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If polymer chains are ruptured to a constant hydrody- 
namic volume, it is reasonable to assume that they are bro- 
ken to a shorter average chain length in a good solvent. 

They may be highly extended12 when they receive a 
shear stress strong enough to break polymer bonds. Ac- 
cording to Harrington and Zimm,12 polymers are considera- 
bly extended under a large velocity gradient and under 
such conditions the Gaussian coil model is no longer possi- 
ble. On the other hand, the rate constant of scission is con- 
sidered to be highest near the center of polymer mole- 
c u l e ~ ~ ~ - ~ ~  under the conditions described in this report, and 
it is assumed that the shearing forces become smaller away 
from the center. Such a heterogeneous distribution of 
shearing forces along polymer chains might affect the 
shape of the coils. The authors suppose that polymer mole- 
cules are deformed to something like the shape of the infin- 
ity symbol, “ m ” ,  under such shearing forces. Therefore the 
models shown in Figure 2 ought to be corrected to flat el- 
lipses or stretched shapes under a high velocity gradient. In 
any event, the authors suspect from the results that, even 
under a large velocity gradient, the hydrodynamic volume 
has a certain relation to the scission of a polymer chain in 
solution by high-speed stirring. 
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ABSTRACT: We evaluate the diffusion coefficient for the motion of a polymer along the interface between two 
fluids. Two polymer models are considered: rigid rods oriented a t  right angles to the interface, and spherical mole- 
cules with their center in the interface. 

I. Introduction 
The influence of bounding surfaces on the motion of a 

solid body immersed in a fluid was first investigated by Lo- 
rentz2a in 1896. He studied the motion of a sphere near a 
plane wall using a perturbation method, the so-called 
method of reflections. Subsequently the effect of wall ge- 
ometry on the motion of more complicated objects has been 
studied in great detail by the same method.2b 

In the present article we consider the effect of geometry 
on the motion of polymers, regarded as diffuse objects 
rather than as solid bodies. In particular we study the 
translational diffusion of a polymer adsorbed a t  the inter- 
face between two immiscible fluids. Our primary motiva- 
tion for studying this problem is the present interest in in- 
terfacial phenomena, particularly with regard to the ad- 
sorption and mobility of polymeric species a t  fluid surfaces. 
The dynamical behavior of macromolecules along inter- 
faces and near walls is of biological interest and potentially 
may be studied by light scattering and fluorescence spec- 
troscopy. In addition this problem is of theoretical interest 
because of the present day concern with two-dimensional 
transport phenomena and the difficulties encountered in 
the kinetic theory for the transport coefficients. We consid- 
er two polymer models, namely, rigid rods oriented perpen- 
dicularly to the interface, and diffuse spheres. In a fol- 

lowing article we shall investigate the effect of solid walls 
on the translational diffusion of rigid rod molecules. 

We use an approximate expression for the diffusion ten- 
sor in terms of the hydrodynamic interaction tensor and 
the polymer segment distribution, which is a generalization 
of an expression derived by Kirkwood3 for diffusion in bulk 
fluids. The derivation for limited geometry and a discus- 
sion of the approximations involved is given in a separate 
article. 

In section I1 we consider a planar interface between two 
immiscible fluids and derive the corresponding fundamen- 
tal solution of the linear Navier-Stokes equations for 
steady flow. We assume that the surface tension of the in- 
terface is so large that it remains planar. In section I11 we 
evaluate the translational diffusion coefficient for a rigid 
rod molecule oriented perpendicularly to the interface. In 
section IV we consider a spherical polymer and calculate its 
diffusion coefficient for motion along the interface. Finally, 
in section V we show that our assumption of large surface 
tension is an adequate approximation for the situa.cions of 
interest. 

11. Hydrodynamic Interaction Tensor 
We consider a polymer immersed in a fluid described by 

the creeping motion equations, Le., the Navier-Stokes 



Vol. 8, No. 5,  September-October 1975 

equation for steady flow with the condition of incompressi- 
bility and with neglect of inertial terms.2 The equations 
read 

qoV2V - V P  = F(r) 
VOV = 0 (11.1) 

where 00 is the (local) pure solvent viscosity, V(r) is the 
flow velocity, P(r) is the pressure, and F(r) is the force 
density exerted on the fluid by the polymer. In the Debye- 
Bueche picture4 the force density is given by 

(11.2) 

where ((r) is the local friction coefficient, p(r) is the poly- 
mer segment density, and u(r) is the rigid body motion of 
the polymer as a whole. Two of us (B.U.F. and J.M.D.) 
have shown5 that eq 11.1 and 11.2 can be obtained from the 
microscopic flow equations and the equations describing 
the hydrodynamic interactions between polymer segments 
by applying a mean field approximation. 

