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The correlation function formalism for the intrinsic viscosity of polymers is studied. A controversy
concerning the correct force to use in the momentum flux is resolved. It is shown that when the
diffusion equation is used in the full configuration space of polymer segments the forces entering the
momentum flux are purely mechanical and there is no entropic contribution. A comparison is made
with Kirkwood’s theory of viscoelastic behavior. The correlation function expression we advocate is
shown to yield the correct high frequency limiting behavior for the case of elastic dumbbells.

. INTRODUCTION

In recent years several proposals!™® have been ad-
vanced for the appropriate time correlation function
formula for the frequency-dependent intrinsic viscosity
[n(w)] of a dilute polymer solution,

N a0
=i - 1
(M) =gzuhs [ expl-iwiC@dt, (L.1)
where N, is Avogadro’s number, M the polymer molecu-
lar weight, 7y the solvent viscosity, % Boltzmann’s con-
stant, and 7T the absolute temperature, Here C(¢) is the
equilibrium time correlation function of an appropriate

stress tensor J,,

C(t) = (J,y 0}, ()) . 1.2)

The time evolution is governed by the internal forces be-
tween polymer segments, derivable from a potential of
mean force, and by the Brownian motion of the segments
due to interactions with the surrounding fluid. On the
time scale of interest the Brownian motion is described
by an equation of the Smoluchowski type in the configura-
tion space of the polymer. In this context confusion has
arisen concerning the correct expression for the flux

dJ, For a single polymer consisting of » beads at posi-

xy*
tions R =(ry, r,,...,r,) the flux is given by

ny = IX; ij’j"

where @, is the force acting on bead j. Originally Stock-
mayer et al. ! postulated, without derivation, that the
force G= (G, G, ..., G,) contains two contributions:

one from the mechanical intramolecular interactions,
and the other a diffusion force of entropic nature corre-
sponding to the Brownian motion.

(1.3)

Later Bixon® adopted this expression within the frame-
work of the Smoluchowski equation but included an addi-
tional momentum contribution to the flux. Recently Doi
and Okano! claimed that the flux J,, is purely mechanical
and that the diffusion force must be omitted. They base
their argument on a study of the Liouville equation of
the polymer-solvent system. Assuming that one can
distinguish between gross variables which vary slowly,
and microscopic variables which vary on a fast time
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scale, they integrate over the latter using the Mori/
Zwanzig projection operator®? method. Doi and Okano*
also claim that the limiting high-frequency viscosity
cannot be obtained from the Brownian motion theory as
described by the diffusion equation.

In an effort to settle the issue Yamakawa, Tanaka,
and Stockmayer® have presented a more detailed analysis,
also based on the projection operator method applied to
the Liouville equation for the whole system. They show
that on the slow time scale the probability distribution
P(R, t) satisfies the Smoluchowski diffusion equation

apg?; t)z DPR, #), (1.4)
where the generalized diffusion operator D is
D=VE-D.[Vg+8Val], (1.5)

where 8=1/kT, the superscript Tindicates transpose, and
the diffusion tensor D is given by the 3%X 3% matrix with
elements

D;;=kT[£]'0;,0+ Tyl (1.6)

where ¢; is the segment friction constant and T, the
Oseen hydrodynamic interaction, Furthermore UR) is
the potential of mean force between the polymer seg-
ments, from which the 3x-dimensional force K

=(K,, ..., K)) is derived by
K=-ValU. a.m

Yamakawa ef al.’® conclude that the correct expression
for the flux is

J@E) =J,@) (1.8)
with
3,(8) = J 3,(0G®R|Ry, ) dR, 1.9)

where G(R IRy, ¢) is the Green’s function of the diffusion
equation Eq. (1.4), and with the reduced flux J,(f) given
by

3,()=R"K~ kTRTVRInGR|R,, ?) .

The first term in (1. 10) is the mechanical force contri-

(1.10)
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bution mentioned before and the second term involves

the diffusion force. Yamakawa ef al.% claim that the
limiting high-frequency viscosity follows naturally from
the first term in Eq. (1.10), specifically from the bond-
stretching part of the intramolecular potential energy.
The second term in (1. 10) is said to make the frequency-
dependent contribution to the viscosity for rigid rods.

