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The intrinsic viscosity of a dilute polymer solution is studied for a polymer model with rigid constraints on
some quantities, such as bond lengths and bond angles. The constraints are introduced via a harmonic
constraining potential; the strength of this potential is taken to infinity at the end of the calculation.
Expressions for the frequency dependent intrinsic viscosity are obtained with the correlation function
formalism. The limiting form for the case in which the constraints become rigid is obtained via a
systematic expansion procedure. In the limit we obtain a contracted description in terms of the
unconstrained variables only. We discuss the form of the polymer diffusion equation and various
expressions for the stress tensor that may be used in the context of such a contracted description, as well
as expressions for both the frequency dependent and the frequency independent part of the intrinsic
viscosity. We compare our results with those of other authors. Complete agreement is found with the
results of Fixman and Kovac, and with the corrected version of the theory of Erpenbeck and Kirkwood.
Discrepancies are found with results of Doi, Nakajima, and Wada, and of Hassager. The origin of these

discrepancies is explained.

I. INTRODUCTION

Recently considerable attention has been given to the
dynamics of stiff polymer chains. In particular a num-
ber of alternative formalisms!™* have been presented
for determining the frequency dependent intrinsic vis-
cosity [n(w)] for dilute polymer solutions. We have ad-
vocated® the correlation function method as an attractive
procedure for determining [7(w)]. The purpose of this
paper is to demonstrate how the correlation function
method provides a direct way of determining [n(w)] for
a model polymer with constraints. We will treat the
constraints by a method adopted earlier by Fraenkel® for
a simpler model: we introduce a harmonic potential,
characterized by a force constant «, that keeps the con-
strained quantities close to their equilibrium values.
After evaluation of the correlation functions we pass to
the rigid limit x -, We will also compare our results
with those of alternative formalisms in order to clarify
the relationship of the different approaches, The alter-
native approaches we consider are those due to Fixman
and Kovac (FK),! Doi, Nakajima, and Wada (DNW), 2 and
Hassager (H),® as well as the classical work of Erpen-
beck and Kirkwood, *

The correlation function expression for the intrinsic
viscosity® is

[n(w)]=1%£ fow expl-iwt] (J,, explD't]d0de,  (1.1)

where N, is Avogadro’s number, M the polymer molecu-
lar weight, n, the solvent viscosity, and J,, the appropri-
ate expression for the xy component of the stress tensor.
For a single polymer composed of N beads:

1

Jﬂ ; x’t a]}" 2
where x, (y,) denotes the x (y) coordinate of the nth bead
and U is the potential energy of interaction between the
beads. In Eq. (1.1) the angular bracket denotes an av-
erage over the equilibrium distribution function P,,
o exp[— U] and D' is the adjoint of the Smoluchowski dif-
fusion operator for the polymer; in 3N vector notation

(1.2)
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D' =VE-D.Vy-B(VxU)T.-D. Vg , (1.3)

where R=(r,, r,, ..., ry) and the diffusion tensor D is
given by the 3N X 3N matrix with 3x 3 submatrices be-
tween r, and r, equal to

Do =B7HE O + T ]

where ¢, is the bead friction constant and T,, is the Oseen
hydrodynamic interaction tensor with argument r,-r,_.

(1.4)

In terms of the eigenvalues and eigenfunctions of ‘.D*,
defined by the equation

ﬁDTfm=_)\mfm ’

we may write the expression (1.1) for [n(w)] as

(1.5)

[nfe)] =28 3~ 1o o217 .6)

Mn, & iw+A,

The scalar product (A |B) is defined as

@lp = [ 4*@) B@ Pl @™ q )
with a={qy, ..., gsy) @ convenient set of coordinates and
J(q) the Jacobian of the transformation from R to q.

The central task in the correlation function method is
the determination of the eigenfunctions f,, and the asso-
ciated eigenvalues 2A,,. To determine these quantities
for the case of a stiff polymer chain it is convenient to
choose the system of coordinates in such a way that the
first 7 of them, @,..., @,, ..., @, are the quantities,
such as bond lengths and possibly bond angles, that are
kept constant in the rigid limit, These coordinates are
referred to as hard coordinates, They are supplemented
by 3N-h other coordinates, g1, ...,494, ..., g3y, Which
will be referred to as soft coordinates.

Since the system of coordinates just described will in
general be nonorthogonal it will be necessary to adopt
tensor notation. For the reader’s convenience we will
state the few facts and definitions used in this paper:
One distinguishes contravariant and covariant basis
vectors,
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3q; ; _ R

= —di i 22 .

& =7n and e 57, (1.8)
with these one forms contravariant and covariant com-

ponents of vectors and tensors, e.g.
A;=A.e; and B''=e'.B.¢€’ 1.9

The basic vector differential operators are given by
3N

of - 0
(VA== and v.A=J7 ) —JA4, 1.10
2 9g; ; 8q; '’ ( )
where the Jacobian J equals

J=|det(e'. e')|1/2 . 1.11)

Finally, we will use the Einstein summation convention
throughout the following discussion: every index that oc-
curs both as a covariant and as a contravariant index is
summed over its entire range, with the understanding
that a “hard” index (e, b, ¢) runs from 1 to i, a “soft”
index («, B, ¥) runs from i +1 to 3N, and a “general”
index (i, j, k) runs from 1 to 3N, This means that sum-
mation signs such as the one in Eq. (1.10) will hence-
forth be omitted. No knowledge of tensor theory beyond
what is recapitulated in this paragraph is needed to un-
derstand the theory presented in this paper,

As stated earlier, we will adopt Fraenkel’s method®®
to describe the rigid constraints that are present in our
polymer model. This implies that the potential energy
of interaction U is the sum of a “soft” part U*’ and a po-
tential that is harmonic in the deviations of the hard co-
ordinates @, from their equilibrium values °Q,:

U=U" +3kG(Q, -°Q)(@ -"Q,) ,

where G* is an arbitrary, positive definite matrix,
which may be a function of the configuration of the sys-
tem. Eventually we will consider the rigid limit, in
which the force constant becomes arbitrarily large.