We define the local inverse permeability X(r) of the poly- 
mer and the corresponding total inverse permeability h by 

F(r) = S ( r ) d r ) [ u ( r )  - V(r ) ]  

Kirkwood’s approximate expression3s6 for the translational 
diffusion tensor, in a continuum version and as generalized 
to  arbitrary geometry, is given by 

D = k,TA-’[I + h“J”j’X(r)T(r, r’)X(r’)drdr’] (11.4) 

where kBT is Boltzmann’s constant times absolute temper- 
ature, I is the unit tensor, and T(r,r’) is the hydrodynamic 
interaction tensor for the geometry under consideration. T 
is found from the fundamental solution of eq 11.1 as the ve- 
locity response to a point force density F(r) = GS(r - r’), 

V(r)  = T(r,  r’) G (11. 5) 

The corresponding pressure response is given by 

P ( r )  = Q(r, r’) G (11.6) 

In a bulk fluid the Oseen tensor T(R) and vector Q(R) de- 
pend only on the coordinate difference R = r - r’ and are 
given by 

(11.7) 

Our present task is to  derive corresponding expressions for 
the situation of two immiscible fluids separated by a plane 
interface. 

The boundary conditions a t  the interface are that the ve- 
locity V(r) and the normal-tangential components of the 
stress tensor must be continuous. The normal-normal com- 
ponent of the stress tensor can have a discontinuity which 
is balanced by the surface tension and the curvature of the 
interface. We shall modify these conditions by assuming 
that  the surface tension is so large that  the interface re- 
mains nearly planar. In the extreme limit of infinite surface 
tension one has the additional boundary condition that the 
normal component of V must vanish a t  the interface. The 
normal-normal component of the stress tensor can have a 
discontinuity from which one can calculate the force exert- 
ed on the interface. I t  will be shown in section V that the 
approximation of large surface tension is adequate for the 
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situations of interest. Corrections can in principle be calcu- 
lated. Physically these corrections correspond to distortion 
of the interface that is induced by the motion of the impu- 
rity particle. 

We choose a coordinate system with the interface as the 
xy plane and denote the region z > 0 as region 1 and z < 0 
as region 2. The velocity boundary conditions a t  z = 0 then 
become 

The stress tensor is given by 

and using (11.8) one finds that  the continuity of axz and ayz 
a t  z = 0 requires 

I t  is evident that we have adopted a picture of the inter- 
face as a mathematical surface where discontinuous change 
occurs in certain properties, e.g., the shear viscosity. In fact 
the interfacial region will be diffuse and a continuous 
change can be expected in the properties as one passes 
from one bulk phase to the other. When the impurity 
object’s size is large compared with the thickness of the in- 
terfacial region we can expect that our analysis will provide 
an adequate approximate description. 

To solve eq 11.1 for a point force density and subject to 
the boundary conditions 11.8 and 11.10 is tedious. Fourier 
transform methods may be tried7 but lead to a solution of 
complicated form which is not easily applied. In fact it is 
easier to write down a solution by inspection using image 
methods. Let the force G act a t  a point r’ = (x’,y’,z’) in re- 
gion 1. We denote the image point of r’ with respect to the 
xy plane by r’* = (x ’ ,y ’ , - t ’ ) .  We split the force G into a 
component parallel to the interface, Gp = (G,,G,,O), and 
one perpendicular to the interface G r  = (O,O,G,). Define 

(11.11) 

Then one may check that a solution is given by the fol- 
lowing expressions 

77, = ‘ / 2 (77 ,  + ’ 7 2 ) ’  ‘7- = ‘71 - 7 7 2  

Pi = -qi(Gp* V)V2@, - 71i(GT V ) V 2 i i  (11.12b) 

Where the subscript i = 1, 2 denotes that  r is in region 1 or 
2, k is a unit vector in the direction of the positive z axis, 
and the functions $,, $L, and x, are 

(11.13) 
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and 
1 Z Z ’  / r  - r j /  - - 1 

8nq+ O ?  = - 
8nrl* 

We note that the interface has an effect even when 71 = 72. 
The solution is most easily visualized by considering sepa- 
rately the cases where Gp = 0 and GT = 0. An important 
result of this work is the new general expression obtained 
for the hydrodynamic interaction that relates the velocity 
field V, induced in a two-phase fluid system by a point 
force disturbance G .  The consequences of the modification 
to the hydrodynamic interaction caused by the interface 
are examined here for translational diffusion. However, it 
is clear that knowledge of the modified hydrodynamic in- 
teraction permits the examination of many other dynami- 
cal interfacial phenomena on a hydrodynamic basis. 