In contrast, Doi and Okano only have the mechanical
term, from which they derive the frequency-dependent
part of the viscosity, whereas according to these authors
the limiting high-frequency viscosity cannot be found
from the diffusion equation. They write the correlation
function Eq, (1.2) as

C(t) = Cob(8) + (T, (0)T,, (&)Y,

where the second term involves the reduced flux with
mechanical contribution only, and the time evolution is
calculated from the diffusion equation. The first term
in Eq. (1.11) describes the variation of the correlation
function on the fast time scale and gives the high fre~
quency contribution to the intrinsic viscosity. The value
of the constant C; is left undetermined in Doi and Okano’s
theory. As an example of their formalism they consider
the rigid dumbbell model and explicitly calculate the
second term in Eq. (1.11), obtaining a result agreeing
with the traditional Kirkwood—-Auer calculation for rigid
rods, except for the absence of the limiting high-fre-
quency viscosity, which is attributed to the first term

in Eq. (1.11),

(1.11)

In this article we wish to clarify the issue by showing
that both groups of authors in fact have the same start-
ing point from which they come to misleading and am- .
biguous conclusions. The controversy about which force
to use in Eq. (1.3) is easily settled by observing that,
when accepting the derivation of Yamakawa ef al. and
their expression Eq. (1.10) for the flux, one finds that
the diffusion force gives zero contribution, To show
this we note that in Eq. (1.2) one needs the xy component
of the flux, and substitution of this component of Eq.
(1.10) in Eq. (1.9) gives zero after integration over the
y coordinate. Thus instead of (1.10) one can use the
reduced flux

3,(=R"K (1.12)

involving only the mechanical force. In the sequel we
shall show that this expression for the flux yields both
the frequency-dependent viscosity and the high-frequency
limiting value correctly. Note that for the above argu-
ment it is essential that one is dealing with the full set
of 3n Cartesian coordinates, Thus it must be applied
before a further reduction of the diffusion equation to a
smaller space by the introduction of rigid constraints.
In our picture one deals with a purely mechanical sys-
tem and “rigid” constraints correspond to strong re-
storing forces along certain directions in configuration
space.

The flux employed by Doi and Okano! does not corre-
spond to Eq. (1.12) but involves an average over the
constrained coordinates. This flux, as noted by Yama-
kawa et al.,® is overly coarse grained and accordingly
must be employed with caution in the correlation function

formalism,

When the correct, mechanical expression for the flux
Eq. (1.12) is introduced into Eq. (1.7) and use is made
of Egs. (1.8), (1.1), and (1.2) one finds, after certain
mathematical simplifications, the correlation function
expression for [n(w))

[n{w)] =—A1£IA£ j: exp(- iwf)

X(R7K),,[exp(0")RTK),,]) dt , (1.13)

where

®K),= 3" 9.3,

and where D' is the adjoint of the diffusion operator Eqg.
(1.5),

D' =VE-D.Vy-B(Val)T-D- Vy, (1.14)

and the angular bracket denotes an average over the
equilibrium distribution

P ®)=expl- sUR)] /[expl~ BUR) R, (L.15)

for which DP, =0. The expression Eq. (1.13) is identi-
cal to that proposed by Yamakawa ef al. when account

is taken of the vanishing of the diffusion force in Eq.
(1.10). In the next section we show that the expression
is also obtained, simply and directly, by application of
linear response theory to the diffusion equation. Thus,
once the diffusion equation is accepted as the basic equa-
tion valid on the time scale of interest, one has a well-
defined expression for the frequency-dependent viscosity
over a corresponding frequency range. This expression
does include those contributions from the mechanical
forces which correspond to rigid bonds in other treat-
ments, e.g., the calculation for rigid rods by Kirkwood
and Auer.® Such rigid constraints are introduced at the
end of the calculation of the correlation function expres-
sion by letting appropriate force constants increase in-
definitely.® This point of view is physically reasonable
and mathematically simple, and completely consistent
with the analysis of Yamakawa ef al.’

Doi and Okano! perform the passage to the rigid limit
in a different fashion, which we consider less trans-
parent. However, our calculation of the frequency-de-
pendent part of the viscosity is equivalent to theirs.

The fact that Doi and Okano do not obtain the high fre-
quency limiting viscosity results from an arbitrary de-
cision to ignore processes on the time scale of the oscil-
lations in the length of the dumbbell, rather than from
any inherent limitation of their method.

