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Monte Carlo calculations by Verdier et al. on the kinetics of polymer chains on a lattice have shown a
large increase of relaxation times in the presence of excluded volume restrictions, i.e., when two beads of
the chain cannot occupy the same lattice site. We show that these long relaxation times must be attributed
to the specific choice of the kinetics rather than to the intrinsic nature of the excluded volume interaction.
A simplified analytic model which preserves the essential characteristics of the kinetics of Verdier’s model
reproduces qualitatively the Monte Carlo results for the realxation of the squares of the Rouse coordinates.

I. INTRODUCTION

The influence of excluded volume on the dynamics of
polymer chains in solution is much less well understood
than the influence of excluded volume on equilibrium
polymer configurations. The simplest model of a poly-
mer where the excluded volume effect can be investi-
gated is the representation of a polymer chain of N+ 1
units as a random path of N steps on a simple cubic lat-
tice. The N+ 1 occupied lattice sites on the path are the
polymer “beads, ” and the excluded volume interaction
imposes the condition that no two beads of the chain can
occupy the same lattice site (see Figs. 1 and 2).

In recent years, in an extremely valuable series of
papers,!~* Verdier and co-workers have examined a
stochastic generalization of this model where the Brown-
ian motion of the polymer beads is simulated by a kinet-
ic scheme for the jumps of single beads. Since the sto-
chastic time evolution cannot be solved analytically,
Verdier has turned to extensive Monte Carlo computer
simulations. The computer simulations show that the
dynamic lattice model without excluded volume behaves
remarkably similarly to the predictions of the Rouse
model, which is the simplest model for polymer motion
in the absence of excluded volume.*™” This agreement
has been explained analytically by Iwata and Kurata,® by
Orwoll and Stockmayer,? and by Verdier,"

However, the Monte Carlo calculations on lattice
chains with excluded volume show a very different be-
havior. It is found that the relaxation of equilibrium
correlation functions related to the over-all chain shape
is slowed down by factors ranging from 2 for N=7 to 20
for chains with N=63. Furthermore, certain correla-
tion functions which decay exponentially in the absence
of excluded volume become strongly nonexponential in
the presence of excluded volume restrictions.

To our knowledge, these important computer “experi-
ments” on the dynamics of chains with excluded volume
have not been interpreted, In this paper we take a first
step toward explaining these results, In Sec. II we ana-
lyze the kinetics of the stochastic model employed by
Verdier in the Monte Carlo simulation., We argue that
the influence of excluded volume, as introduced by Ver-
dier, should change the time scale for relaxation from
the N2 dependence found without excluded volume to at
least N3, One of our major conclusions is that this
strong slowing-down effect is due to the particular

choice of kinetics adopted by Verdier rather than to the
intrinsic nature of the excluded volume interaction. By
“intrinsic nature” of the excluded volume interaction,
we mean the interaction between beads at large dis-
tances (measured along the chain), which arises owing
to the folding back of the chain. There are many kinet-
ic schemes that are consistent with the correct ex-
cluded volume restrictions on polymer configurations;
Verdier has selected a kinetic scheme that results in
particularly strong slowing down,

In Sec. III a simple model is constructed that con-
tains the features that in Sec. II were found to be essen-
tial in Verdier’s model. The N3 time scale is built into
the model, which is then used to test further character-
istics of the computer results. Mathematically, this
simplified model is closely related to the “tube model”
introduced by De Gennes in a different context.!’ It can
be solved analytically, and we show that it leads to re-
laxation curves which exhibit the same characteristics
as those found in the Monte Carlo studies.

Il. VERDIER'S MODEL FOR RELAXATION OF
LATTICE POLYMERS

A. Description of the stochastic model

We number the beads along the chain from 0 to N, and
denote by r, the position of the nth bead. It is conve-
nienttoset the lattice constant equal to unity and to
choose r, to have integer coordinates 7, (a¢=x, y, 2).
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FIG. 1. Lattice polymer chain of length N =16 without ex-
cluded volume. Beads occupying the same lattice site have
been drawn as distinct dots for clarity.
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FIG. 2. Lattice polymer chain of length N =20 with excluded
volume, To suggest perspective a few extra lines have been
drawn, The extrema in this chain are listed in Table I, Some
examples of allowed flips are those of bead 11 to position 11/,
of bead 13 to 13/, of 0 to 0’ or 0”7, and of 20 to 20’, Disal-
lowed are, e.g., flips of bead 3, due to excluded volume in-
teraction with 9, and of 6, due to excluded volume interaction
with 4, The effects of flips on the extrema may be illustrated
by the following examples. The flip 11 —11’ transforms the

x minimum (9,10,11) into (9,10) and the y minimum (7, 8, 9,10)
into (7,8,9,10,11). The flip 0 —~0’ creates the z minimum
(1,2), which “enters” the chain, The flip 0 —0” does not ex-
change the extrema. The flip 10 —~20’ destroys the z maxi-
mum (13,14,15,16,17,18,19), which ‘“leaves” the chain.

The stochastic time dependence of the chain configura-
tion in Verdier’s computer studies is generated accord-
ing to the following rules.!~*1?