One can obtain the fundamental solution for a half-space 
t > 0 with a hard wall a t  z = 0 with stick or slip boundary 
conditions by taking the limits 72 - or 72 - 0, respec- 
tively. 

111. Translational Diffusion Constant for Rod-like 
Molecules 

We now apply the expression 11.4 to calculate the diffu- 
sion tensor for a rod-like molecule adsorbed a t  the inter- 
face. We assume that the rod remains perpendicular to the 
interface, that it is held a t  a particular depth and that it is 
constrained to lateral motion along the surface. Clearly one 
can imagine many mechanisms that would lead to viola- 
tions of these conditions. Some of these mechanisms can be 
examined within the framework presented here, but a t  the 
expense of much more complex analysis. 

For reasons of symmetry D,, = D,,, and we calculate 
D,,. We need consider only the terms with G p  in (11.12). 
The explicit expressions for the x x  component of the inter- 
action tensor Tx,’J( r,r’), where the superscripts (ij) indi- 
cate that  r is in region i and r’ in region j ,  are given by 

with r/* = (x/* ,y ’* ,z ’*)  = (x’,y’,-2’). The expressions for 
TXxl2 and T,x22 follow from (III.la,b) by interchanging 71 
and 72. 

When evaluating the integral in (11.4) along an infinitesi- 
mally thin one-dimensional molecule one encounters a 
short-distance divergence, though no divergence occurs in 
three dimensions. In order to compare with Kirkwood’s re- 
sult2b for the bulk, we shall evaluate the one-dimensional 

integral introducing a cutoff b a t  short distances. Let n,, b,, 
and (, be respectively the number of beads, the bond 
length and the bead translational friction coefficient in re- 
gion i. Thus we allow a different but uniform chemical 
composition in the two regions. The length of the molecule 
in region i is L,  = n,b,, and L = L1 + Lp and n = nl + n2 
give the total length and the total number of monomer 
units. From (11.4) and (111.1) we find with A, = n,(, 

Keeping only the terms which survive for nl and n2 large 
we find 

The above results may be compared with the diffusion 
constant DxXo for the same molecule in a fluid of viscosity 
7+ without interface. One finds from eq 11.7 

In (2 )  + 2 i n (  2))]$ (111.5) 

Keeping only the terms which survive for nl and n2 large 
gives the result 

(In. 6) 
If we set nl = n2, bl = bp, (1 = (2, 71 = 7 2  both (111.2) and 
(111.5) reduce to 

‘1 D,, = y[l + - (In ti - 
47VoL 

Using the Einstein relation D,, = kBT/f,jXx and again keep- 
ing only the logarithmic term in (111.7) we can therefore 
write (111.4) as 

where f d , , x x  is the friction coefficient part i the rod would 
have in bulk fluid i. This clearly exhibits the influence of 
the interface. We recall that A, = n,(, is the free draining 
limit friction coefficient. 

It is easily shown that in the isotropic bulk fluid D,, = 
2Dx, and hence eq 111.7 reduces to Kirkwood’s resultzb for 
the diffusion constant D = ‘hTrD of a rigid rod. 

Finally, we take limits in eq 111.2 which convert the in- 
terface into a hard wall with either stick or slip boundary 
conditions. These special cases are realized by first taking 
the limit n2 --. 0, noting that A2 is proportional to n2, fol- 
lowed by the limit 72 --. m for stick or 72 - 0 for slip condi- 
tions. Thus we obtain expressions for the diffusion coeffi- 
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cient of a molecule moving parallel to a wall in perpendicu- 
lar position 

D,,(stick) = 

and 

D,,(slip) = 

Hence these diffusion constants are practically indepen- 
dent of the boundary conditions a t  the wall, and almost 
equal to the bulk expression given by (111.7). 