In order to demonstrate that the correlation function
expression Eq. (1.13) takes proper account of the rigid
bonds we do an explicit calculation for rigid dumbbells
in Sec. IV. To accomplish this calculation, consistent
with the point of view we have adopted, the correlation
function expression is first evaluated for an elastic
dumbbell according to the Fraenkel model®!® where the
potential between the two centers of friction is described
by a barmonic potential with finite equilibrium separa-
tion J,
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Ury, 5) =3¢ |1y~ 15| =21 (1.186)

Passage to the rigid dumbbell case is made after evalu-
ation of the correlation function by letting x - <,

In Sec. I we compare the correlation function for-
malism with Kirkwood’s theory of viscoelastic behavior,
and show that both theories lead to the same result for
the intrinsic viscosity, although starting from different
premises. In our view the correlation function formal-
ism is to be preferred.

Il. LINEAR RESPONSE THEORY

In this section we demonstrate that direct application
of linear response theory to the diffusion equation leads
precisely to the simple correlation function expression
for [n(w)] displayed in Eq. (1.13). In such a calculation
one evaluates the average of an appropriate stress ten-
sor J,, in linear response to an external flow perturba-
tion vy (r, #) acting on each segment of the polymer. Be-
fore specifying the relevant observables in detail we
develop the theory from a more general point of view.

In the presence of the external perturbation the diffu-
sion equation Eq. (1.4) is modified to

3 PR, t)/ot=[{D+8(H|PR, 1),

where the linear operator 8(f) corresponds to the ex-
ternal perturbation and may involve an explicit depen-
dence on time. We write P=P_+ P;, where P, is the
equilibrium distribution (1.15). To linear order in the
perturbation

8P, /8t= PP+ §(1) Py

2.1)

=DP + AR, H)P,,, 2.2)

where AR, #) is defined by the second equality and de-
notes the function that results from the operator § act-
ing on P,. Assuming harmonic time dependence,

AR, 1) = AR) exp(iwt),

and solving with the initial condition P= P, at /=—= one
finds

2.3)

PR, = f texp[:D(t— (AP, ' “t) dt’

=eiwtf exp(— iw+D)T)(AP)dT. 2.4
0
Using the identity

:I)(A-Paq) - PN:D?A, (2. 5)

where D' is the adjoint of the diffusion operator given by
Eq. (1.14), one finds

Pi=¢'“t P (iw- 24, (2.8)

Hence the average of an observable B(R) in the stationary
state [P+ Py] is

(B); ={B) o+ 9 {(Bliw — 1)")‘114)9‘1 ,

where the averages on the right are over the equilibrium
distribution P,. The linear response can therefore be
expressed as the one-sided Fourier transform of an
equilibrium time correlation function,

2.7

(Bliw - DN A), = j: e (BA®)) o dt (2.8)

where the time evolution of the observable A is given by
the Heisenberg type equation

A() =exp(D'H)A. (2.9)
To conclude this formal discussion we note that
jA:DBdR - jB:o'AdR , 2. 10)

which expresses the adjoint relation between D and ®'.

We now turn to the specific observables of interest
for the intrinsic viscosity. We consider a flow situation
where the polymer center of resistance is at rest at the
origin and the external flow is given by

vo(r, t) =g vei«ti (2.11)

Corresponding to this external flow the linear operator
&) is

S(ty=-e'tyl. vy , (2.12)

where the scalar product is between 3z-component vec-
tors. Hence from Egs. (2.2) and (2. 3) the observable
A(R) is given by

n
AR)=~Bg 2y, K5 . (2.13)
J=1
The intrinsic viscosity [n(w)] is defined by
N,
it _ _ 214 1
[nlw)]goe® oy e (2.14)

Comparing with Eq. (2.7) and identifying the dynamical
observable B as

n
iy :;yjK’;

one sees that Eq. (2.14) may be recast in the form

_N B © ~fwT S x : x
(<522 ["erer {3y, k7 expion 3, &3] ar

(2.15)
which is identical to Eq. (1.13).

Note that in this derivation the mechanical force K ap-
pears naturally in the observable A. The identification
of the observable B as involving the mechanical force is
less obvious, apart from a consideration of symmetry.
The justification of the use of

n
ny :jzl:y!KJ;

in Eq. (2.14) ultimately must be made on the basis of a
separate analysis.