A bead is picked at random and its position r, on the
lattice is determined. This bead is then “flipped” with
probability £, from its position r, to the new position

rr,lErn-1+rml_rn (2-1)

(see Fig. 2). Note that if the chain segments r,-1r,_,
and r,,, - I', are perpendicular, the #th bead flips to the
diagonally opposite corner of the square determined by
these segments in three-dimensional space. Clearly,
a flip preserves the chain structure, i.e., the (n+1)th
and {(z — 1)th beads remain nearest neighbors of the nth
bead on the lattice. If a terminal bead is picked, it is
moved with probability f; (or f,) to a different position
r§ (or r}), randomly selected from among the several
positions which it can occupy while preserving the
chain structure.

In the kinetic model without excluded volume, one
sets all £, equal to 1. In the model with excluded vol-
ume, one has f,=0 if the site r] is already occupied by
another bead of the chain, and f,=1 otherwise (see Fig.
2 for examples).

The process of picking a bead at random and deciding
whether or not it moves to a new position is called a
bead cycle. After completion of a bead cycle, a new
one can begin according to the same rules. To make
the connection with real time /, we may consider a
bead cycle as a (successful or unsuccessful) attempt by
a solvent molecule to change the position of a polymer
bead. Assuming that all beads suffer the same number
of collisions with solvent molecules per unit time, we
are led to identify a bead eycle with {N+ 1) unit of
time. Hence, in the case without excluded volume,

where all bead cycles are successful, each bead flips
with frequency 1. In the presence of excluded volume
this frequency is lowered,

Verdier has undertaken Monte Carlo calculations on
this model for chains with lengths up to N=63. He has
considered equilibrium time correlation functions of
such quantities as the square of the end-to-end distance
Ry,'® and the squares of the Rouse coordinates u,}
The Rouse coordinates are those linear combinations
of the bead positions r, which decay purely exponen-
tially in the Rouse model,*" and it is of interest to see
how their decay is affected by excluded volume.

B. Analysis of the stochastic model

In order to analyze the kinetics described in the pre-
ceding subsection, we introduce some new terminology.
We shall call the vector a,=r,-r,_, the nth bond vector
of the chain, A chain configuration is then specified by
the N bond vectors a,,a,, ...,a,. Fach bond vector a,
has one of the six values e, te, e, where e, is the
unit vector in the « direction (a=x,v,z). A flip of the
nth bead (n=1,2, ..., N-1) evidently interchanges the
nth and the (m+ 1)th bond.

Hence, the kinetics may be viewed as a diffusion of
bonds along the chain, a picture already put forward by
De Gennes'® and others.'*~'® Only a flip of one of the
two end beads can destroy a bond while creating a new
one in its place. The new bond may then diffuse into
the chain.

In chains without excluded volume there are no re-
strictions on the bead flips. All bonds have the same
probability per unit time to move one step along the
chain in either direction. Hence each single bond per-
forms a random walk along the chain with step size 1
and step frequency 2 (as there are always two bead flips
possible which change the position of a bond). Since the
average bond has to travel ~ N steps before being de-
stroyed at either chain end, it will take a time 7~N 2
before it leaves the chain and is replaced by a random
one. As the end to end distance Ry =3 a, is just the
sum of all bonds, it will also decay on time scale N2,
This is the well-known result of the Rouse model,’
which is reproduced by Monte Carlo studies of lattice
chains without excluded volume.??

In the presence of excluded volume the situation is
different. The configurations (a;, ..., a,) cannot be
arbitrary, but are restricted by the N(N+1)/2 exciuded
volume conditions

> a,#0, lsu<a'sN. (2.2)

m=n
We shall see that these conditions, in conjunction with
the kinetics of only single bead flips selected by Ver-
dier, resultin certain crucial constraints on the chain
motion. We identify these constraints as the dominant
factor in the slowing down observed in the computer
simulations. These constraints apply to subchains
formed by a sequence of beads, say (n,n+1, ... ,n+k),
that all lie in the same plane with fixed « coordinaie,
while the o coordinates of the immediately adjacent
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TABLE I. Extrema with their coordinates in the chain of Fig,
2, It is assumed that the Oth bead is located at the origin,
The densities p, are in this case given by p, =37 =0.2, py=§zb-
=0.1, p,=%5 =0.15,

Nature of extremum Location Coordinate
x maximum 6,7,8) x=4

x maximum (15,16) x=7

x minimum (9,10,11) x=3

x minimum (17,18) x=6

y maximum (5, 6) y=1

vy minimum 7,8,9,10) y=0

2z maximum 3,-++,7) 2=1

2 maximum (13,---,19) z2=0

z minimum (10,11,12) z==1

beads (- 1) and {(n+ k+ 1) are both lower or both higher
(see Fig. 2 and Table I). We shall call such a subchain
an o minimum or an @ maximum. Mathematically, a
subchain(n,n+1,...,n+k) with1<n<n+k<N-1 and
k=1,2, ... is called an ¢ extremum if

(i) a,#+e, for I=n+1, n+2, .., ,n+k,

(11) a,=~a,,1=€, Or A, =— Q51 =~ €4

Evidently, ¢ maxima and @ minima cannot overlap
and must alternate along the chain. The average densi-
ty p. of @ extrema on the chain and the average number
m, of beads in an extremum may be estimated from
randomly drawn configurations. We roughly estimate
mq >3 and p, ~0.12/unit length, both independent of .

