time 0 and at r with orientation (9,, ®,) at
time ¢, factorizes into

fZ(S) =fés’”(0’ r; t)fa(s")(el, d)l; 627 ‘I>z5 t) 3 (5‘ 8)

where the angles ; and &, are measured with respect

ry with orientation (8,, ®,) at time 0 and a particle at

r, with orientation (©,, ®,) at time f. It is convenient to
drop the requirement, made in the definition of the cor-
responding function f£,(ry, 8y, ®;1,, 6,, ®,) in Sec. IV,

that the two particles be different, and make the distinc-
tion between coherent and incoherent parts of the scat-
tering cross section at a later stage in the development.

Next we define

(5.4)

r

to a fixed direction in the interface, rather than with
respect to the vector r (in fact, it follows from symme-
try under rotations around the z axis that the choice of
the origin of & is immaterial). Moreover, £%%(0,r;¢)
depends only on Irl, and it will be denoted as £ (v, ¢).
In order to make the separation (5. 8) unambiguous we
require

'”Jrjfés"’ sin®; d9; d®, sin®, dO, d®,=1. (5.9)
The function £i*" is related to the eigenvalues — A, and
the eigenfunctions %,(6, ®) of the evolution operator D

for the single particle orientational distribution function
defined by

d
Efl(@’ ¢§ t)=®f1(®’ q>; t) (510)
by the relation
F 7O, 8150y, @55 8)= Y 15 (©1, B1)0y(O, ) €7
" (5.11)

The eigenvalues and eigenvectors of D have the follow-
ing properties:

(1) With the exception of the simple eigenvalue 0 as-
sociated with the equilibrium distribution 7,(0, &)
= feo(©) all eigenvalues — A, have negative real parts;
the complex ones occur in mutually conjugate pairs and
the corfesponding eigenfunctions may be chosen com-
plex conjugates. Moreover,

[ [0, 9)sim0 a0 85, (5.12)

(2) In view of the invariance of ® under rotations
around the z axis, the functions 2,(8, ) may be chosen
to have the form

©

nM(©, 8) = }; C{ My, (0, ) (5.13)
L=IMl
with a single value of M and 3,1 C{®1%=1. For n=0 in
particular [cf. Eq. (3.4)]
2L + 1\'/2
e, 8)=3 (“71+_> 12Y10(0, 9) . (5.14)
0 T

We now introduce the functions
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gisﬂ?l;L'M' r,t)= 4"’4{5_[ Yeu©1, 21) Yy (O, ‘I’z)fz(s't)("’, D57 (04, 8439, ®,; £) 5inO, dO, dP, 8inO, dO, dP,,

with ©;, ®, chosen with respect to a fixed coordinate frame with z axis perpendicular to the interface.

functions one easily derives

BlLulr, ) =F £ 00, 18,,02L+ 1) gy,

g},sfv)l;L'M’ (’V, t) :fE(!s't)<y, t)éM. M éﬂ?’ (t) 3

with

!
B =0,0[@L+ 1)L + 1) gy qpe+ Y, CHE*CM, exp[- 2, [¢]],
n

(5.15)

For these

(5.16)

(5.17)

(5.18)

and C{*} as in Eq. (5.13); the prime in the summation means that the »=0 term, that occurs only for M=0, has to

be omitted, since it has already been written explicitly.

The incoherent contribution to the frequency resolved cross section can be expressed in terms of the quantities

[cf. Egs. (5.1), (5.4), and (5.17)],

1 . b , - -
g8 pe e (K5 @) :2—7;] expliwt] dw f d®rexpl— ik« P13, )8, B 1) =0y, 4 /351 (0, w) % TP (0),

0

where the symbol x denotes the convolution

flw)xglw) =27 fdw'f(w -w') glw’),

and 3%, () is given by

- 1 ’ 1 1
B )= 0y RL+ 1)EL + D] g, g0(0)+ 5 3 ctipr e [,

n

as follows from Eq. (5.18).