Before turning to the application of the correlation
function expression Eq. (2,15) to the case of elastic
dumbbells we compare the above formalism with a ver-
sion of Kirkwood’s theory.

I1l. COMPARISON WITH A VERSION OF KIRKWOOD'S
METHOD

In 1949 Kirkwood!! proposed a general theory of vis-
coelastic behavior which accounted for the observed rig-
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idity modulus of polymer solutions. An important fea-
ture of his theory is the introduction of chain space,
i.e., that subspace of the complete 3z-dimensional con-
figuration space of the polymer segments which is al-
lowed by the rigid constraints of constant bond angle and
constant bond length. The equivalent of the diffusion
equation Eq. (1.4) is written in terms of the generalized
curvilinear coordinates of chain space. The resulting
formalism was applied by Kirkwood and Auer® to rigid
rods and by Hearst'? to wormlike chains,

We shall show that ‘applying Kirkwood’s method, but
using the diffusion equation in the full cartesian config-
uration space, leads to exactly the same expression for
the intrinsic viscosity as found in Eq. (2.15). This is
worthy of note since in calculating the intrinsic viscosity
Kirkwood employs Eq. (2.14) with a different expression
for J,, than the one we have used.

The diffusion equation Eq. (1.4) in the presence of an
external flow disturbance can be written as

oP/8t +vE . (WP)=0 , (3.1)

where U is an 3n-component vector comprising the poly-
mer segment velocities
n
u‘=v‘;-z;n,,.[v,1np+svju]. (3.2)
=
74

The forces F= (Fy, ..., F,) exerted on the fluid by the
polymer segments are mutually related by the hydrody-
namic interactions and are given by

Fi+§4ZTi1' Fy=¢,(u,-v) . (3.3)
J#

Recalling Eq. (1.8), expressing the diffusion tensor D,,

in terms of the Oseen tensor T,;, one finds from Egs.

(3.2) and (3.3)

F, ==V, U~-RkTV,InP(}) . (3.4)

According to Kirkwood’s prescription the nonequilib-
rium average on the rhs of Eq. (2.14) should be com-
puted with the flux including the diffusion term,

n
ey :Z yiFi;
i=1
thus

(Jw),=f;yiF’§ PH)dR .

However, as pointed out by Kirkwood and Auer,® to
linear terms in the shear rate it is legitimate to replace
the nonequilibrium probability distribution P(f) by the
equilibrium distribution P,,, since the “forces” F, are
proportional to the shear rate through the diffusion term
involving P(¢) in Eq. (3.4). Thus to lowest order in the
shear rate the Kirkwood procedure permits calculation
of the nonequilibrium flux according to the expression

(3.5)

<"”>*=§; (y,F% | (3.8)

where the angular bracket without subscript ¢ denotes an
equilibrium average.

It is an easy matter to show that this expression for

the flux, which involves a diffusion term, leads to the
same autocorrelation function expression Eq. (2.15).
Substituting P =P, +P,, where P, is given by Eq.
(1.15), into Eq. (3.4) leads to

F,=-kTV,In[1+(P,/P,)], (3.7

or, to linear terms in the external shear rate distur-
bance,

F,=-rTv,(P,/P,) . (3.8)

Hence one finds after substitution of Egs. (2.6) and
(2.13) into (3.8) that Eq. (3.6) becomes

n a 1 n
(Jey Vs =goe'™ ,};1 ({3’1 _B_x—, [m ; y,K’}]}> .
(3.9)
After integration by parts and use of the defining equa-
tion for [n(w)], Eq. (2.14), one sees that this procedure
leads to an autocorrelation function expression for
[7(w)] which is identical to Eq. (2.15).

IV. EXPLICIT CALCULATION FOR DUMBBELLS

As an illustration of the evaluation of the correlation
function formula Eq. (2.15) we consider the elastic
dumbbell model®' where the two centers of friction are
bound by the harmonic potential Eq. (1.16). We em-
phasize that this calculation is put forward simply to
demonstrate that careful evaluation of the autocorrela-
tion function without “entropic terms” yields the cor-
rect answer.® Our treatment includes the effect of
hydrodynamic interaction between the two centers of
resistance and slightly generalizes the known result!®
for this case by letting the two beads have different
friction constants. The effect of rigid constraints is
studied by taking the limit x -~ « at the end of the cal-
culation.

