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Our development of the Debye-Bueche theory for the frictional properties of dilute polymer solutions
is continued. A simplified version of the mean field theory is introduced that involves a preangular

average (PAA) of the hydrodynamic interaction. A comparison is made between the exact mean field
theory and the simplified PAA theory for the case of a uniform sphere and of an infinitesimal shell

segment distribution.

I. INTRODUCTION

This is the second paper in a series dealing with the
frictional properties of dilute polymer solutions. The
theory is developed from the physical ideas of Debye and
Bueche! and is put forth as an attractive alternative to
the Kirkwood-Riseman (KR) theory.? Our approach® is
applicable to cross-linked polymers and does not require
“preaveraging” of the hydrodynamic interaction.

The preaveraging approximation was introduced in the
KR theory for computional convenience, and it consists
of replacing the Oseen hydrodynamic interaction tensor
by a scalar quantity. The consequences of this preaver-
aging in KR theory have not been sufficiently explored.

A similar approximation can be made in our theory, and
in the present article we investigate the resulting simpli-
fied theory.

A detailed comparison is made between the results of
the exact and the simplified theories for the case of a
uniform sphere and that of a spherical shell segment
distribution. It turns out that the preangular average
(PAA) yields surprisingly accurate results for the trans-
lational drag coefficient f,; and fair results for the in-
trinsic viscosity [n]. On the other hand for the rotation-
al friction coefficient f, the PAA is somewhat poorer.

For the rotational friction coefficient the exact analy-
sis® is no more complicated than the simplified theory,
and hence the former is to be preferred. However, for
translational drag and intrinsic viscosity the exact the-
ory, to be presented in following papers, %5 ig rather in-
volved owing to the vector character of the equations.
Thus for the latter two transport coefficients the simpli-
fied theory is an attractive route for the quick deriva-
tion of results, which presumably are accurate for a
wide variety of spherically symmetric segment distribu-
tions.

Il. THE PREAVERAGING APPROXIMATION

The microscopic theory is based on the equations de-
scribing the hydrodynamic interactions between polymer
segments. The fluid in which the polymer is immersed
is assumed to satisfy the linear Navier-Stokes equations
for incompressible steady flow. The forces exerted by
the n polymer segments on the fluid are related by the
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set of equations

F,=§[u(r,—v0(rj)]—-gle,k- F, (j=1,.---,n), (2.1)
=
(2#9)

where v,(r) is the unperturbed velocity field, i.e., the
flow of the fluid if the polymer were absent, u(r,) in the
velocity of segment j as given by the rigid body motion
of the polymer, ¢ is the friction coefficient of the seg-
ment, and T,, is the Oseen hydrodynamic interaction
tensor

i RR

T® =_1—[E+Ef] ,

B, (2.2)

T,Ik:T(rj - rk) N

where 7, is the solvent viscosity.

The microscopic equations (2.1) depend parametrically
on the locations of the polymer segments, and in order
to make progress a statistical average must be per-
formed over the distribution of polymer conformations.
In the conventional KR theory? the Oseen tensor-in (2.1)
is preaveraged over equilibrium configurations before
further handling of the equations. Thus T,, is replaced
by

(T, =(1/61m) 1 /7,01 (2.3)

directly in (2.1), where it has been assumed that the
distribution of r; - r, is spherically symmetric. The re-
placement (2.3) is a rather severe “approximation” that
introduces both an isotropy and a positional averaging of
the interaction that is not present in the physical picture
underlying the model.

In our theory,® as presented in I, we first average the
continuum analogue of the microscopic Egs. (2.1) and
then employ a mean field approximation. Thus we arrive
at an equation for the average force density F(r),

F(x) = £0(0) [u(x) - vo(@)] - p(x) [Tix -2 FVar’
(2.4)

where p(r) is the average segment density. This can be
written in the abbreviated form
F(r)=¢p(r)ulr) - V()] , (2.5)

where V(r) is the average fluid flow velocity, which from
(2.4) satisfies the integral equation
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V@) =w@ - ¢ [T @) V) -ue)ar’ . (2.6)
In addition, one finds by averaging the microscopic
Oseen equations for the pressure

F(r')dr’

?
Ir"' , 2.7)

1
PO =0+ [ o

where P(r) is the average pressure, and py(r) is the fluid
pressure in the absence of the polymer. It has been
shown in I that (2.6) and (2.7) are equivalent to the equa-
tions

7 VEV(r) = zp(r) [V(r) —=u(r)]-VvP(r)=0; v.V=0. (2.8)

These are the starting equations of the Debye—Bueche
theory, ! and they amount to linear Navier—Stokes equa-
tions for an incompressible fluid with added terms for
the friction between polymer and fluid.