From the basic rules of motion of the chain, one can
deduce that the time-dependent behavior of the o ex-
trema is subject to a number of (mostly self-evident)
rigorous constraints (see Fig. 2):

(1) Owing to bead flips, the number of beads in a
given ¢ extremum may grow or decrease by one at a
time, but can never become less than two.

{2) Extrema cannot disappear or be created except at
the chain ends due to flips of the beads 0 and N.

(3) Extrema can move along the chain, but ¢ maxima
and ¢ minima (with the same &) cannot pass each other
{nor even overlap), thus always staying disjoint and
maintaining their alternating order along the chain.

(4) The « coordinate of an ¢ extremum is conserved
while it moves along the chain,

(5) A given bond e, (or ~e,) initially located between
an ¢ minimum and an ¢ maximum remains located be-
tween these same extrema during their motion along the
chain,

To establish (1) it suffices to realize that an o extre-
mum of two beads » -1 and » implies a local chain con-
figuration a,_,, a,, a,,, witha,_,=+e,, a,#+e,, and
a,,,=Fe,. In this configuration, flips of the beads n-1
and » are forbidden owing to excluded volume interac-
tion with their second nearest neighbors n+1 and -1,
respectively. This is illustrated in Figs. 3(a) and 3(b)
for a two-dimensional case. Constraints (2) and (3)
mean that the ¢ extrema can be considered as separate
entities randomly moving along the chain with a hard

core repulsion between them, It should be noted that
extrema belonging to different coordinates « and o’
may overlap as well as pass each other, Constraint

(4) is of crucial importance. It means that an o extre-
mum on its random motion along the chain “forces” the
beads that it passes to occupy lattice sites with its own
a coordinate. Therefore, at any time #, the o coor-
dinate of a given bead is equal to the coordinate of the
« extrema in which the bead is contained, or lies be-
tween the ¢ coordinates of the o extrema between which
the bead lies. Since a long chain contains a large num-
ber of o extrema (~p,N for each @), it suffices to know
the locations of the o extrema on the chain, as well as
their o coordinates, to reconstruct the shape of the
chain over distances 21/p,.

C. Relaxation with excluded volume

We wish to determine, as a function of the chain
length N, the time scale on which the end-to-end dis-
tance decays. This is, as before, the time needed for
the average bond to diffuse over a distance N or, by

N 5 6
!
*—— ¢ — ¢ o o o ——o — o ¢
¢] [ 2 3 4 7 8 9 10
(a)
0 1 2 5 6
0——0——-?
— o o
3 4 7 8 9 10
(b)
54 6
£,
—
2 '7 {c)
=% ' .
Bmm e b
5' 6

FIG. 3. Lattice polymer chain of length N=10 with excluded
volume, for simplicity drawn in the xz plane. (a) Bead 0 is
chosen as the origin of the coordinate system. The only ex-
tremum contained in the chain is the z maximum (5,6), with
coordinate z=1. This maximum may increase in length (e.g.,
by successive flips of beads 4,7, ) or be displaced (e.g.,

by successive flips of 4,6,3,5,2,4). However, it cannot dis-
appear unless it diffuses towards a chaipn end. The flip 00/
creates the z minimum (1, 2, 3, 4) with coordinate z=0. If sub-
sequently the beads 1 and 2 flip, this minimum takes the posi-
tion (3,4) ‘as shown in (b). () The z extrema with coordinates
0 and 1, located at (3,4) and (5, 6), respectively, cannot pass
each other, They act as two random walkers with a hard core
repulsion. (c) The situation would be fundamentally different
if the kinetics would allow for “double flips” of the type (5 —5/,
6 —6‘). In such a case the extrema and their coordinates
would no longer be conserved. In Verdier’s model it is the
next nearest neighbor excluded volume interaction between 5
and 7, and between 6 and 4, which is responsible for the con-
servation of the extrema and their coordinates,
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constraint (5), the time needed for the average o ex-
tremum to diffuse over a distance N, The random mo-
tion of the extrema along the chain is of course coupled
to the complete chain configuration (a,, a,, ...,a,). So
far our discussion has been rigorous. We shall now as-
sume that each ¢ extremum may be considered as a
random walker on a line of length ~ N, performingsteps
of size ~1 with frequency ~1, and subject only to the
condition that it cannot pass its neighboring random
walkers. At the chain ends random walkers may dif-
fuse out of the chain and new ones randomly enter so as
to keep the average random walker density at its value
po. This approximation ignores, apart from certain
inessential details, the intrinsic (long range) effect of
the excluded volume interaction, i.e., the possibility
that owing to folding back of the chain two extrema at
large separation measured along the chain may still in-
teract. The effect of this interaction is that certain
otherwise possible moves of the extrema are blocked,
and heunce it tends to increase the time needed for chain
relaxation. Our picture of random walkers will there-
fore lead to an underestimation of the relaxation time.