(1.12)

When we substitute the form (1.12) for the potential
and rewrite Eq. (1.3) in the coordinate system just de-
scribed, using Eq. (1.10), we obtain

+ 1 0 3 <aU‘s>> 3
ot =g1-=gD,, >~ - g(-*=—\D,, —
60" U4 aq, " P\ ogy )01 g,

~ Bk G® (g, -°Q,) D,, —— (1.13)

al 3(],

The equilibrium distribution function is
P,,(q) =9t|det G |1/2 k"/?

xexpl— U’ = § Br G**(Q, - "Q. )@, - °@»)] ,
(1.14)
where 91 is a normalization constant chosen such that

[ P@s@a¥a-1. (1.15)

Il. DETERMINATION OF THE EIGENFUNCTIONS

In order to determine the eigenfunctions in the limit
when k becomes large we separate the operator D' into
a sum of terms selected according to their order in K1/2

M= 9B 4+ o ;D@4 | (2.1)

In this evaluation (@, —°@,) is considered a quantity of
order /2 and 5/8Q, is considered a quantity of order
/% when it is able to remove a factor (@, - °Q,). Clear-
ly the leading term in the above expansion is

(2) _0p _90 _0 0(ab 0 0 9
D - Dab aQa aQb -Bk°G Dbc (Qa - Qa) an ’
where the left superscript zero on any function of q de-
notes that the hard coordinates are replaced by their
equilibrium values °Q,. The explicit expressions for
D and D are lengthy and accordingly relegated to
Appendix A.

(2.2)

In order to determine the eigenvalues and eigenfunc-
tions of D' we write the eigenfunctions as a sum of con-
tributions ¢ of order x™/2;

fefO L@y (2.3)

and similarly the eigenvalues; these depend analytically

on « and are therefore of the form
}‘:)\(-2)*_)\(0) +A(2)+_.. (2_4)

Substitution of Eqs. (2.1), (2.3), and (2.4) into the eigen-
value equation, Eq. (1.5), and equating terms of the

same order in k™'/2  leads to the relations
Di-2) f(O) =2 f(O) (2' 53.)
1) £ | (=2} £01) _ _ 3(2) £(1
DI f @1 f M= 2R f D (2.5b)
:Dm)f(o’ +:D"1’f‘“ +:D"3)f“” - A“”f‘“’ _ A(-z)f(z)
(2.5¢)

The solution of Eq. (2.5a) proceeds by the standard
method.? We first determine the right eigenvector Py,
of the nonsymmetric matrix °G*® °D,,, which obey the re-
lations

°G* Dy PGy = 11y Plyy; Py "Dy Py = Oim (2.6)
When we define the quantity
Q:'):Pil)(Qa_oQa) ’ (2-7)

then the eigenvalues and eigenfunctions of Eq. (2.5a)
may be written as

P
ACBy L, my) = - BK Xl:nxﬂ(z) ) (2. 8a)
1=

F %y, oo o,m)=Clay, ... ymy) HHn,[(BK“(z>)1/z Qnl,
(2.8b)

where n,, ...,n, are nonnegative integers, H,(x) denotes
the nth Hermite polynomial, and Cln,, ...,n,) is an as
yet arbitrary function of the soft coordinates, subject to
the normalization requirement that

flf(O)‘zPanqu:l . (2.9)
For those eigenfunctions for which the parameter »

=Yy m, does not vanigh it will not be necessary to proceed
further, For convenience we denote eigenfunctions from
this set by the symbol . For those eigenfunctions for
which the parameter is zero, A‘® vanishes and f® is a
function of the soft coordinates only, We denote eigen-
functions from the set 7 =0 by the symbol g. As we shall
see later, eigenfunctions k with # =1, which are linear
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combinations of (@, -"Q,), contribute to the high frequen-
cy limiting viscosity, while eigenfunctions g, with # =0,
contribute to the frequency dependent part of the viscos-
ity. It is necessary to consider these latter eigenfunc-
tions in more detail.

For this purpose we expand the function g according
to Eq. (2.3) and arrive at the set of equations

,‘,D(-Z)g(o)=0 , (2.10a)
§D( l)g(O) + fD(-Z)g(“ =0 , (2. 10b)
D(D)g(O) + :D('”gm ¥ D(-Z)g(Z) = )\(D)gm) (2‘ 10¢)

Equation (2,10a) is obeyed by an function of the soft co-
ordinates only. As shown in Appendix A, we can solve
3
§V==[D D@ - g™, (.11)
o

where D,, denotes the restriction of D to the hard sub-

space. Next, evaluation of the first two terms on the

lhs of Eq. (2.10c) leads to the result

® 4 oD m_[oJ-l  o;p 2
§D g g qu aB an
aU(s)) . 9
- — —_— )
B< 97y Das aCIB]g
+BKEzb[(Qa—OQa) (Qb_qu)

- (B OGN, ] -2 g@ (2.12)
994
with the definitions

D,y =ODaa - OD (OD(h))ab ona ’ (2.13)

ab =0GaC[QD (OD(h))bd oDda ODé‘b! +0D:-;Z (ODZ;I.))“ nga] s
and (2.14)
/]
OA,a=( A) (2.15)
8¢, /a-0q

The structure of the last term in Eq. (2.12) is exactly
that of the eigenfunctions % of the operator D‘?’ with »
=2. Accordingly it is possible, as is shown in Appendix
A, to choose g in such a way that D2 g® cancels this
term. The resulting eigenvalue equation for g® is

(s)
I:qu 8 DJDaBB'q- B(BU )D -a—]g(°’=—>»‘°’g‘°’,

3G, *® 8gs
B (2.16)

with D, given by Eq. (2.13). Notice that one may ex-
tend the definition Eq. (2.13) to all coordinates; when-
ever one of the indices assumes a “hard” value, the ma-
trix element will vanish. We may therefore replace the
indices (a, ) in Eq. (2.13) by (i,7) without altering the
physical consequences of the equation,

HI. CALCULATION OF THE INTRINSIC VISCOSITY

The next step in our development consists of calculat-
ing the matrix elements (J,, | f,). The stress tensor J,,
Eq. (1.2), may be expressed in Cartesian coordmates as