The function f§**'{x, w) depends on the assumptions made for the motion of the impurities in the interface.

we assume simple diffusive motion:
559, £)=pdnD|t|) ! exp[~r?/4D|t|]

(with p the density of scatterers), then

1 1
fis B (k, w)=2—’37r[ ],

iw+ DK diw— DK?

and

DZ

K 7
g},sf};L'M'("’ w) :% Oy, we {w2+D2tc4 qr qL'[(2L+ 1@L + 1)]1/26M'0+ E Crf,Mi* G
n

where the second term vanishes when either L or L’ is
zero, as a consequence of Eq. (5.12).

Moreover, since complex eigenvalues occur in conju-
gate pairs with complex conjugate eigenfunctions, the

functions g, ; 4(x, w) are even in w.

The final result for the incoherent part of d%o/dQdw
has the same form as Eqgs. (3.5) and (3.6) with the sub-
stitutions

o® - 7 'a? Dl w? + D3, (5.25a)
aBg, ~ 1 aBgy DkF[w? + DAY, (5.25b)
BUE+4 da+ & au]~ B2A5T) gl (k, ), (5.25c¢)
B —Faz+ 5590

~ B30 gfslaak, w)+gz(s-)z;z-z(’<’ w)], (5.25d)
B+t a2~ 55 q0)

- 52(30”)-1[83;)21('6 w) +g:§s-)1,z-1(’<: w)], (5.25¢e)

(5.19)

(5.20)

iwid, iw-—A, (5.21)

When

(5.22)

(5.23)

Dty Re(®,)
mL Tw+ Im()F+ Dk + Re(n,) P

’
n

(5.24)

|

with g{3),(k, w) defined by Eq. (5.24). As was to be
expected, the integral of the quantities on the right over
all w yields the quantities on the left in the expressions
(5.25).

Analysis of the frequency-resolved scattering cross
section for incoherent scattering along the lines of
those described in Secs. III and IV allows the determi-
nation of the quantities at the right in (5.25). From
either one of the first two, one can determine the diffu-
sion coefficient D,

The latter three for k- 0 give the relaxation functions
g8 (w), (g5’ +g5"), and (g4 + g5;”], which are sums
of Lorentzians in the approximation of this section.

For finite « all these peaks are broadened by the identi-
cal amount Dx%. We expect that Im(),) <[Dx®+ Re(r,)]

for most cases, and accordingly the spectrum will con-
sist of overlapping Lorentzians. The precise decompo-
sition of such experimental spectra is notoriously diffi-
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cult. Nevertheless, these predictions are probably the
most severe test of the various approximations made in
this paper, in particular of the assumption that the in-
terface and the position of the impurities with respect
to the interface do not fluctuate to any appreciable ex-
tent, as well as of the assumption that the translation
and rotation of the impurities are decoupled. We will
return to this point in the next section.

Vi. CONCLUDING REMARKS

As stated in the Introduction, the calculations pre-
sented in this paper are meant as an illustrative exam-
ple of the kind of information about impurities at an in-
terface, that may be obtained from precise light scat-
tering measurements. It was not our intention to give
an exhaustive treatment of all effects that might occur
in such situations. In the present section we will list
the assumptions and approximations made in the paper,
and we will briefly comment on the way in which a vio-
lation of these assumptions might manifest itself in a
scattering experiment, and the way our treatment might
be modified in order to correct for them.

A. Assumptions about the individual scatterers

We treated the scatterers as point particles with cy-
lindrically symmetric polarization tensors. When the
dimensions of the particle become nonnegligible with
respect to the wavelength of the light, the incoherent
cross sections will depend on k—k;, and the coherent
cross sections contain convolutions of this molecular
form factor with the Fourier transform of the correla-
tion functions. Effects of this kind can be accounted
for by means of the formalism developed, e.g., by
Steele and Pecora.’ Their formalism also allows one
to treat the case in which the polarizability tensor is no
longer cylindrically symmetric,