Since each walker is confined between its two neigh-
bors, its steps are not random but (negatively) corre-
lated. To find the relaxation time it therefore no
longer suffices to consider just one random walker, as
we did in the case without excluded volume., Instead,
we must consider the collective translational motion
along the chain of all random walkers, We can charac-
terize this motion by a variable

ko) = (No)yt D RE(E), 2.3)
H

where 7 runs through all random walkers, and k() de-
notes the displacement along the chain of the ith random
walker from its position at an initial time £=0. For
convenience we shall imagine here that random walkers
which leave the chain at one end enter at the same time
at the other end. Whenever a neighboring pair of ran-
dom walkers i and i+ 1 blocks each other, both the pos-
sibility for a step to the left {#,,, - k&,,, — 1) and the pos-
sibility for a step to the right (k; ~k; + 1) are lost. The
changes in &,(¢) therefore always have equal probability
to be negative or positive. The individual changes in
k,(t) will be of order N~! because of the factor (Np,)™
appearing in the expression for the collective displace-
ment. The frequency of changes in k,(¢) is of order N
because this collective variable is the sum of N individ-
ual variables, each changing with frequency 1. Hence
the root mean square displacement d(¢) of %,(t) is given
by

@) ~N-YNe) 2= (N2 | (2.4)

Owing to the inability of the random walkers to pass
each other, the displacement of each individual random
walker is equal to ,(¢), the displacement of the collec-
tive coordinate, if we disregard local fluctuations.
Hence Fq. (2.4) also represents the root mean square
displacement of a single random walker which repre-
sents an extremum; in the absence of the excluded vol-
ume constraint this identification is not possible. Thus
the excluded volume condition associated with the con-

straints (1)-(5) above enters by the identification of the
motion of a typical random walker with the motion of
the collective coordinate £,(¢).

It follows from Eq. (2.4) that the time {y needed for
an extremum to diffuse over a distance d(fy) ~ N is pro-
portional to N° We conclude that the relaxation time
of the end-to-end distance, and of any other quantity re-
lated to the over-all shape of the chain, should there-
fore also be proportional to {at least} N°. Table II
shows that the Monte Carlo results obtained by Ver-
dier?'*indeed satisfy this relation. Deviations from the
exponent 3 are positive rather than negative and should
be attributed to the intrinsic (long range) excluded vol-
ume interaction.

It should be realized that our picture of random walk-
ers with nearest neighbor interactions is based upon the
constraints (1)-(5), produced by the single-flip kinetics
together with the next nearest neighbor excluded volume
restriction. It does not account for the extra slowing-
down effect to be expected from what we have called the
intrinsic excluded volume interaction. Nevertheless it
explains the larger part of the slowing down found in
Verdier’s computer experiments.

We emphasize that it is easy to imagine modified ki-
netic models in which the excluded volume interaction
does not lead to the constraints (1)—(5). One example
of such a modified model is obtained by allowing in Ver-
dier’s model, in addition to the single-bead transitions,
an elementary transition of the “crankshaft” type [see
Fig. 3(c)]. The possibility of crankshaft transitions
removes the constraints (1)-(5) upon which our discus-
sion of this section is based. If Verdier’s model is so
modified, we have no reason to expect a decay on time
scale N? but would rather expect to see the much sub-
tler effect of the intrinsic excluded volume interaction.

11l. AN EQUIVALENT MODEL

In the preceding analysis we have aimed to capture
the essential characteristics of the single-flip kinetic
model of lattice polymers with excluded volume. We
expect that even a sirhpliﬁed model which preserves
these characteristics should reproduce the qualitative
features of the Monte Carlo calculations. To investi-
gate this, we adopt a model closely related to one in-
troduced by De Gennes in a different context,!!

TABLE II. Values of the decay times T(4)/N®, defined by
C(A; T(AN/3729) = ¢”!, as found by Verdier (values for A=u}
as given by Table IV of Ref. 4, and values for A =R% extracted
from Fig. 1 of Ref. 2, The times are expressed as multiples
of 107 real time units (or 1073 (W +1) bead cycles}l. According
to the theory of Sec. II, T(A)/N® for fixed A ghould tend to a
constant as N —, Deviations from such behavior should be
attributed to the “intrinsic” excluded volume and increase as
N gets larger.