In the simplified version of our theory we replace the
Oseen tensor T(R) appearing in (2.4) and (2.86) by its
angular average

|
L

We shall refer to this (unjustified) simplification as the
PAA (preangular average). The equation for the average
force density becomes

T(R)-4—1ﬂfT(R)dQ= 2.9)

F@) = 50(2) [a(6) = %o(6)] ~ e plo) [ =g PN,

(2.10)
‘while the equation for the average fluid flow velocity be-
comes

V(r)=vg(r)—§7-fn—of7-r—i—r;—,p(r') V") -u(r)]jar’ .

(2.11)
The relation (2.5) between F and V is still valid. The
PAA is only a part of the preaveraging introduced in KR
theory; the interaction is made spatially isotropic but
the averaging over the segment statistical distribution is
not prematurely applied.

I1l. THE SIMPLIFIED THEORY

The basic equations of the simplified theory are Eq.
(2.11) for the fluid flow velocity V(r), and Eq. (2.5) re-
lating V to the force density F(r). The PAA is a severe
approximation as follows immediately from the observa-
tion that the condition of incompressible flow, V. V=0,
in general is violated. On the other hand, it has the ad-
vantage that the vector character of the equations is sim-
plified, and as we shall show it leads to surprisingly ac-
curate results for the transport coefficients of transla-
tional drag and intrinsic viscosity.

Applying the Laplacian V2 to both sides of (2.11) and
using the identity

V2 |r-r'|t=-4nb(r-1'), 3.1)
one finds for V(r)
VEV(r) - § 2(r) [V(r) - u(r)]=V?v, , (3.2)

where k%(r) = ¢o(7) /7.
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The right-hand side of (3.2) equals 7;' Vp, and in the
applications we shall treat this is actually zero. The
difference between (3.2) and (2. 8) is the occurrence of
the extra factor Z and the absence of the pressure term
in (3.2). The condition of incompressibility is dropped
and hence in the simplified theory the pressure plays no
role.

We now specialize to the flow situations for the three
transport coefficients of interest, viz. translational and
rotational drag, and intrinsic viscosity. It is convenient
to choose a coordinate frame in which the polymer is at
rest with center of mass at the origin so that u(r) =0,
Also we consider only spherically symmetric segment
distribution p(»). For translational drag one has v,(r)
=V, constant, For rotational drag V,(r)=wxr, where w
is a constant vector. For viscosity the imperturbed flow
is chosen as.®

Vo(r}=g:r , 3.3)

where g is a constant, symmetric, traceless tensor.
In all three cases V2 v,=0, as mentioned before. The
vector equation (3.2) can now be reduced to a scalar
equation by the substitution

V(r) =) vy(r) , 3.4)

where ¥(») depends only on the radial distance. This
leads to

Vo V2P +2(VY. VIVo =3 k2(r) Yvy=0. (3.5)

For translational drag the second term vanishes and one
obtains the radial equation
2
b+ 9= 3K do(1) =0, (3.6)
where a prime indicates differentiation with respect to
v, and we have inserted a subsecript 0. For both rota-
tional drag and viscosity one finds from (3.5)
4
W= - R =0, 3.7
where we have inserted a subscript 1. Note that (3.6)
is precisely the radial Schrédinger equation for thresh-
old low energy s-wave scattering from a repulsive
spherical potential, while (3.7) with the substitution g,
=¢(r)/r is the radial equation for p-wave scattering.

This analogy has motivated our use of the subscripts 0
and 1,

The differential equations (3.6) and (3.7) must be
solved with the boundary conditions that ,(») and y,(»)
be regular at the origin and tend to unity at infinity.