The diffusion equation Eq. (1.4) for the dumbbell can
be written

aP(r,,r,,t

"‘Llait—z’—‘) =DV, [V, P+ p(V, U)P]
+D,V, [V, P+ 8(V, U) P

+kT VY, Ty, [V, P+ 8(V, U) P

+kTV, Ty, [V, P+ 8(V, U)P], (4.1)
where D;=kT/¢,. Inwriting Eq. (2.11) we assumed that
the center of resistance of the dumbbell with coordinates

ﬁ=[§1 !'1+§21‘2]/(§1+§z) 4.2)

is locally moving with the fluid. We consider a statis-
tical ensemble of dumbbells with uniform distribution of
centers, so that Eq. (4.1) reduces to an equation for the
distribution of the relative coordinate r=r, - r,,

8P(r, t)/8t=Vv. D, [VP(r,) +B(VU) P(r, )] , (4.3)
where
D, =(D, +D,) 1 - 2kTT(x)
=(Dy+ D) 1= (kT /4mne V) [1 + (r 2 /#P)] , 4.4)

which is conveniently expressed as
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D, =D{l - /N [+ /A,

where D=(D, +D,) and h=[kT/411y(D, + D,}] is the
strength parameter for the hydrodynamic interaction;
in the free draining limit #=0. The adjoint operator D'
appearing in Eq. (2.15) is

(4.5)

o'=-p(VU)-D,-V+V.D,. V; (4.6)

it has the property noted in Eq. (2.5), where P,,(r)
~exp[- BU(r)].

Moreover D' is self-adjoint with respect to averages
over the equilibrium distribution. This means that the
eigenfunctions of D', defined by

DY, (r) ==, ¢,(), @.7
obey the orthogonality condition

[ $*(¥) b (@) B, (£) dr = 6,0y 4.8)
The flux for the dumbbell,

Jpy =~ y(0U/3%) == (xy/7) U' ()

= — k¥ — 1) sin®9 singcos¢ , 4.9)

may be expanded in terms of these eigenfunctions:

Toy= 2 Ca0u(T), (4.10)

n=

and substituting into Eq. (2.15) one finds for the intrinsic
viscosity

= tw+X,

[nlw)]= (4.11)
For spherically symmetric potentials U(r) the opera-
tor ©' commutes with the rotation operator and it is suf-
ficient to consider only eigenfunctions of the angular
symmetry exhibited in the flux Eq. (4.9), i.e.,

(4.12)

The radial functions y,(r) obey the eigenfunction equa-
tion obtained from Eq. (4.6) by substituting the harmonic
potential Eq. (1.16) and employing Egs. (4.7) and (4.12):

2o 10 o0 2
[Bx(r l)(l- )Br+rzar (1 )81'

- 505t = a0

The factor 8 arises in the last term on the lhs of Eq.
(4.13) from the angular Laplacian in the operator D,
which contributes a value I( +1) =6, since the flux under
consideration has the symmetry of a second order (I=2)
spherical harmonic, Accordingly [n(w)] may be ex-

¢,(r) ~ X, (r) sin®9 singcos.

(4.13)

pressed as
NB 1 < dE
[nt)]= Mn, 15Z iw+ A, #.14)

where the eigenvalues 2, are determined from Eq.
(4.13), the coefficients from the relation
d,== | [krlr =D]x.0r)Pe(r) ar , (4.15)
0

and the factor — arises from the angular average of

{sin®@ sing cos¢ ?. The eigenfunctions y,(») are con-
structed to be normalized and orthogonal according to

[ I P =0, .16)

0
The eigenvalues and eigenfunctions cannot be deter-

mined exactly for all x and k. We are interested in ob-
taining a solution in the limit of a rigid dumbbell (x - «),
so we transform to a variable

E=(r -0 kB V2

that expresses the deviation of the oscillator separation
from its equilibrium position. In terms of this variable
the eigenfunction equation becomes

(4.17)

{BK(I - 2a)L0+ (1 - a)(BK)llz- + [(ﬁ )1/22‘1 - EEJLO
- 16—2(1 —a)+0[(3K)'1/2]}Xn(1’)=—)\"X"(y) , 4.18)

where we have written @ =#/1 (@ <3/8), and where L, is
the operator

9 9

a—gz - £a—£ . 4.19)
The symbol o[ (8k)~'/?] indicates that terms of this order
have been dropped; these terms are clearly negligibly
small compared to those retained in the rigid rod limit.