N N3TRY) N7 (ud) N3l
15 5,2 9.1 3.6
31 5.4 10.3 3.8
63 6.1 16.1 4.5
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Let r(v) with 0 <y < N be a continuous polymer chain
with units chosen such that

a’(v) = (er/av)?=1. (3.1)
Then the chain length is

J;Ndv|a(u)‘ :foNdu /(%):N. 3.2)

The Rouse coordinates are given by

1 N
u, =5 Jﬂ dv cos ﬂNyr(u)

1 (¥ . oV
:—TT_DJ(; dvsmTa(v), =12, ... 3.3)
The end-to-end distance Ry is expressed as
N
Ry=r(M)-10)= | ava®). (5.4)
0

Before passing to the kinetics we shall define the
equilibrium statistics of the chain. We have seen that
the excluded volume effect that we wish to describe in-
fluences Verdier’s results mainly through the kinetic
properties of his model: the excluded volume kinetics
was shown to modify the relaxation time by a factor ~N,
whereas it is known that in equilibrium the averages of
squared end-to-end distance!~*!" and the squared Rouse
coordinates® are modified by factors of only ~ N5,
Hence we incur only a mihor error if we employ for
a(v) the probability measure for a chain without ex-
cluded volume, This measure is obtained as

Pla(y)]=limlim P¥a’], (3.5)
-0 ab-g
where a’=(al, a}, ...,a},,) is a chain of length N on a
simple cubic lattice with lattice constant b, and

P'a’]= ﬁ phal),

Db(an) = é(aam.b + 5"71:"'))6‘11131'05“"!'0
(3.8)
+ é(é”ny' bt 6‘1"37' 'b)ﬁant‘ oﬁanx'o

1
1
+5(0,,,0+ Ospye -») 5anx,o5aw,o .

From Eq. (3. 6) one easily finds the equilibrium corre-
lation

<a3u>b =0 ’

: (3.7
<anaa'r’na’)b = %‘Saa’ énm ’
whence we have for the continuous chain
=0
(aa (V)> I (3 . 8)

<aa(7/)aa'(p')> :%éaa' 6(7/ - [.L) .

In an analogous way we find the four point correlation
function, which will be needed in the sequel,

(a(v)a, (v )ag(u)as(u')) =56 (v — v')6(p — ')
+30aal 6 = )8 = 1)+ 8(v = u')o (" — )]

+3[845— 116w = )61 = p")8(w — 1) 3.9)

From Egs, (3.3), (3.4), {3.8), and (3.9) we find the
equilibrium values of the squares and fourth powers of
the end-to-end length and the Rouse coordinates.

W=N,
(RE=3N2 0(N),
W) =N/@rp%),
(@3 =5N2/(121"p") + 0 (N) .

We now turn to the time dependence of the chain. We
shall consider the bond vector a(y) as the sum of its
three Cartesian projections 2,{y), and imagine that the
vectors a,(v) perform diffusive motion along the chain.
The time-dependent chain configuration will be denoted
by r(v,#). Let the local minima and maxima of the
function 7,(v, {) occur at ..., vi@E), va. (), via@), ... .
An essential characteristic of Verdier’s model is that
these extrema move while conserving their extremal
values, i.e.,

(3.10)

Yo (@), ) =7, (w§(©0),0) for all ¢, (3.11)
and while conserving their order, i.e,,
s <pf)<vE@)<--. forallt, (3.12)

The simplest way to incorporate the properties (3.11)

and (3. 12) into our model is to postulate that in a time
¢ all bond vectors a,(y) diffuse over the same distance
k,{t), which was defined in Sec. II. Hence we have the
kinetic equation

a‘u(Vy t) = aa(V - km(t), 0)
Eaa(u - ka(t))) (3- 13)

This kinetic equation neglects fluctuations in the rela-
tive distances between the positions of the a,(v), which
we believe not to be essential. Equation (3.13) express-
es that the bond vector a (v - &,(f)), located at v -k, (¢)
at time zero, has diffused to v at time ¢, its path being
given by v — k,(f) + k,(t'), with ¢’ in the interval [0, ¢].

with %,(0)=0.

Of course the equation ceases to be valid when the
bond vector a,(v — 2,(f)) diffuses out of the chain, i.e.,
if =R, (f)+ k(') is not between 0 and N for some ¢ in
the interval [0, ¢]. In this case a,(y, f) is equal to some
vector b,(v - &,(f)) which has entered the chain after the
initial time to replace a, (v - 2,(f)). We now supplement
Eq. (3.13) with the postulate that the vectors b,(v) are
uncorrelated to the original ones a,(v), present at £=0.
This postulate is clearly consistent with the equilibrium
statistics without excluded volume defined above. A
vector b,(v) may of course again diffuse out of the chain,
but we shall not introduce a new symbol for the vector
by which it is replaced. For our future calculations it
suffices to know that it is uncorrelated to the'a,(v).
This completes the definition of our simplified model.

In 1971, De Gennes introduced a model for the worm-
like motion of a polymer in a dense solution or melt.!!
The model defined above reduces to De Gennes’ model
in its mathematical formulation if we require that 2 {f}
=k,(t) = k,(¢)."" The physical contents of the two models
differ, however, considerably. The role of the “gas of
defects” in Ref. 11 is played by the a extrema. The
N? time scale in Ref. 11 arises from diffusion under
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the influence of a friction proportional to the chain
length N; in the present case it arises from the hard
core interaction between the Np, diffusing o extrema.
The role of the exterior polymer network which pre-
vents sideways movements of the polymer considered
by De Gennes is replaced, for each Cartesian coordi-
nate separately, by the second nearest neighbor ex-
cluded volume interaction between the beads of the poly-
mer itself. No longer does the chain r(v) move through
a tube in r space, but instead each of its three compo-
nents v,(v) moves through a tube in »,, v space.