B. Assumptions about the ensemble of scatterers

We assumed in Secs. IV and V that the distribution
functions for position and orientation of the scattering
particles possess a number of symmetry properties:
invariance under translations, rotations and reflections
that leave the interface invariant, and stationarity in
time. These conditions will be obeyed in most experi-
mental situations, and violations are rather easy to de-
tect. The invariance under rotations may be violated
for very concentrated systems, where the impurities
form an ordered surface phase; this may be detected
simply by checking the invariance of various cross sec-
tions under simultaneous rotation of the directions of
the incoming and the detected scattered beam around
the normal to the interface. Deviations from invari-
ance under reflection may occur when magnetic effects
are nonnegligible. In such a case the angular depen-
dence of the coherent part of the scattering is more
complicated than the one described in Secs. IV and V,
owing to contributions from g;,.,., with different signs
of M and M’. Moreover, one would expect a depen-
dence of the scattering cross sections on the value of an
externally applied magnetic field.

C. Assumptions about the surface and the position of the
scatterers with respect to the surface

Throughout this paper we treated the interfaceas per-
fectly flat and the degree of submersion of the scatter-
ers as fixed and independent of the orientation of the
scatterers. For fluids with sufficiently high surface
tension and specific gravity, the fluctuations in the po-
sition of the surface will be small compared to the
wavelength of the light. Similarly, the distance of the
scatterers from the interface will be small compared
to the wavelength, provided the force that keeps the im-
purity near the interface is sufficiently strong., Conse-
quently, neglecting the z component of the position of
the scatterers seems fully justified in most circum-
stances.

An additional dependence on the surface fluctuations
enters through the distortion factors in the matrices R
and ®’. In a more complete theory they would be cal-
culated with respect to the instantaneous, fluctuating,
direction of the normal to the surface, and subsequently
averaged over fluctuations in the surface orientation.
The effect is expected to be small for not too low sur-
face tension and specific gravity; it is of second order
in the amplitude of the surface waves. Moreover, in
the coherent and time-resolved scattering it exhibits
the characteristic space- and time dependence of the
surface waves, Since the surface waves themselves
scatter light whenever the refractive index of the fluid
differs from unity,'? their effect will be easy to esti-
mate; in fact, light scattering by surface waves will
cause a background, which has to be subtracted before
the effects described in this paper can be determined.
Difficulties may occur in this separation process when
the scattering impurities interact with the surface
waves, i.e., when their position and orientation exhibit
oscillations in phase with those waves. In such cases
interference between the light scattered by the waves
and by the impurities may occur; they may be separated,
however, when the frequency dependence of the refrac-
tive index differs from that of the polarizability a(w) of
the impurities.

Probably the most serious limitation of our model
(at least for low impurity concentration) is the assump-
tion that the submerged fraction of the impurity is con-
stant and independent of the orientation of the impurity.
When the submerged fraction depends appreciably on
the orientation, only our results for the PP polariza-
tion remain reliable. All other cross sections contain
contributions involving rather complicated averages
over the angular orientations, due to the ® dependence
of the distortion factors 3 and j,, When the fluctua-
tions in the degree of submersion are independent of
the orientation, then the theory presented in this paper
needs only relatively minor modifications. In the ex-
pressions of Sec. III the quantities #} and »% must be
replaced by (z%) and (»8), respectively; the latter is no
longer the square of the former, and the analysis need-
ed to extract all information from a complete scatter-
ing experiment becomes more complicated. However,
it now yields information on the fluctuations in the sub-
mersion factor. The analysis can be performed, by
combining measurements at different frequencies of the
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incoming light (cf. the discussion at the end of Sec. III),
provided the ratio a(w)/B(w) varies with frequency.