Ly=

In leading order in Sk the operator o involves just the
operator L, in the first term on the lhs of Eq. (4.18).
To this order the eigenfunctions y, are given in terms of
Hermite polynomials H,(x):

Xa(r) = @n1)2H (£/V2) 4.20)
and the associated eigenvalues are simply
X, =DBr(l = 2a)n + o[ (B)'/?] . (4.21)

For n =0 correction terms must be determined. How-
ever, for n=0 the eigenfunction is a constant and the as-
sociated eigenvalue is easily determined from Eq. (4.18)
to be

=61%(1 - @) + O[(Bx)?] . (4.22)

Employing the eigenfunctions Eq. (4.20) the coefficients
d,, Eq. (4.15), are

do=-381+Be[(B0)M],
dy =18 (Br)V2 + Blo [(Br)™?] ,
d,=Bte[(Br) "2/

Substitution of these results into the expression for
[n(w)] Eq. (4.14) yields in the rigid dumbbell limit, i.e.,
to lowest order in «™,

{4.23)

n=2.

1 3/2 1- ]
4.
[n(w)]= 15Mn0 DA< a)B[l T tioa)r @2
where we have defined the relaxation time
1=8D(1 - a)I? . (4. 25)

This result is exactly the result obtained by Fraen-
kel, ®'° when we neglect the hydrodynamic interaction
(o =0) and substitute D=2kT/¢, as is the case for a sym-
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metric dumbbell. The result also agrees with the result
for symmetric dumbbells obtained by Kirkwood and
Plock'* in the absence of hydrodynamic interaction, and
the result obtained by Bird and Warner'® in the presence
of hydrodynamic interaction. Both these calculations
employ an entirely different method,

For the case of the Fraenkel dumbbell, the procedure
of Doi and Okano* is to employ the coarse grained flux
J,, which in the notation of this section is

Ty =Ty | 900 = Cobo . 26)

and proceed to the rigid limit x -~ before evaluating the
correlation function, This procedure clearly eliminates
the high frequency contribution and yields only the first
term on the rhs of Eq. (4.24). Doi and Okano correctly
recognize that a separate calculation of [n(w)] is re-
quired. A correct procedure for computing this high
frequency limit has been given by Nakajima, Doi, Okano,
and Wada.'®

Recently, Doi, Nakajima, and Wada!® have extended
the procedure of Refs. 4 and 15. These authors as well
as those of Refs, 4 and 15 attempt to separate the flux
into noninterfering (orthogonal) slow (unconstrained) and
fast (constrained) contributions, a device that works
admirably for the Fraenkel dumbbell. However for more
complex systems, e.g., freely jointed chains, this
separation may not be realized because of interaction
between the constrained and unconstrained coordinates!’
that arises from the coupling of the center of mass and
internal motions.

V. CONCLUDING REMARKS

We wish to emphasize that our exclusive concern in
this paper is the proper use of the correlation function
method for evaluating the intrinsic viscosity. In the cor-
relation function method one has the choice of going to
the limit of a constrained coordinate (k- ) either be-
fore*® or after!® evaluation of the correlation function.
The former procedure requires a separate evaluation of
the high frequency limit. The latter procedure which
we address here does not require “entropic forces” and
always yields the correct high and low frequency be-
havior.

There are however a number of other methods avail-
able for calculation of the intrinsic viscosity.'* These
methods, which rely on direct evaluation of the non-
equilibrium flux (J,,), [see Egs. (2.14) and (3.5)], differ
in their treatments of constraints. There are three
possibilities: (a) elimination of constraints directly
from the Lagrangian*®~?!; (b) retention of constrained
coordinates in the diffusion equation but passage to the
limit of a rigid constraint (k —«) prior to evaluation of
(T s 2218 and (c) passage to the limit of a rigid con-
straint after evaluation of (J,,),, as is done for the case
of a dumbbell in Refs. 9, 10, and 24, The advantage of
these latter methods compared to the correlation func-
tion method is that they permit generalization to non-
linear response. We mention these other methods to

stress to the reader that the correlation function ap-
proach is not the only alternative available,
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