The asymptotic behavior of the two functions is given
by

bo)=1—ay/r
and
W =1-a/r* ag y-w (3.8)

with effective radii a, and a,. Inthe quantum mechanical
analogy a, represents the scattering length for s-wave
scattering.

It is useful to find the integral equations corresponding
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to the differential equations (3.6) and (3.7) by substitut-
ing the ansatz (3.4) directly into the integral equation
(2.11) for V(r). Using the identity

)= ST —t‘r ¥1n() ¥} (@)

1=0 m=al

Ir Tr=1'1 3.9)
where 7(r,) is the lesser (larger) of » and »’, and using
the properties of the spherical harmonies Y;,, one finds
for yylr)

holr) =1-3 = f 2 06 p( Y Ry . (3.10)
Similarly for zp,(r)
wn=1-5L [CIeuehee e e . 1D

Comparing the integral equations with the asympototic
behavior (3. 8) one finds for the effective radii

32 [[werar,
(3.12)
al———f h() ptr) ridr .

IV. TRANSPORT COEFFICIENTS

The transport coefficients can be expressed in terms
of the effective radii. The translational friction coeffi-
cient f; is defined by’

=f F(r)dr=-f,v, , 4.1)
where v, is the constant unperturbed flow and the poly-

mer is taken at rest (u=0). Hence the PAA expression
for the translational friction coefficient f; is

fy=4n¢ '[’ D) p(¥) 2 dr

(PAA)

which is precisely of the Stokes form.

=67Tnoa0 5 (4-2)

The rotational friction coefficient £, is defined by’

<r=jer(r)dr=—f,w 4.3

for the imperturbed flow vy(r)=w xr. Hence the PAA

expression for f, is

2 [ wo o rtar

=12rmya} , (PAA) (4.4)

which is to be compared with the Stokes expression for
a hard sphere f, = 877m,R®, where R is the sphere radius.
Note that the first equality in (4.4) is identical to the ex-
pression (I. 3.14) of the exact mean field theory® with
¢(») replaced by y,(»). In the free draining limit both
o(r)=1 and §,(») =1, so that in this limit the exact and
the simplified theory lead to the same result. The sec-
ond equality in (4.4) must be compared® with (I. 3.7)
f,=8mmya®. In the hard sphere limit both a and @; tend
to the sphere radius R, so that in this limit the simpli-
fied theory predicts a rotational friction coefficient
which is a factor 2 too large.

For viscosity the unperturbed flow pattern is given by
(3.3) by comparing the stress tensor of the unperturbed
flow with the stress tensor in the presence of p, poly-
mers per unit volume one finds for the change in viscos-
ity®" An=n-n.

an==p, [ Fu(0)Xsdr/2as (4.5)
where the integral is calculated for a single polymer
with center of mass at the origin and g,, is a nonvanish-

ing component of g. Conventionally the intrinsic viscos-
ity [n] is defined” by

[nl=an/myc =N, an/Mnyp, (4.8)

where ¢ is the solute concentration (g/cm’), N, is Avo-
gadro’s number, and M is the molecular weight of the
polymer,

Substituting (2.5) and (3.4) in (4.5) one finds

An=23£pp§'£ 0 pl) riar

=3mp, Mo a3 (PAA) 4.7
Comparison of (4.4) and (4.7) yields the relation
An=ip,f, (PAA) 4.8)

for any spherically symmetric segment distribution.
This relation also holds in the KR theory, ® but it is not
valid in the exact mean field theory, where the PAA is
not introduced.

In Eqs. (4.2), (4.4), and (4.7) we have for each of the
transport coefficients two alternative expressions. The
coefficients can be calculated either by determining the
functions zl)o,l(r) and performing the integrals or by de-
termining the effective radii a; and a; from the asymp-
totic behavior Eq. (3.8).

In the following section we evaluate the transport co-
efficients explicitly for some simple segment distribu-
tions.

V. EXPLICIT SOLUTIONS FOR UNIFORM SPHERE AND
SPHERICAL SHELL

For the uniform density sphere where n segments are
distributed uniformly throughout a sphere of radius R we
have

p(r) =p=n$7R’]?