The coherent and the frequency-resolved cross sec-
tions will contain the modified correlation functions

et (T, 1'5t) =47 jfff Sty O, D51’ 05, 5t) n2(r, OZUY’, )V, 4(O1, )10 e (O, ®,) SINO, dO, d®, 5inO,dO,d &,

where n,(r, ) contains the submersion factor of the par-
ticle at r at time /., When either p or ¢ is zero, the
new functions are simply proportional to the old ones:

($, 0) (6. 2)

gt (B, T 5t) = ) gp iy o e (0, 2758)
Inspection of the expressions (A2) for the scattering
amplitudes shows that gy, 5., is never modified, while
aa1;241 1S always replaced by gilill,;, since Yy, is al-
ways accompanied by a factor 3, or 3. The functions
Ygo and Y, have either two such factors or none. Con-
sequently, gyg0 may remain unmodified or it may be
replaced by g2 similarly gog, s and gyg,5. Finally,
Zoo;21 MAy be replaced by either (n)goy,s (this is the
only place where (n2) rather than (n) or (x%) appears in
the theory) or by gi&3). It turns out that a complete
analysis of the experiments yields the nth Bessel trans-
forms, analogous to the ones defined in Eq. (4.10), of
both the modified and the unmodified g functions, for
the values of # occurring in Eq. (4.13). For all func-
tions except the g h2) this analysis requires combining
measurements at different frequencies, and it is there-
fore not feasible when a(w)/B(w) is independent of the

frequency w.

The effect of fluctuations in the degree of submersion
may be seen most clearly in the frequency-resolved in-
coherent scattering, when the conditions of the last part
of Sec. V (no coupling between translation and rotation)
are satisfied. In this case the quantities in Eqgs.
(5.25a2)—(5.25c) remain unmodified in d%,,/dQdw,
d%0po/dQdw, and d3,p/dQdw, but some of these terms
are convoluted with the Fourier transform of (z2(0)ni(t))
in d%0,,/dQ2dw. The quantity in Eq. (5.25¢) is always
convoluted with the Fourier transform of (nf(O)ni(t));
this may not be easy to detect, since no independent in-
formation on the unconvoluted form is available.

L

D. Local-field and concentration effects

In Sec. II we assumed that the induced dipole moment
of the impurity may be expressed as a - E, with E the
Maxwell field at the site of the impurity. This needs
some justification; the field at the site of the scatterer
is not in general equal to the Maxwell field, and the ap-
parent dipole moment may include some contributions
from dipole moments induced by the emitting dipole in
its surroundings. In the context of the present paper it
is important to distinguish between modifications due to
the solvent and modifications due to other impurities.

The modifications due to the solvent do not cause any
trouble for an impurity in the bulk phase. Then their
only effect is to replace the “true” susceptibility of the
impurity by an effective one. On symmetry grounds it

6.1)

is reasonable to assume that the local field E, is re-
lated to the Maxwell field E by a relation of the type

E,=(Al+ BRR)-E. 6.3)

In this case the effective susceptibility a is related to
the true susceptibility &, by the relation

a=(Al+BRR)- a,- (Al+ BRR).

(Note that a has the form al+ Bﬁﬁ when &, has such a
form.) The fact that the same factor appears twice
(once to convert the Maxwell field into the local field
and once to convert the molecular induced dipole mo-
ment into an effective one including moments induced
by the central dipole in its surroundings) is another
consequence of Lorentz’s reciprocity theorem.! The
polarizability @ used in this paper is the one defined by
Eq. (6.4), and we hope this accounts for the local field
effects due to the solvent. It is not clear, however,
that this procedure remains correct for an impurity lo-
cated near the surface, In that case one might expect
different local field factors for vertical and horizontal
components of the field. As long as this difference
does not depend on the orientation of the impurity, this
asymmetry factor will combine with the distortion fac-
tors 3, and 3 and cause the factor nf to be replaced by
an “effective” quantity #%. The only noticeable effect
will be a possible violation of the inequality 1 < ﬁf <ns
Even fluctuations of the asymmetry factor due to fluc-
tuations in the distance from the impurity to the surface
may be handled by a minor modification of the theory in
this paper, along the lines suggested in the preceding
subsection. Any dependence of the asymmetry on the
orientation of the impurity would, however, require a
major modification of our scheme.

6.4)

A major modification is also required when the con-
centration of impurities near the surface becomes so
high that the scattered field of the other impurities is
no longer negligible compared to the incoming field. A
theory that enables one to treat this situtation was pro-
vided recently by Vlieger and Bedeaux.!® Their theory
gives expressions for the “local field factors” due to
other impurities in terms of the distribution functions
of “surface susceptibilities.”