Iy =17« VU , (3.1)

where I is a 3N-dimensional vector whose only nonvan-
ishing components are those on the site y,, which equal

4507
%x,. Inthe general coordinate system
12
w =1 a_(h (3.2)

The operator J,, is the sum of a “soft” part J’ contain-
ing U'*’ and a “hard” part J,

IS == KkI,C*(Q,~"Qy) ; (3.3)
the explicit form of 7, is
[
=iy, . (3.4)

9q,

When we inspect Eq. (1.6) for the intrinsic viscosity
[n(w)], we see that eigenfunctions of type % and type g
contribute in a different fashion to [7(w)]. For an eigen-
function of type & the eigenvalue A, is of order x and we
may neglect iw in the denominator in the rigid limit,
This means that such eigenfunctions contribute to the
limiting high frequency viscosity. Moreover one needs
only consider the part of (J,, |#,) that is of order «*/2,
Such a contribution can only arise from J%’, According
to Eq. (3.3) the dominant part of J&’ is a linear combina-
tion of eigenfunctions of type k with » =1; therefore it fol-
lows from the known properties of Hermite polynomials
that only eigenfunctions with # =1 can give contributions
of order «'/2 to the matrix elements (J&'|£,). For ei-
genfunctions of type g the eigenvalue ), is of order unity,
and the term iw in the denominator can no longer be ne-
glected; such eigenfunctions therefore contribute to the
frequency dependent part of [7(w)]. Moreover we have
to determine {J,, Ig,,) up to terms of order unity (terms
of order «!/2 are absent in this case).

A. Limiting high frequency viscosity
The limiting high frequency viscosity may be written
Ly Sy 1T

as
NpB <~ W,
7]0; l(l)+hm ’

where the prime on the sum indicates restriction to ei-
genfunctions of type k withz=1. As k increases the term
(iw) in the denominator may be neglected.

[7.]= lim lim

- 00 K- €0

(3.5)

Moreover, as we just saw, only the dominant part of
J& must be retained in Eq. (3.5). This dominant part
of the stress tensor, denoted as J5, is

J,g” ==k 0Gsb oIa(Qb -29,)= Krb(Q" -°Q) ’

(8.6)

where the vector »?,

) (3.7

is introduced for convenience.

0
,rb_ OGab a

Since the expression

_;, lhIn)}‘;nl(hm,

is exactly the inverse of the operator ©f restr1cted to
the space spanned by eigenfunctions of type k with n = =1,
and since J5!’ lies in that same space, Eq. (3.5) may
be written as
N8
o] =—4E 12 (y? 3.8)
[7.] Mn, r°(@, (

-2Q) [ [2°21 (@, - °Q.)) ,
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where D' has been replaced by its leading term o2’,
This matrix element is evaluated by noting that

fD(-Z) 7E(Qa - DQo) =- SK OGab DDbc rc(Qa - DQa) ’ (3‘ 9)
as may be verified by direct substitution. Accordingly
[a)(-a)]q r9(Q, - DQQ)

== ) DG O™ 7o(Q, - Q,) . (3.10)

Substitution of Eq. (3,10) into Eq. (3. 8) leads to

["7-:] 2%41% (”’b(Qa - OQb) ‘[OD-(}Iz)]aa(OG-l)ac ’VC(Qa - UQa» .
(3.11)

Integration over the hard coordinates replaces (@, - °Q,)
x{Q, - °@,) in the rigid limit by (8x)?(°G™),,, and employ-
ing Eq. (3.7) one arrives at the result

N -1 Ja
[n)=37mg CLUDGI L))

where (.. .)) denotes an equilibrium average over soft
coordinates:

(3.12)

(4= j Algy) PEq,) °7q,) d™ g, (3.13)
with
PY) =qexp[- U] | (3.14)

B. Intrinsic viscosity at arbitrary frequency

In order to evalnate the matrix element (J,, |z, to the
required order in x we insert the expansion Eq, (2. 3) for
&, and the analogous one for J,,

oy =Ig +I S 40 (8.15)
with J$1 given by Eq. (3.6) and
@ _o, [8U® Ofy abysC 0 o
ny == Ii —8q— -K (IBG ) (Qb- Qb)(Qc_ Qc) .
(3.18)
These substitutions lead to the expression
oy lgm) =TSV 80 + TSP g8+ D g9 +. .. . (3.17)

All matrix elements in Eq. (3.17) have to be evaluated up
to order unity. In the second and third term this may be
done by replacing the quantities U“’, G®, and J in the
definition (1.7) of the matrix elements [with the expres-
sion (1.14) for P, (q)] by their equilibrium values, and
performing the Gaussian integrations. A similar proce-
dure applied to the first term in Eq. (3.17) gives zero,
since the integrand is odd in (@, ~°Q,). However, a non-
vanishing contribution of order unity is obtained when
one includes corrections of order x™/2 to P,, and J, which
which arise from the dependence of U*’, G**, and J on
the hard coordinates. As shown in more detail in Appen-
dix B, this leads to an expression for the matrix ele-
ment {3,17) of the form

Gy 18m) @ = (T oy &2 (3.18)

with the average ({...)) defined by Eq. (3.13) and

aOU(!)
oy ==, P

- B‘l OI‘,‘a _B-l OJ-I OIa OJ,a

>3
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where the operation 8/8g, in the last term acts on the
function g0’ in the rhs of Eq. (3.18).