We shall compute the eguilibrium correlation function
(@41, 0)ay(v, 1)) as a path integral by averaging over all
initial chain configurations a(u, 0) and all possible time
evolutions %,(#). Thus, employing Eq. (3.13), we have

(@i, 0)ay(v, 1))

) fk o0y DOl O~ 20,00, (3.14)

o 0)=

where the prime reminds us of the restriction that
paths v+ 2,(t'), with 0 ¢’ <, that lead from v across
the ends of the chain, will result in the replacement of
the bond a,(v) by a random bond b, ().

For the following it is useful to introduce this restric-
tion in an explicit mathematical form. Accordingly, we
replace Eq. (3.13) by

a,(v, 1) =a,(v - 2,(£),0) for 6¢, v—k,#)]=1

(3.15)
=b (v - k(1)) for ©3t, v - k,(t)] =0,
where the step function ©%(¢, v] is defined by
Oyt v]=1 1 0<py+ b (F)<Nfor 0 <# <¢,
=0 otherwise . (3.16)

Thus the step function keeps the value unity until the
bond vector a,(v) initially present at v diffuses to the
end of the chain and is replaced by a random bond b, (v).
If we use the mathematical expression for the random-
ness of b, (v}, viz.,

(a1, 0)b,())=0, 3.17)

the correlation function Eq. (3.14) may be expressed as

(aa(p, 0)ayly, )= f Dlk )05, v - Fu ()]
ka(0)=0

(a1, 0)a,(v - ko), 0)).  (3.18)

Use of Eq. (3.8) permits us to rewrite Eq. (3.18) as
(o, 0)ay (v, 1))

3 ] le@03lt,v - k0160 = v+ 1ole)
Ry (0)=0

=% f olk.B]08(t, ki=GE@). (3.19)
k:?t()o=)v=~0u

The quantity G!¥’(¢) has the physical interpretation of a
probability that a bond initially at p diffuses to v in
time # [with 0< y, y< N] without having passed either of
the two points »=0 and y=N. A subscript & has been

: Kinetics of lattice polymer chains

suppressed on G*’, since this quantity will be the same
for all a.

We compute the somewhat more general quantity
G{®(r), needed for later purposes, by recognizing from
the analysis of the previous section that %,(/) will make
jumps of size N! with frequency N. Thus, in the con-
tinuous limit the probability TI(y, #) for a displacement
ko{f) = v may be determined from the diffusion equation

all(v,t)

98211(1/, t)
a(NT)

3(NU)2 ’

(3.20)

where ¢ is a constant of order N°,

From the definition of G#'(f) we see that it may be

obtained as the solution of Eq. (3.20) for 0 sy s M with
initial condition M(y,0)=38{y — u) and boundary conditions
MO, t)=TI(M, ) =0. The boundary conditions absorb any
bond which has diffused to a chain end.!! We obtain
i) :% > sin% sin% exp(- P 0t/NM?).
r=1,31.0. (3.21)
This determines the pair correlation function (3.19).
By a similar but somewhat more complicated analysis
(see Appendix A), we find for the four point time corre-
lation function

(aq(v, 0)ag(v', 0)ag(u, Hag(n’, 1))

=360 =18 — ) {1+ Bae - DGV (O}

+ 04510 =" = pt u)GITEE()
Folr= /s i WG N,

The expression for p> u’ is obtained by interchanging
u and p’ as well as v and »’. This four point correla-
tion function is required for the calculation of some of
the correlation functions of interest mentioned below.
The probabilities G*}(t) with M <N enter as a conse-
quence of the fact that az(u) and az(u') perform coherent
random motion along the chain. The correlation (3.22)
is destroyed as soon as either of the two bond vectors
passes a chain end. Hence the effective available chain
length for a pair of bonds a distance |up - u”| apart is
only N— lp—pu'l.

(ksp). (3.22)

We shall be concerned with certain equilibrium time
correlation functions that have been computed by Ver-
dier. The definition of the correlation function of a dy-
namical quantity A is

(AA@) = (AP
@4y -

If Ais a vector, the products in Eq. (3.23) should be
read as dot products, Using the results obtained above
and neglecting terms of order N -1 we obtain for our
simplified model the following correlation functions:

C(4;1) = (3.23)

N N
CR,;t)=N""! f dv f av' G, (3.24a)
0 0
N N-u N-p
C(R%;t)=2N"2 f au f dv f A G,  (3.24b)
0 0 0

N N
Clu,0) = 22PN fo dv JO ' UL ULGI(0), (3. 24c)
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N N-u N=pt
c(ui;t)zen*pw'zf du f dy f av'
0 0 V]

XUBUL UL UL Gl (1), (3. 24d)
where
1 Tpy
p=— sin—. 3.25
Up s sin N ( )

For the correlation functions of the vector quantities
Eqgs. (3.24a) and (3.24c) we find, employing Eq.. (3.21),
the results

CR;D=2 3 exp(- #)/R, (3.26)
T k=1,310..
Clu,;#) = exp(- p°1), (3.27)

where 7= @26N"3f). The result Eq. (3.26) is identical
to that found by De Gennes.!!