In this connection we should point out that the treat-
ment given in this paper is mainly appropriate for low
impurity concentrations, For higher concentrations it
would be preferable to employ a “phenomenological, ”
rather than a “molecular” theory, and use as a starting
point not the clean surface, but the surface covered
with a uniform layer of impurities. The Fresnel fac-
tors for such a case were evaluated by Bedeaux and
Vlieger'®; in a subsequent paper!® they related the sur-
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face material coefficients appearing in these Fresnel logical and molecular theories, even for the case of
factors to the distribution functions of the elementary scattering by bulk liquids,'® and the subject will not be
scatterers. It is far from trivial to relate phenomeno- pursued here any further.
1
APPENDIX
The expressions (3.1) and (3.3) may be rewritten in terms of the real spherical harmonics,
1
{yoo:—‘“'—? , (Ala)
45 :
Yoo= /3¢, (cos"@-3), (Alb)

15 cos
= - — si 1
Your /;51ne cosO sin o, (Alc)
15 _, cos
= /== si . Ald
Yosa /;s1n 0 i 29 (Ald)

In Eqs. (Alc) and (Ald) the positive sign corresponds to the cosine and the negative sign to the sine.

Now we give the formulas for the expressions corresponding to Eqs. (3.1) and (3.2) in terms of the functions (Al),
but for a coordinate system rotated over an angle x (in this form they will be needed in Sec. IV):

/ /4
App=FkEyyy [w/4na cos¢Ygy — /2——?,3 coS Y,y — ‘11_; Bcos(2X— ¢)Yaa+ l—gﬁsin(2x- ¢)‘ya_3], (A2a)
2 ’ . 47 . 47 .
Apg=kp,l [v4nas1n¢‘y00—‘\/;5-6sm¢>‘yzo+ /T-sﬁsm(zx—qb)‘yzz

4 4
+\/1—’1518cos(2x— ¢)‘yz_z] Y [ /1—757 Bsinx Yy + /‘ll—-gﬁcosx‘yz_l] , (A2b)

Agp=kiThy [ma singYgg - /g—’,ssinwzo

4 4 4 4
_/%Bsin(Zx-¢)yag— /l—g-Bcos(Zx—¢)'ya_z]+k286n[— /l—gﬁsin(x—¢)yal—\/1—‘;3cos(x_¢)‘ym], (A2¢)

Ago=RE(E5T cosd + 3§ WAT @Yy — L 2(Lht’ cosd — 23{,3’)\/:——?,6‘};20— S 1A 4 ‘11—151 Blcos(2x ~ d)Ys,

- sin(2x - ¢)Y,.5] - P45t %—g Blcos(x — ¢)Yg - sin(x— ¢)Yaq] - KorH /;:jg Blcosx Yy, - sinxY,.,], (A2d)
and, for the completely depolarized amplitude
App = (£'2sin%p + 12 cos2¢>)'1/2k2popﬁ[t’ ‘;—g (Yapsin2x + Yy 5 cos2y) + 3’\/?—?cos¢(‘}}m sinX+ Yoy COSX)] . (A2¢)
In order to determine the incoherent cross sections we must express the products Y, ,Y;.,. in terms of single

Yperyer. In view of the symmetry of the ensemble, we need to consider only those products that yield terms Ypeege
Apart from those containing a factor Y, these are only the squares of Y,, functions:

3 V5 1
‘ygo=7'7 T (940+7=7 T ryzo+7=417 Yoo » (A3a)
1 V5 1
Ve~ Ta77 Yo~ 7y Yot 7z Yoot +0 (A30)
2 V5 1
yil='7ﬁfy4o+m ‘920+—‘/ﬁ-‘yoo+--- ’ v (A3c)

where we omitted terms in Eqs. (A3b) and (A3c) containing V;, with M#0, After substitution of Eq. (A3) in the
squares of the expressions (A2) the results (4.11) and (4.12) are obtained in a completely straightforward manner.
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