+87 °L,[°D3, )" ° Dy, , (3.19)

In order to facilitate the comparison with alternative
formalisms in the next section we present a few equiva-
lent forms for the expression (3.19). First we note that
the second and third term on the rhs of Eq. (3,19) may
be combined to give

PRTA

-5 (g 0t)
A comparison with Eq. (1.10) shows that the expression
in brackets is exactly the “hard” part of divl, From the
representation of I in Cartesian coordinates, given after
Eq. (3.1), it is easy to see that divI vanishes identically.
Therefore we may replace the “hard” part of divI by
minus its “soft” part; when this is done Eq. (3.19) be-
comes

(3.20)

Fo=_9 3°U(S)+B-1 Opay gl 07t O O pa
xy (3 aqa a &
- 2]
+ @ LIPDG, I °Dyy (3.21)
T

The quantity J,, always occurs in the matrix element on
the rhs of Eq. (3.18). When the average {(...)) is writ-
ten out explicitly according to Eq. (3.13) one checks
easily, by means of an integration by parts, that the first
three terms on the rhs of Eq. (3.21) may be replaced by
-8711,(3/3g,). Thisallows one to rewrite Eq. (3.21) in
the compact form

(3.22)

with

ja :Oloz - ODab [OD-(;;)}M OIa . (3- 23)

In order to make the meaning of the operation 3/9q,
in Eq. (3.22) more explicit one may replace the operator
from (3.22) by

Jw=—p"T[010gg "/ 5q,] . (3.24)

Starting from the form (3, 24) for J, it is easy to make
contact with a description using the concept of “diffusion
force” or “entropic force.” The latter is usually given
as

Fi,=-p"[alogP/aq;| , (3.25)

where P is the nonequilibrium distribution function of
the polymer, For our case we must choose P= P, with

P,=g¥ PY (3.26)

b

and P2’ defined by Eq. (3.14). It is now easy to verify
that J, can also be written as

- . [y«
ny:—Ia[ _F:‘nt ’

5, (3.27)

where I, and F2

ent

are defined by Eqs. (3.23) and (3. 25).

We wish to stress that the entropic force enters into
Eq. {3.27) as a derived quantity; it is merely a conve-
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nient way of expressing a part of the contribution of the
“hard” forces to the part of the stress tensor that con-

tributes to the frequency dependent part of [7{w)]. Our
starting expression for J,,, Eq. (1.2), contains no con-
tributions from “entropic forces.” Further comments

on this point will be made in Sec, IV,

C. An alternative form for the stress tensor

When the hydrodynamic interaction is neglected, or
replaced by a preaveraged expression, ® the matrix D,,,,
Eq. (1.4), is replaced by the unit matrix multiplied by
a number f)m, that does not depend on the chain con-
figuration, In this case it is possible to circumvent the
laborious evaluation of {J,, |g,) described in the preced-
ing subsection. For this purpose we consider the quan-
tity

N
':Z [a-l]nmxnym ) (3'28)
nym=1

where D is the Nx N matrix formed by the D,, and x,
and y, are the x and y coordinates of the nth bead. Us-

ing the form (1. 3) for D' one easily verifies
D'E,, == B, +dyy) == 2BJ,, (3.29)

By employing the self-adjointness of ®' with respect to
the scalar product {4 | B) we find

oy | fuy == 280 oy | )

Since E,, contains no contributions of negative order
in k™*/2, the zeroth order contribution to the matrix
element with an eigenfunction of type gl =0) is

Uy |8m) == 28X, (B 827 (3.31)

with ({...)) defined by Eq. (3.18). Using Eq. (3.31)
we may rewrite the expression (1.6) for [n(w)] in the
form

(3.30)

a2 I«E g(ll')» |2

[n(w)) =[n.] +m . (3.32)
or equivalently, by using the identity 32 =A,[(iw +A,)
- iw],

[ =[n(0)] —le S~ 2 KB gD IE (5 g,

MBS L iwtd,

This second form may be convenient, since a simple
form for [#(0)] is available® for the case where the hy-
drodynamic interaction is neglected or preaveraged.

1IV. COMPARISON WITH OTHER THEORIES

Our theory differs from earlier ones in two important
aspects: in the use of the correlation function method
and in the treatment of the rigid constraints.

The choice of the correlation function method, rather
than the method employing the average of the stress ten-
sor in the presence of an externally imposed velocity
gradient (a method used in all papers discussed in this
section except those by Doi, Nakajima, and Wada? and
by Doi and Okano)!® was made as a matter of conve-
nience. This choice allows us to confine our attention
to the expression for the diffusion operator D' and the
stress tensor J, in the absence of any external flow,

which are considerably simpler than the corresponding
expressions in the presence of an externally imposed
flow field, Moreover, we feel that any ambiguities that
may have existed with respect to the correlation function
method have been resolved in recent discussions, 51!
However, the two formalisms are equivalent as long as
one neglects non-Newtonian effects, which we do
throughout this paper, and as long as one remains in

the full configuration space of the polymer, including
both hard and soft coordinates. Any differences between
our results and those of earlier treatments must there-
fore be ascribed to a different treatment of the rigid
constraints.

In the following survey we concentrate our attention
on the way other workers treat the rigid constraints,
In addition we will compare their results to the ones we
presented in the preceding two sections, especially the
effective diffusion operator that enters into the eigen-
value equation for the g, Eq. (2.16); the expression
for the limiting high frequency viscosity, Eq. (3.12);
and the expression for the “effective stress tensor” J,
for which various forms were found in the last half of
Sec. III. B.

A. Comparison with the work of Fixman and Kovac

Fixman and Kovac (FK)' eliminate the “hard” forces
from their formalism in an early stage of their calcula-
tions by postulating that their effect ig the exact cancel-
lation of any force component that would lead to a change
in any of the constrained quantities when substituted in
an expression of the type

0
5R=D-F . (4.1)

In this equation D is the diffusion matrix, Eq. (1,3), and
F is the sum of a soft force and an entropic contribution;

F=-VyU®+F,, , (4.2)
with F,,, given by Eq. (3.25).

FK show that the effect of the cancellation of terms in
F that would lead to change in any constrained quantity
is to replace D(~ B in the notation of FK) by a matrix &
[Eq. (FK 4.22), see also FK Sec. III]. When we choose
as hard coordinates  Ir, - r,,, |2 for a constrained bond
length and (r,, -r,). (r,-r,,) for a constrained bond
angle, then this matrix may be expressed as

P UD - GD . Dea [OD‘(}I)]Ab Oeb . UD , (4. 3)
with
OD(Jx)cd =Dec -’p. Oea . (4.4)

The quantity (4. 3) is the extension of our matrix D ,,
Eq. (2.13), to the full configuration space (cf. the re-
mark at the end of Sec. II), written in Cartesian coordi-
nates. Actually the quantities used by FK are not exact-
1y equal to ours, since FK first eliminated the center of
mass coordinates. This difference, on which we will
comment later in this subsection, is inessential for the
argument just given and for the comparisons to follow.