=0 for R<7r< =,

for 0<v<R
(5.1)

and correspondingly «2(») = k% for » < R with «% = £p/n,.
The solution of (3.6) which is regular at the origin and
satisfies the boundary condition at infinity is

() = By sinh(VZ k7) /(T k7)
=1—~Ay/r

where the constants 4, and B; are to be determined by
the condition that ¥, and y; be continuous at ¥=R. One
has ay=A; and one easily finds that

ay=RGo(VZ KR)

for 0<¥<R

for R<r<ow (5.2)

(5.3)
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where

tanhx

So(x)=1 i (5.4)

Thus the translational drag for the uniform density
sphere in the PAA theory is given by
fe=6m1yRSo(VZ«R) (PAA, sphere)

which should be compared to the exact mean field re-
sult's*

(5.5)

B So(kR)
Ja=6mmR 1 +3Go(kR)/(kR)? *

The solution of (3.7) which is regular at the origin and
satisfies the boundary condition at infinity is
sinh(v % k7)
VZky

(exact, sphere) (5.86)

h(r)= g} [cosh(f% Kr) =

=1 —AI/TS

] 0<7r<R

5.7

Note that the solution ¢, ¥, for the interior region <R
are closely related to the modified Bessel functions of
the first kind 7,,, ,,(k7VZ) for 1=0,1. The constants A,
and B, in (5.7) must be determined by the condition that
¥ and §; be continuous at »=R. One has a} =4, and eas-
ily finds

R<y<ew,

ai =R%,(VZkR) (5.8)
where

G(x)=1+3/x% -3 cothx/x . (5.9)
Thus according to (4.4)

f,=12am,R% (VZKR)  (PAA, sphere) (5.10)

which should be compared to the exact mean field re-
sult®

fr=8am R3G,(KR). (exact, sphere) (5.11)
For the viscosity one finds from (4. 8)
An/ny=$p;G(VZkR)  (PAA), sphere) (5.12)

where U=47R3 is the volume of the polymer sphere.
This should be compared to the exact mean field result!’®

An 91(KR)

5
2 PO (R kR Y

We also consider the case of a spherical shell of infin-
itesmal thickness with » segments distributed uniform-
ly over the shell at »=R; thus

p(r) =m/4nRZ) 6(r-R) . (5.14)

The differential equation (3.6) for y,(r) with x3(») =0 in
the regions »< R and » > R now has the solution

‘po(‘)’) =Bo
=1-Ay/r (5.15)

The constants A, and B, are determined by the conditions
that y,(») be contimious at =R, and that ¥;(») have a
jump discontinuity given by

(exact, sphere) (5.13)

0<sy<R

R<r<ew

Bo(R,) = $o(R.) = (n£/6mnR) Yo(R) . (5.16)

Defining the constant « by k% =3n¢/4nnR®, as for the

uniform sphere, one easily finds for the translational
drag

f1=6mnR (kRP/[8 + (kR)?], (PAA exact, shell) (5.17)

which is identical to that obtained in the exact mean
field theory.* This is the only case investigated where
the results of the PAA and exact theories are identical.

The differential equation (3.7) for #,(r) now has the
solution

¢1(’V) =B1
=1 —AI/TS

0<s¥<R
R<r<ewo, (5.18)

The constants A; and B, are again determined by the
condition that y(r) is continuous and that y;(») has the
same jump discontinuity as given for yg(») in (5.186).
Hence one finds for the rotational drag

f,=8rmR® (kR¥/[9 +% (kR)*], (PAA, shell) (5.19)

which should be compared to the exact mean field re-
sult®

f,=8rmR® (kRY¥/[9 + (kR)*] . (exact, shell)

For the viscosity one finds

(5.20)

An/my=% p,V(kRY? /[15 +} (kR)?] , (PAA, shell) (5.21)

which should be compared to the exact mean field re-
sult®

An/nmy=% p,0(kRY/[15 + (kR)?] . (5.22)

Note that the rotational friction coefficient is predicted
in the simplified theory as larger than in the exact mean
field theory, while the viscosity is predicted smaller.