For the correlation functions of the squared quanti-
ties Eq. (3.24b) and (3.24d), we find (see Appendix B)

1 - &
c(nﬁ,;t):%k_?; Z fl dg%i—”, (3.28)
.8 1 = cosPmptl’® exp(- EFPT)
C‘“i’f)?m,za;__,szl A/ &
(3.29)

Computer results for C(u%;¢) with p=1,2, ,..,7 have
been obtained for times such that 1= C(u%;0) 2 C(ué;#)
>0.1, for chains of length up to N=63 (see Fig. 2 of
Ref. 4). The corresponding time regionis 7<1. An
approximate evaluation of (3.29) in this time region
(see Appendix C) leads to the curves shown in Fig. 4.

We first note that the chain length dependence of our
model may be absorbed entirely in the time scale.
Since our chain is a continuous one, its behavior is ex-
pected to be similar to that of lattice chains with large
N. We observe the following similarities between our
results and the Monte Carlo results (Fig, 2 of Ref, 4):

(1) The initial decay of C(u%¢) is faster as p increas-
es. Infact, an initial time expansion of Eq. (3.29)
gives® C(u;)=1-2p?7+ 4p>72 — ... | s0 that the initial
decay is proportional to p%. This agrees quantitatively
with Table IV of Ref. 4.

(2) After the initial decay there is a changeover to a
slow decay, with the same slope for all p.

(3) As p gets large, the asymptotic decay curves tend
to a limiting curve.

Hence, in their main characteristics the Monte Carlo
data agree very well with our results, and we expect
the agreement would improve if N were larger in the
simulation, At this time no Monte Carlo data are avail-
able on C(u,;t). We expect from Eq. (3.27) that the be-
havior of this quantity in Verdier’s model will be close
to exponential,

Equations (3.26) and (3. 28) determine the decay
curves for R and Ry, which were also obtained by com-
puter simulation.®”® Our curves show the same infinite
slope at =0 as those in Fig. 1 of Ref. 3, However,

' 5159

asymptotically we have CRy;¢)~ e and CRZ;t) ~e™"/7,
in contrast to the asymptotic relation C(R%;¢) ~[CR,;1)]"
with m =5, found by Verdier.> We have no explanation
for this disagreement,

IV. CONCLUSION

We have attempted to interpret Verdier’s Monte Car-
lo results on the Brownian motion of an (N+ 1) bead lat-
tice polymer with excluded volume. In Sec. II we ana-
lyzed the kinetic scheme employed in the computer sim-
ulations, It was shown that this scheme, in conjunction
with the excluded volume interaction between beads that
are second nearest neighbors on the chain, imposes
certain rigorous constraints on the chain motion.

These constraints can be formulated as conservation
laws for extrema in the chain (with respect to each of
the Cartesian coordinates o=x, v, z) and for the & co-
ordinate of each & extremum. An approximate equiva-
lence with a system of one-dimensional random walkers
is used to estimate the time scale on which the over-all
chain shape decays. This time scale is argued to be
proportional to at least N*, as opposed to the N? depen-
dence found without excluded volume, Verdier’s com-
puter simulations indeed show that excluded volume
leads to slowing down with at least a factor N,

In Sec. III we set up an analytically soluble model
whose kinetics contains the same characteristics that
were identified as essential to Verdier’s model. Our
model has the N® time scale built in, but it can be used
to test further details of Verdier’s results. It appears
to give a good explanation for the shapes of the relaxa-
tion curves of the squared Rouse coordinates at large N.

We conclude that our analysis has successfully deter-
mined the dominant cause for the slowing down observed
in chains with excluded volume, A second important
conclusion is that this slowing down, viz., by a factor
~N, is due to the specific properties of the kinetic
scheme chosen by Verdier, which leads to severe con-
straints on the chain motion. In our analysis the “in-
trinsic” excluded volume interaction between beads at

~
~
N ~
0.5 \\\ N \\\ ]
\\\ ~
; \\: \\ \
o~ ~ ~
h \\\i\ p=|
~ AN
¢ 021 SaON> .
o) -~
= ~
N‘% \2
2 o1 3 N
© 4
w
0.05 -
A1
0 0.5 |
TIME T

FIG. 4, Relaxation curves C(u}; #) of the squared Rouse co-
ordipates according to Eg. (3,29) as approximated by Eqgs.
(C7) and (C10). The time variable is T=m20N"3¢,
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distances > 2 along the chain could be neglected. This
interaction is expected to cause only a further, but
much weaker, slowing down.