IV. Spherical Molecules 
We also evaluate the diffusion coefficient D,, from (11.4) 

for a spherical polymer situated so that the interface di- 
vides it into two hemispheres. We allow a different chemi- 
cal composition in each of the two hemispheres, but to per- 
form the hemispherical averages of the interaction tensor T 
analytically it is essential to assume that X i  = I ;p ,  is con- 
stant in each hemisphere. I t  would be desirable to use a 
Gaussian density distribution but the integrals must then 
be done numerically. 

In performing the hemispherical averages there are four 
basic integrals required. These are 

( N .  l a )  

( N .  lb) 

( N .  I C )  

-R5 I n 2  + 5 6 8  23] ( rV. ld)  
8n2 45  [ 2 2 5 ~  15 

where each variable runs over a hemisphere in either region 
1 or 2 and R is the radius of the particle. In the Appendix 
we indicate the general method used for evaluating these 
integrals. 

With the aid of these integrals we may easily evaluate 
(11.4) for a spherical polymer. Remembering that X i  = {ipi  
we define 

1 
2 

A+ = - (A1 + A2) 
(rV. 2) 

A- = A, - A, 

The result for the diffusion constant for diffusion along the 
interface then is 

where 1i = (47r/3)R3A+. In the limit A-, 7- - 0 we have 
k T  k T  D,, = f 
A 57i17+R 

(Iv.4) 

which is identical with the result as found from the Ein- 
stein relation and the friction constant in bulk fluid for a 
uniform sphere of low segment d e n ~ i t y . ~ , ~  As in the case of 
a rigid rod, eq 111.7, in this symmetric case the interface has 
no effect. Since (107/757r) - (2/5) = 9.054, the deviations 
from the value to be expected in a bulk solvent without in- 
terface are rather small. 

In summary then, our expressions 111.2 and IV.3 indicate 
the extent to which diffusion coefficients for motion along 
an interface differ from the corresponding diffusion coeffi- 
cients in a bulk solvent. Geometric considerations are im- 
portant and it is evident that  the largest effects are to be 
seen for linear molecules oriented a t  right angles to the in- 
terface. 

I t  should be noted that our expressions for the diffusion 
coefficients have physically reasonable limiting behavior 
when the viscosity of either phase goes to zero; in this limit 
{i is proportional to vi. 

The model of the interface used here can be applied to 
study other frictional properties of a two-phase system, but 
we will reserve such applications to a later date. In the next 
section we investigate our assumption of large surface ten- 
sion in greater detail. 

V. Forces on the Interface 
We return to the fundamental solution of the linear Na- 

vier-Stokes equationsfor a two-fluid system found in eq 11.12- 
14. I t  is easy to see that Auzz = uzzl - uzz* tc 0 a t  the inter- 
face, z = 8. A calculation gives 

3 ~ ’ ~  Go (r  - r’) 
ACT,, = -- 

27T -TF=Fp- (V. 1) 

where r = (x,y,O) is in the interface and the force G acts a t  
the point r’ = (x’,y’,z’) in region 1. The effect of AuZz is to 
tend to depress the interface in front of G and to lift it be- 
hind G .  Along a line in the interface perpendicular to G ,  
Auzr is zero. Although Au,z falls off rapidly with increasing 
R = I r - r’l, it will diverge a t  R = 0 if r’ approaches the in- 
terface. Integrating (V.1) over the interface one finds 

J” Ao,,dxdj’ = G ,  (V. 2)  

which shows that for infinite surface tension the interface 
has to support the transverse component of force G r .  

At large distances outside the interface the velocity field 
due to GT falls off as Iq - R-*, so that I - R-3 and I P 

d q  - R-1. Hence no part of GT is transmitted to infinity 
by the fluid. However, for the velocity field arising from G p  
one has Iq - R-I and J P d S  is finite as R - a. Integrat- 
ing over an infinite hemisphere in region 1 or 2 gives 

Sui* dS = -(17i/2~+)Gp (v.  3) 
Thus all of Gp is transmitted to infinity by the fluid, and 
each half-space contributes according to its viscosity. 