(exact, shell)

This concludes our discussion of the simplified PAA
theory for f,, f,, and Azn. Explicit results have been
presented for the uniform sphere and the spherical shell.
In Sec. VII we compare the results of the exact and sim-~
plified theory in more detail in order to examine the
consequences of the preaveraging that is introduced in
the simplified version of the theory.

VI. VARIATION PRINCIPLES

Variational principles and perturbation procedures
may be developed for the PAA theory as has been done
for the exact theory®™® for the calculation of frictional
properties when the segment density p(») has a more
complicated form, e.g., Gaussian., For the sake of
comparison we list here the variational principles of
PAA theory.

For translational drag the differential equation (3. 6)
can be written in the form L, j, =0 with L, defined by
d? d
=42 L 2 2.2
Ly=7r W+zrdr Frik?(n) 6.1)
One can now look for trial functions g, ,(r) which are
regular at the origin and have asymptotic behavior

bo,e(r)=l-ay,/r asr—w . (6.2)

The variation principle then reads

J. Chem. Phys., Vol. 62, No. 6, 15 March 1975

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2402 J. M. Deutch and B. U. Felderhof: Friction of dilute polymer solutions. |1
A
|O = g
09 L SHELL\
8 = SPHERE
08 - /”/ \ FIG. 1. The reduced transla-
0.7 F PAA tional friction coefficient for
the sphere and the shell ver-
fd 06 sus (kR). For the shell the
05 F mean field and PAA theories
(6TT7]°R) give identical results. For
0.4 r the sphere, the minor dif-
03 k ference between the mean
' field and PAA theories are
02 r exaggerated.
o1+
OO 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 T
ol 2 3 4 5 6 7 8 9 10 i 12 13 14 1I5
KR
L -] 1 «©
aosao,t“fu Yo,¢ (Lo Po,¢) dr (6.3) a"{sai,,"gfo YLy 4y, ) r2dy 6.7
or alternatively or alternatively
- l 60
dg= !y, 2,2 2 4
ag< f [(#5,¢)% + % k2(7) ¥ Jridr . (6.4) as<3 fo (@1, +5 k25() 3 ) rtar . (6.8)
0

For rotational friction and viscosity we can immedi-
ately copy the variational principle derived in I, since
the differential equation (3.7) differs only by the factor
2 from the corresponding Eq. (I. 3.4). Hence we define
the linear operator L, by

Zdz

S P R S
Ly=r d72+4rdr—3'r K2(y) . (6.5)

For trial functions ¥, ,(r) which are regular at the origin
and have asymptotic behavior

I, ~1~ai /7’ (6.6)

as r—oo

one then has the variational principle

Vil. COMPARISON OF RESULTS

The apparently mild simplification of the PAA may
lead to both qualitative and quantitative differences with
the exact theory. We have already noted that in the sim-
plified theory the condition of incompressible flow,

V. V=0, is violated. Moreover, as shown in {(3.4), for
the external flows V,(r) under consideration the flow pat-
tern V(r) will always be parallel to the external flow
vo(r), and therefore will be vastly different from the ex-
act flow pattern. Hence it is surprising that at least for
the transport coefficients of translational drag and vis-
cosity the simplified theory actually gives rather accu-
rate results.