Once the identification (4. 3) has been made it is easy
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to see that the eigenvalue equation {FK 4. 27) becomes
identical to our Eq. (2.18) after elimination of the factor
¥,. This in turn implies that the expression (FK 6, 23)
for the frequency dependent intrinsic viscosity, in the
case where the hydrodynamic interaction is preaveraged
or neglected, becomes identical to our Eq. (3.33), after
the requisite rescaling of units (Ref. 1b, Table I). The
expression for [7..] derived from Eq. (FK 5.10) is iden-
tical to our Eq. (3.12). Finally, the expression (FK

4, 30) for the stress tensor with substitution of Eq. (FK
4. 34) reduces to our Eq. (3.18), with J,, given by Eq.
(3.24), when all terms associated with externally im-
posed velocity fields in Eq. {FK 4.34) are omitted. In
order to arrive at their resuit FK have to include an
entropic force contribution in their starting expression
for the stress tensor; this term has been the subject of
some controversy, and our approach allows us to side-
step the issue. In Ref. 5 we showed that inclusion or
omission of the entropic force term is immaterial as
long as one stays in the complete configuration space of
hard and soft coordinates; this was shown by means of
an integration by parts. This proof no longer applies,
however, when the FK projection operator M, (FK 3.25)
or (FK 3.26), is inserted. The inclusion of an entropic
force term is necessary in the FK formalism,

A minor difference between our theory and that of FK
concerns the treatment of the center-of-mass coordi-
nates, which FK eliminate at the beginning. As long as
the potential energy does not depend on the position of
the center-of-mass, any derivative with respect to the
center-of-mass coordinates commutes with ®' and we
may choose all eigenfunctions of D to be plane waves
with respect to the center-of-mass coordinates. More-
over, since J,, does not depend on the center-of-mass
position, only eigenfunctions with wavevector zero con-
tribute to the intrinsic viscosity., Therefore it would
have been possible in our treatment to eliminate the
center-of-mass coordinates for the outset, and to re-
duce the dimension of our configuration space accord-
ingly.

The results obtained by FK are confirmed by our anal-
ysis. Our procedure, which employs an explicit model
for the constraining forces is straightforward and pro-
ceeds without great cost in terms of the simplicity of the
derivations. Finally, our treatment makes it possible,
at least in principle, to determine corrections for the
case in which the constraints are not completely rigid.

B. Comparison with work of the University of Tokyo
group

The two papers discussed in this subsection, one by
Doi, Nakajima, and Wada (DNW)? and one by Doi and
Okano (DO), ! provide an approach which is in many as-
pects very close to ours. In Ref, 10 and in Appendix II
of Ref, 2 the intrinsic viscosity is determined by the
correlation function method and the constraints are ef-
fectuated by a harmonic potential, whose strength ap-
proaches infinity in the rigid limit, In some respects
their treatment is less complete than ours; they consis-
tently neglect hydrodynamic interactions and they do not
derive any explicit expression for the diffusion operator

D', except for the case of a dumbbell. On the other
hand, Ref. 2 contains a very clear and extensive discus-
sion of the limiting high frequency viscosity, which goes
beyond the scope of the present paper.

The expression (DNW 13) for the high frequency vis-
cosity is identical in content to our Eq. (3.12), when
we substitute the expression for D in the absence of hy-
drodynamic interaction,

D;;=(B0) e, - e;=(0)} Cy; (4.5)

With this identification our D, becomes identical with
the A;; of Eq. (DNW 9). The I, of (DNW 11) is equal to
our I,.

The expression (DNW II, 6) for the part of the stress
tensor that contributes to the frequency dependent part
of the intrinsic viscosity differs from our J,; the ex-
pression (DNW I1.9) is exactly equal to the first two
terms in Eq. (3.19), as is easily seen by evaluation of
the Gaussian average (f,f,); in Eq. (DNW I1.6). The
third term in Eq. (3.19) is caused by the dependence of
the Jacobian on the hard coordinates. Its absence in
Ref. 2 is probably due to an oversight; Eq, (DNW IL.6)
is not used any further in Ref. 2, and the corresponding
expressions in Ref. 10, e.g., Egs. (DO 52) and (DO 68),
do contain such contributions from the Jacobian.

The absence of the fourth term in Eq. (3.19) from Eq.
(DNW I1.6), and also from Eq. (DO 68), is, however,
due to a basic flaw of the method employed by DNW and
DO. These authors argue that the oscillations in hard
and soft coordinates take place on such different time
scales that any quantity used to describe low-frequency
behavior can be preaveraged over the hard coordinates,
This description has been criticized!? as “overly coarse
grained,” While the preaveraging can be justified in
simple cases [in fact Eq. (DO 52) yields the correct vis-
cosity for a solution of dumbbells], it leads to errors
when the hard and soft coordinates are coupled to one
another by means of the hydrodynamic interaction, or
by means of the metric tensor e, . e; that occurs in the
formula for D;; in the absence of hydrodynamic interac-
tions, Eq. (4.5). Inspection of the fourth term in Eq.
(3.19) shows that the existence of nonvanishing elements
in D;; between hard and soft coordinates is indeed needed
to obtain a contribution from this term,

The coupling between hard and soft coordinates will
cause a forced low-frequency vibration of some hard co-
ordinates whenever certain soft coordinates are excited.
While the amplitude of these forced oscillations is indeed
very small (of order x™'/2) the presence of a factor « in
front of the (@, -°Q,) in the basic expression for J’,

Eq. (3.3), cuases them to contribute a term of order
unity to the matrix element of J,, that occurs in the ex-
pression for the frequency dependent part of the intrinsic
viscosity.