For an interface with finite surface tension the AuZz of eq 
V.l would indeed produce some curvature of the interface. 
However, since Auzz falls off rapidly with increasing I r - rj 
we expect the curvature to be negligible everywhere unless 
I r - r’l is small. To  get an idea of how a molecule might af- 
fect the interface consider a rigid-rod molecule oriented a t  
right angles to the interface and moving with center o f  
mass velocity u parallel to the interface. Let the molecule 
lie instantaneously along the z axis. Denote the bond 
length between beads in region i by b,. Each bead exerts a 
frictional force on the fluid. Neglecting hydrodynamic in- 
teractions one has G p  = {lu for beads in region 1. where {, 
is a friction coefficient. We can write as {I = 6 q I a l  in- 
troducing an effective spherical radius a l .  Using siuch R 
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force in (V.1), summing over all beads in region 1, and re- 
peating this for region 2 one finds the result 

2 -  

where s = 14 = d ( x Z  + Y ~ ) ” ~ .  Thus even for an extended 
distribution of beads there is a rapid fall-off of AoZz with 
increasing s and in addition there will be considerable can- 
cellation between the contributions from the segments of 
the molecule in regions 1 and 2. There is still a divergence 
at  s = 0, unless (vlal/bl) = (72az/bZ), but a t  such a close 
distance to the molecule we cannot expect our approxima- 
tions to be valid. 

At temperature T a molecule of total mass M has Brow- 
nian motion velocity u of order Uth = (~KBT/M)’ /~ .  The 
first term of (v.4) is of order ( 3 ~ l a l / b l S ) U t h  for s I L1, and 
of order ( 3 v l a l / b l s ) ( L l 3 / s 3 ) u t h  for s > L 1 .  If the two fluids 
are rather similar, then the cancellations due to the second 
term of (V.4) would give a resultant which might be only a 
few percent of the first term by itself. However, let us ig- 
nore cancellation and ask that this first term by itself 
should be compensated by a mean radius of curvature R ( s )  
of the interface at  distance s given by 

where a is the surface tension. In order to estimate the nu- 
merical value of R ( s )  we consider a polymer of mass M = 
nrn with m = 100 amu at  an air-water interface. With a 
value of CY suitable for the air-water interface and for 
water we find 

for s 5 L1. For a diffuse polymer we expect (bl/al) 2 1, so 
that for a large enough molecule we will get a negligible 
curvature a t  any fixed s value. The above estimate is crude 
but conservative and it shows that for molecular diffusion 
along the interface the approximation of large surface ten- 
sion and the consequent neglect of curvature of the inter- 
face is adequate. 
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Appendix 
Here we sketch briefly how to evaluate the integral 

IV.la. Variations of this method were used for (IV.1b-d). 
We do the integral for the case where r,r’ both range over 
the same hemisphere in region 1. We have 

2 k R s d y  J r r ‘ 2 d J K (  Y ,  Y’) (A. 1) 

where we have used the symmetry of 

For r‘ I r we have 

Letting r’ = pr, with 0 I I 1, we find 

Using 

we obtain 

so  that 

Apart from 1 = 0, only odd 1 terms are nonvanishing in 
(A.7) so that letting 1 = 2 p  + 1 and using rz(% - p ) P ( %  + 
p )  = T~ sec2 ~p the series can be summed to give 

( A .  8) 
with F the usual hypergeometric function. From the identi- 
ty 

( A .  10) 
which is (1V.la). 

References and Notes 
(1) (a) Queen Mary College; (b) Massachusetts Institute of Technology. 
(2) (a) H. A. Lorentz, Zittingsuersl. Akad. Wet., 5, 168 (1896); Abh. Theor. 

Phys., 1, 23 (1907); (b) see J. Happel and H. Brenner, “Low Reynolds 
Number Hydrodynamics”, Prentice-Hall, Englewod Cliffs, N.J. ,  1965. 

(3) J. G. Kirkwood, Recl. Trau. Chim. Pays-Bas, 68, 649 (1949); J .  Polym. 
Sci., 12, 1 (1954); Proc. Int. Conf. Theor. Phys., 388 (1954); J. Riseman 
and J. G. Kirkwood, “Rheology, Theory and Applications”, Vol. 1, F. R. 
Eirich, Ed., Academic Press, New York, N.Y., 1956, p 495. 

(4) P. Debye and A. M. Bueche, J .  Chem. Phys., 16,573 (1948). 
(5) B. U. Felderhof and J. M. Deutch, rotational friction coefficient (I). 
(6) See also H. Yamakawa, “Modern Theory of Polymer Solutions”, Harper 

and Row, New York, N.Y., 1971, p 273. 
(7) C. K. W. Tam, “On the Transport Properties of Fluid-Particle Flow”, 

Ph.D. Thesis, California Institute of Technology, Mechanical Engineer- 
ing, 1966. 

(8) B .  U. Felderhof, Physrca, to be published. 