It is easy to imagine modified kinetic schemes [see,
e.g., Fig. 3(c)], consistent with the same equilibrium
properties of excluded volume chains, in which the sec-
ond nearest neighbor excluded volume does not lead to
the above mentioned coustraints on the chain motion. In

such a case there is no reason to expect slowing down
J

APPENDIX A:

by as much as a factor N; one would rather expect to
see the much subtler effect of excluded volume interac-
tion between distant beads of the chain.
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Using Eqgs. (3.15), (3.16), and the fact that any correlation linear in h3(u) vanishes, we get

{aqiv, Da V', O)ag(u, Has(y', ))=
kB‘o)

f . Dkg(t) 1105141 = R 10585 1" - Ba(t) Ka(a (v Vau(ie - kot ag(’ — kalt)))

+ (L 03[t - 2D - O3[t; 1" - ka(!) Ko (W)aa (V) ba(1)bg(1)) } (A1)

We now employ the relation

eﬁ[t;u]eg[t;v'] = e:—lv—u'l [t;min(vy V’)] ) (AZ)
which follows directly from the definition of 6§,
With Eq. (A2) and the explicit expressions for the correlation functions, Eq. (Al) becomes, for p <yp’,
{@a(v, 0)a,(v’, 0)ag(u, ag(n', 1)
1 J R , , '
25%(0):0 D k()] {05 [ 1 — B} (B W = v")0( — 174 BasBly = 1+ BB — 1" + kgt
+80g0(v = 1/ + Bg())0(v" — 1+ Rg(®)) + (Bap—1)0(v = v")8(v = 1+ Bg(1)O(" — 1 + Rg(2)))
+ (1= 203[t;1 — Bg(V)] + ONyucuelts 1 = Ra®]) (W — )6 (= 1)}
1
== f D[Ea()]6(w = v )81 — u')+ 045 f Dke(t)|0% s [50180 — ' = v+ 1)
9 2p(0)=0 Ra(03=0 .
rgt)=p-v
+50,8 J. Dk, e[tV 16 = 1" =+ 1)+ 3(0as~ 1) f o[ kg(D)]105(t;v]6(w — v )01 — 1')
kg (0)= kg (0)=0
kg (¢)=n-v bg(t)=u-v
=300~ v)8(i - u) {1+ (Bug= DCI (O} + 8,6{0( = V" = 4 w)GE# () + 8w = v+ p - )G )] . (A3)

It is easily shown that for p >’ the correct expression is obtained by interchanging u and p’ as well as v and »’.

APPENDIX B

Substituting Eqs. (3.21) and (3.25) in Egs. (3.24c)
and (3, 24d) and performing the integrals over vy and 3’
leads to

N
C(Ri,;t)=161r‘2N'2H; é’j; du wexp[- (N/p)#r],
a B1)

1
CElN=1672N"2 3,
E=11300ss

¥ cos?(npu/N) 2.2
Xfo A BT oN/2p )] exp[— (N/u)?¥7]. (B2)

The results (3.28) and (3.29) are obtained by changing
to the variable of integration &= (N/pu).
APPENDIX C

For times 720.2 the =1 term dominates the inte-
gral (3,29), which may then be written

f

cW =z [ ato e, )

2 p-1/2
o8 = F T (c2)
The main contribution to this integral, for 720.2,
comes from the region 1< £ <4. The squared cosine
causes ~ip oscillations of the integrand in this £ region,
For large p the oscillations become dense, and we may
replace cos?mp&-V/2 by its average 3. Thus we find the
limiting curve

Clit) gl - TE(D], (c9)

where E,(7) is the exponential integral.

For general p we note that, with £,,=16p?/(4p - 1)%,
we have
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1 for1=0,4,..., 4p—4
for 1=1,3, ..., 4p-1 (C4)
0 forl=2,6,..., 4p-2.

Wi

cos?mpErit=

We approximate the density of decay times p,(¢) by a
sum of step functions, each of which is nonzero only in
a region with cos®mp£;1/2> 3, i.e., we take

NCEDINE (c5)
with

un(£)=pp(1) =pyo for1<gs<g,
£OT £y 410 < E< £y g1t
(i=1,2,...,p=-1)
1,y (£)=0 else (1=0,1, ..., p). (cs6)

With Egs. (C2), (C5), and (C6), the integration in Eq.
(C1) can be performed and gives, for 720.2,

Uy (£) = Pp(Ep,u) =Pp1

p-1
cw =518 oot eton). e
1=l

For p=1 we approximate the density of decay times
p,(£) more precisely by

p1(8) = ug (&) + 2 (£),

p(1) forlsésg
uaa={
0 otherwise, (C8)
f <£f<
uy(6) = {01(52) or & .5 &
0 otherwise,

with &, chosensuchthat cos®r£;%=4/4 for i=1,2,3,
i.e.,

£1=8,  f=fy=%, &= (C9)

The integral is again easily calculated and gives, for

wlo
.

720.2,

16 -7 _ 145751 - 2o
[18 o - MST81 - G6/25)7 _ L(8L2 = 0/)7] | (C10)

S

8
C(uf;t)ﬁ?

In Fig. 4 we have employed Eq. (C10) for p=1 and Eq.
(C7) for p>1, as well as the initial-time expansion
C(u%t)=1-2p%r+ 4p*r% — ... . Although the approxima-
tions (C5) and (C8) are somewhat arbitrary, other ap-
proximations give very similar results,
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