The fact that hydrodynamic interactions couple hard
and soft coordinates was already recognized by Erpen-
beck and Kirkwood*; the fact that such couplings also oc-
cur through the metric tensor was long ignored, and
stressed only rather recently in a paper by Fixman. 13
Once alert to the possibility one easily sees that such
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couplings occur in the bond vector description of any
chain of more than two particles, which was used, e.g.,
by DO in Ref. 10 and by Hassager in some of the work
discussed in the next subsection.

C. Comparison with Hassager’s formalism

In Ref, 3 Hassager (H) discusses the intrinsic viscos-
ity of various models for polymer solutions, using a
formalism that treats the constrained coordinates as ab-
solutely fixed quantities, and considers only processes
in the 3N-£ dimensional configuration space with soft
coordinates only., For a comparison of the basic diffu-
sion equations, Eq. (H 7) and our Eq. (2.16), it is use-
ful to remark that our matrix D, Eq. (2.13), may be ob-
tained by first restricting the inverse matrix D™ to the
space of the soft coordinates and inverting the resulting
(3N-h) X (3N-£) matrix;

baB :[(D-l).(:)]aﬁ ’ (4-6)
as is easily proved by use of the formula
(D)*® Dy, = 0% - (D)™ D, (4.7)

Hassager neglects the hydrodynamic interaction, so his
(D)8 is B¢ times the restriction of the covariant metric
tensor e’ . 8/=C* to the soft subspace. The matrix
[c],; in Eq. (H 7) is therefore equal to our D4, apart
from a factor g¢{m, where m is the mass of a polymer
bead, which Hassager includes in his definition of C*/,
However, the operator in Eq. (H 7) does not reduce to
the adjoint of the one in our Eq. (2.16) when the external-
flow terms are omitted, since Eq. (H 7) contains the
“restricted” Jacobian |det C**{}/2  while our Eq. (2.16)
contains the full Jacobian |det C*/|'/2,

The same difference occurs in the expressions for the
equilibrium probability distributions. Hassager’s equi-
librium distributions, e.g., Eq. (H 31) for a flexible
chain of three beads, differ from our P&’ Eq. (3.14),
by a factor [(det C**)/(det C*)]'/2, For a flexible chain
of two beads this factor is proportional to (1 - 3cos?y)V/?,
with x the angle between the two bonds. Expressions for
longer flexible chains have been derived by Fixman, !

The two equilibrium ensembles have a simple physical
interpretation. Hassager’s equilibrium distribution,
which was proposed earlier by Kramers, !* corresponds
to a probability density concentrated on the sharp hyper-
surface Q ='Q with surface density exp[- gU“’]. Our
equilibrium distribution, Eq. (1.14) corresponds to a
probability density proportional to Idet G |1/2 (gx)*/2
x exp[ — BU’] within a shell of equivalent thickness
[Bx )] /? in the direction Q{;,, where p, and @, are
defined in Eq. (2.6) and (2.7), respectively. From Egq.
(2.6) we see that )

h
1:1[ (B g, 1712 = (Br)™/2 Idet(ocdb onc)‘-l/a
=(8k)™/2 |det°D| /2| det°G| /2 | (4.8)

In order to convert this into a thickness in terms of R
rather than @, we must multiply Eq. (4.8) with the
Jacobian of the corresponding transformation, which is
the product of that from Q;, to Q,, with Jacobian

ldet DI'/2 as a consequence of Eq. (2.6), and that from

4511

q; to R with Jacobian J= [C*/|*/2, We conclude that the
total amount of probability density in an area with soft
coordinates between ¢, and g, +dq, is proportional to

]det °G | 1/2 (BK)"/zexp[— BDU(‘”]

. (BK)'II/Z ldet ODI'I/ZIdetOG | -1/2
3N
x |det®n|*2 |cti[ve ] dq, . (4.9)
az=h+1
If we want to express this in terms of a surface proba-
bility density ¢(q,) we must divide this by the surface
volume element |C**|'/2113¥, | dg ; thus we obtain for

ala,)
ola,) = | CH|/2| c8[™'® expl - poU]

= oolq,) exp[- U] . (4.10)

An alternative form for oy(q,) can be obtained by consid-
ering the covariant matrix F,, defined as

F, =C

ia Fia=cia . (4.11)

LS
Since F;; can be obtained from C;; by subtracting some
linear combinations of the “soft” rows from each of the
“hard” rows we see that det F,, =det C;,; =(det '), On
the other hand det F,, = (det C ;) (det C,,). Therefore we
see that

op(a,) = |det C,p | 272 . 4.12)

In particular for the case of a single hard variable the
factor (4,12) becomes |Vp@|™/2, In this form the ex-
pression is familiar from the theory of the microcanoni-
cal ensemble in statistical mechanics, * where the sur-
face probability density on the energy surface iC=E, is
put equal to lgrad€|-'/2 in order to account for the vari-
able thickness of the shell enclosed between the surface
K=Eg and JC=E,+AE,

In some earlier discussions*®!¢ it is shown that the
two ensembles can be obtained from two different ex-
pressions for the joint equilibrium distribution function
for coordinates and momenta of the polymer beads. The
two expressions differ in the treatment of the momenta
conjugate to the hard variables. Putting them identical-
ly equal to zero, while allowing the soft momenta to as~
sume a Maxwell distribution, results in Kramers’ en-
semble, used in Ref. 3, while allowing all coordinates
to assume a Maxwell distribution results in an ensemble
equal to the one we used, after integration over all mo-
menta, Since the momenta do not play any further role
in a theory based on a Smoluchowski equation, we
slightly prefer the explanation given earlier.

In his calculation of the intrinsic viscosity Hassager
uses the Giesekus!” expression for the stress tensor,
which reduces to the one we discussed in Sec, III. C in
the absence of an imposed flow field. As we saw there,
the expression obtained by that formalism for [7(w)] does
not contain any terms that depend explicitly on the cou-
pling between hard and soft coordinates, and the only dif-
ferences between Hassager’s results and ours are due
to the difference in the Jacobian, The close agreement
between the results obtained for a flexible chain of three
beads by Hassager and by FK suggest that these differ-
ences, while theoretically interesting, are numerically
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insignificant, 1%
D. Comparison with the work of Erpenbeck and
Kirkwood

Kirkwood and his collaborators have presented a num-
ber of versions of the theory of the intrinsic viscosity of
polymer solutions for a model polymer with constraints.
All theories provide a description in the space spanned
by the soft covariant basis vectors e = 8R/8q,; this
space is called “chain space” in Kirkwood’s formulation.
Inthe earlier papers®® all couplings between hard and soft
coordinates were neglected, but the errors thus intro-
duced were corrected, first only in part in the paper by
Erpenbeck and Kirkwood (EK), ** and later almost com-
pletely in an erratum to that paper (EKC).*® A remain-
ing inaccuracy is the assertion in Ref. 4a, after Eq.

(EK 2), that the metric tensor consists of two blocks,
one for “chain space” and one for the complementary
space. As pointed out by Fixman, '* this assumption is
in general not correct. In this subsection we will com-
pare the results of the corrected version of the EK the-
ory with those obtained in this paper,

From the definition (EKC 1), which is identical in con-
tent with our Eq. (4.6) it follows that their D4, isequalto
15‘,5- tothe diffusion operator onthe lhs of Eq. (EKC 2) isthe
adjoint of the one appearing in Eq. (2.16), In particular
the quantity g*/2 is the full Jacobian, rather thanthe re-
stricted Jacobian that appears in Hassager’s equation
and in earlier versions of Kirkwood’s theory. The quan-
tity G in (EKC 5) corresponds to Mnyd{n(w)]/N, in our
formulation, while the average (.-.), in Eq. (EKC 5) is
exactly our {({--.)). The terms H® and H'" give the
high frequency limiting viscosity, and H @) gives the fre-
quency dependent part, EK introduce the eigenvalues
B¢o; and eigenvectors ¢; of the diffusion matrix D,

D-¢,=8Lo;¢; .

When the dyadic 3, ¢, 07" ¢, is recognized as (8¢) D7,
and when the x and y axes in the EK description are in-
terchanged (EK consider J,, instead of J,,) then the con-
tribution of the first two terms in (EKC 5) to the viscos-
ity becomes, in the notation of our paper,

(4.13)

[n.] =II‘7/IA_§ (C1.[°p™ =Dt . %5, %P . °D"1] . °I).

o (4.14)
A comparison with the forms (4. 3) and (4.6) for D,
shows that the matrix in brackets in (4.14) is the Car-
tesian representation of the extension of the matrix
[D3,I to the full configuration space, made by putting
zeros for any element with at least one soft index. Con-
sequently Eq. (4.14) is identical with our result (3.12).
The matrix element in the term H#® in Eq. (EKC 5),
which contributes to the frequency dependent part of
[n(w)], may be written in our notation as

4 9 o7 -
<< w7t - °J Dy, %€ - D 1.1>> .
qs

[Notice that the eigenfunctions #(q), Eq. (EX 17), cor-
respond to our [ PE’]1/2 g0 see also the equation follow-
ing Eq. (EK 19)]. Via a formal extension of D to the full
space and use of Eqs. (2.13) and (3.23) we obtain

(4.15)

Dy, CD™M)Y 1, ={6} - "Dy, [°D3, P 8%} 1, =T, . (4.16)
Therefore Eq. (4.15) has the form of Eq. (3.18) with J,
given by

g, =0t 07 (4.17)

g
By a partial integration, similar to the one that leads
from Eq. (3.21) to Eq. (3.27), we may rewrite this as

jx'y =faant ) (4.18)
with the entropic force F2, given by Eq. (3.25). Equa-

ent
tion (4.18) is exactly equal to Eq. (3.27) for the case in
which U*’ vanishes; the result (EKC 5) is only valid for
the case of vanishing U’, since this assumption is made

in deriving Eq. (EK 28).

The analysis in this subsection shows that the results
of the corrected version of the Erpenbeck~Kirkwood
theory agree with those of our theory and that of Fixman
and Kovac, This is true in gpite of the unwarranted as-
sumption in EK about the form of the metric tensor.
Actually, when the corrections from EKC are made, all
references to the metric tensor disappear from the re-
sults of EK.

V. CONCLUDING REMARKS

In this paper we presented a theory of the intrinsic
viscosity of dilute solutions of stiff polymers.

Constrained quantities, suchasbond lengths and possi-
bly bond angles, are treated as classical dynamical vari-
ables, subject to a strong, harmonic, but otherwise
arbitrary potential, The advantage of this approach is
that it allows us to start from well-established basic
equations, formulated in the Cartesian coordinate sys-
tem. The asymptotic forms for the case in which the
constraints become rigid are then established by means
of a straightforward expansion procedure.

Our expressions for the intrinsic viscosity are obtained
by the correlation function method; this permits a simple
analysis in terms of the diffusive motion of a polymer in
the absence of any imposed velocity field. Of course the
correlation function method also restricts us to the lin-
ear response regime. However, our treatment of con-
straints can surely be extended to the nonlinear regime.

In Sec. IV we showed that our results are in complete
agreement with those obtained by Fixman and Kovac! and
by Erpenbeck and Kirkwood.! Discrepancies are found
with the results of Doi et al,*'° and Hassager.® In the
case of Doi et al. the discrepancy can be attributed to a
premature averaging over the constrained coordinates;
in Hassager’s case it is related to a different choice of
the equilibrium ensemble and the use of a different Ja-
cobian in the divergence operation. ¥ The difference in
ensembles is discussed in Sec, IV, C and Ref. 13. The
most striking difference is the presence in Hassager’s
ensemble, which was originally proposed by Kramers, **
of correlations in the orientation of different bond vec-
tors, even in the absence of any potential depending on
those relative orientations; we will call such correlations
“Kramers correlations” in the remainder of this section,
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In Sec. X of Ref. 3 Hassager reports a further dis-
crepancy between the two ensembles, the result obtained
with his model for the first non-Newtonian correction to
the static viscosity of a three-bead flexible chain differs
from the expression obtained by Bird, Johnson, and
Curtiss?® with a model of the kind discussed in this pa-
per.

In Ref. 3 it is suggested that Kramers’ ensemble is
the appropriate one when the hard variables are treated
quantum-mechanically rather than classieally. Although
the resolution of this question must await a quantum
treatment of the entire polymer~solvent system, we will
briefly state our reasons for doubting this conjecture.

One might try to include some quantum effects by re-
placing the classical probability distribution for the nor-
mal coordinates Q;, of Eq. (2.7) by the probability dis-
tribution derived from the quantum vibrational partition
function, The latter is a Gaussian with width 37w
x coth(3 f#w) rather than g™, with w the frequency of the
oscillator.® After integration over the hard coordinates
this probability distribution leads to our P‘,‘z’, Eq. (3.14),
rather than to Kramers’ ensemble.

Another indication is obtained by considering the
Schrédinger equation for a model polymer molecule in
vacuum, This sytem is simply a vibrating (and rotating)
molecule, described by a Hamilton operator whose
structure is similar to ®' in the free draining limit, %

APPENDIX A
The operator D!’ is given by

9 9 -]
(=1) _ __ 0ad 0 0 071 070 ——
D BK G (Qb Qb) Dua aqa +°d” Bqa J Daa 3Qa

— B °G™+(Q, - °Q,) (Q, = °@,) Dyy — - Bk °G**(Q,—
90y

g
0(1ya(g 0 070 g
Y@@ 7 Dy e

Ol:aU(s)]OD [} OD 82

Q) "D32 (@4 - °Qy)

4513

This system is discussed in a rather qualitative wasby GO
and Scheraga.'® We wish to point out that a much more
explicit procedure to pass to the rigid limit in the
Schrédinger equation for such a molecule, very similar
to the one we employed in Sec, II, is given by Fliigge
and Weiguny.?® When their procedure is adapted to a
freely jointed chain molecule, an effective Schrddinger
operator results for the soft coordinates only, that is of
the form (2.16) without soft potential. In particular the
divergence operation contains the full Jacobian, and the
ground state does not show any Kramers correlations,
When the soft degrees of freedom are treated classically
one obtains an equilibrium distribution of the type de-
scribed in the preceding paragraph, and not Kramers’
ensemble, as claimed in Ref, 16,

For the reasons outlined above we prefer the freely
jointed chain model, used in this paper and, e.g., in
Refs. 1, 2, and 4, to Kramers’ model, While the latter
is internally consistent, '* it is unlikely to be obtainable
from any model in which the constraints are described
by means of a realistic potential.
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i [ 0] U(S) 8D —
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aQC+J’ (JD,,)

(A1)

When " operates on g, only the first term contributes and it is then easy to verify by substitution that Eq. (2,11)
is a solution of Eq. (2.10b), when the latter is used to determine g’,

In order to evaluate Eq. (2.12) we need only those parts of D’ that do not vanish when operating on g“”, i.e., those

terminating in a 3/8q,. This part of D, denoted by D, is given by
p® =051 8 o0p i_ﬁa“U“” o 9 —gU*)eop _a____ﬁKOGab,c( -99.)(0,-0.)°D -
(4 Bqa af an aqa 3] 3([5 aa 8% Qb Qb Qc Qc ao aQa
9 - 9
- Bx °G™ (@~ °Qy) *Di(Qo = "Q0) 5 —+ VT M D)t = . (A2)
9q, 8q,

When Eq. (Al) is applied to g, all terms except the last one contribute to the result, The second and third terms

in :D('l)g(l)

combine with the first two terms in 9’ ¢’ to give the expression containing D, in Eq. (2.12). The

terms containing hard derivatives of the quantities U*®’, G* | and J cancel exactly, and the remaining terms combine
into the expression containing [, - °Q,) (@, - °@,) - (8x)™(G™),,], When use is made of the relation (G™),, G* =&,
where &7 is the unit tensor in the hard indices: 3¢A4%=A°% 6A_.=A,. The choice for g@’ that leads to cancellation of

the E% term in Eq. (2.12) is

g%=3°D3,F* 6™ EZ[Qs - °Q,) (Qs = °Q4) = (8K) (G ™), % a

(A3)

when we apply %’ to Eq. (A3) we obtain exactly minus the E? term of Eq. (2.12).
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APPENDIX B

When one evaluates Eq. (3.17), substitution of Eq.
(2.11) for g’ in the second term on the rhs leads im-
mediately to the fourth term on the rhs of Eq. (3.19.

To evaluate the first term in Eq. (3.17) we must expand
the weight factor P, (q)J(q) in Eq. (1.7):

P (@J(@ =PY L+ pix- ) (B1)
with [cf. Eq. (1.14)]
P2 = 91| det°G|/2 k"2
xexp[- U - 58k °G*(Q, - °Q,) (9, -°@,)] ,
o’ ={% 0%+ 1 %det G| ™! O(det G)® = g )]s 52
- 28¢°G7(Q, - °@,) (Q. - °Q)} (@, - °Q,) . (B3)

After substitution of Eq. (3.6) for J5!’ one sees that only
the term with p&’ in Eq. (B1) contrubutes to the matrix
element (J5' (g%, after evaluation of the Gaussian in-

tegrals we collect the following contributions to f,ﬂ,:
-7 0Lt — 387, [ det °G | Hdet G)t + I [U )

+B-1 oIa OGab,c(OG'l)bc +%B -1 la OGbc,a(OG-l)bc ] (B4)
Since the coefficient of G* in det G is exactly IdetG IG5L,
the second and the last term cancel one another., Next
we evaluate (J2’ g3} by substitution of Eq. (3.16) for
J. In this case we may replace P, J by P2’ %, and
the Gaussian integral gives the following contributions
to Jy:

0 )
_ OIi [aU :l_ gt OI.';a -g! oIa OGab,c(OG-l)bc . (B5)

9q;
Adding the contributions (B4) and (B5) gives
Orris)
- gyt 0 pa "Dla 8 U -piope . (B6)
9q ,

These are exactly the first three terms on the rhs of
Eq. (3.19). This concludes our derivation of the ex-
expression (3.19) for J,,.
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