A
Lok SPHERE -
09 r -
08r
Exact
[7] °7f T
0.6} T \ FIG. 2. The reduced intrin-
( 5Na \J”) //// PAA sic viscosity for the sphere
2Mm 05 o versus (kR) according to the
04 /// mean field (—) and PAA (---)
' r z theories. The asymptotic
03F values for large (xR) are
indicated by arrows.
02
olr
oo 1 ' 1 1 — 1 1 1 L 1 ) 1 — i -
o | 2 3 4 5 6 7 8 9 10 I 12 13 14 15
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Lol SHELL -
0.9
0.8
-
] °
5NV, 06 FIG. 3. The reduced intrin-
( A ) sic viscosity for the shell
2M 05 versus (kR) according to the
04 mean field (—) and PAA(---)
theories. The asymptotic
0.3 values for large (xR) are in-
02 dicated by arrows).
0.1
Oo 1 1 i A 1 1 1 A 1 1 — - ) e -
o I 2 3 4 5 6 7 B 9 10 Il 2 13 14 15
KR
One example of the qualitative difference between the The quantitative differences that may arise between
theories concerns the relation Anp=(1 /4)p, Jf, which we the exact mean field theory and the simplified PAA the-
have found in the PAA theory, Eq. (4.8). The relation ory can be illustrated by comparing the results for the
also holds in the KR theory, ® but is not valid in the ex- sphere and the shell. Different frictional properties
act mean field theory., For example, in the case of the may reflect the differences in the two theories in differ-
uniform density sphere one finds from Eqgs. (5.11) and ent ways because each transgport coefficients is related
(5.13) to a different integral over the flow. In addition the dif-
ferences will depend on the particular segment distribu-
= 271
an=k 0/, [1 +4 /o /g0 kRYFT* . (7.1) tion under consideration.
Thus despite conventional wisdom the combination of in-
trinsic viscosity and rotatory friction coefficient mea- In Fig. (1) the translational friction coefficient is
surements (from flow birefringence experiments®) po- plotted versus the dimensionless ratio kR. This ratio is
tentially may elucidate the shape and/or structure of the roughly proportional to (zb/R)!/2, where b is the length
polymer in solution, associated with a segment and R the radius of the sphere
A
1.5+ - — —
14 L
1.3
SPHERE
2 b
N -
- o
B
1.0 + - —
09 PAA _S ™ // FIG. 4. The reduced rotatory
f / friction coefficient for the
r 0.8 / sphere versus (kR) accord-
(87T 71.R3) 2L / ing to the mean field (—) and
7 0. / LEXOC? PAA (---) theories. The
06 / asymptotic values for large
0.5 L / (xR) are indicated by arrows.
04 /
/
0.3 /
02
o
0.0 d F O W A ) 1 1 4. [N 1 A —1 N —
O 1 2 3 4 5 6 7 8 9 1011 12 13 4 15
KR
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A
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4L e
SHELL e
1.3 F -7
-~

2+ e

b1 vl

’ PAA //

1.0 / -

09 // FIG. 5. The reduced rotatory

fr : // \/\ friction coefficient for the

— 3 0.8} shell versus (R) according
877, R // Exact to the mean field (—) and

0.7 / PAA (---) theories. The

o6 L // asymptotic values for large

' / (kR) are indicated by arrows.

0S5 | /

/
0.4 - /
/I
03 F /
02F
4
ol [
0.0 L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
KR

or shell. For f; the PAA and exact theories give very
similar results. In the case of the shell both theories
give the same answer. In the case of the sphere the
correction factors in (5.5) and (5.6), despite a different
functional dependence on the parameter kR, agree within
1% over the range 0< kR < 16 considered. In Figs. 2 and
3 results are presented for [] versus kR for the case of
the sphere and shell, respectively. Note that the limit-
ing value approached for large kR is different for the
two theories, in the case of the sphere and the shell
{[nl(PAA)/[n](exact)}=0.9 at kR ==, Finally in Figs.

4 and 5 results are presented for the rotatory friction
coefficient f, versus xR for the case of the sphere and
shell, respectively. Here one finds the greatest quanti-
tative differences between the two theories; for example,
[£.(PAA)/f,(exact)]=1.5 at kR =< for both the sphere and
the shell. For all these frictional properties there is of
course agreement between the two theories in the free-
draining (xR)— 0 limit,

The results presented here for the sphere and shell
already permit one to examine problems of chemical in-
terest. For example Bloomfield et al.!® have undertaken
a numerical study of the translational friction coefficient
of multisubunit structures that are intended to serve as
models for proteins and viruses. A particular model
they consider is a spherical shell of radius R composed
of identical and spherical particles of radius b that are
uniformly spread over the shell. They numerically in-
vestigate within the framework of the KR theory, the de-
pendence of the translational friction coefficient f, on
B=(b/7), the ratio of the subunit radius to the shell radi-
us, and on £ the fraction of subunits that are randomly
removed from the shell. This problem may be studied

analytically in our theory. For small g the maximum
number of subunits that can fit on the shell is
Noag = (1/2V3)(4nR? /nb?) =21/(83V/3) , (7.2)

where the numerical factor arises because of the trian-
gular close packing of spheres on the surface. A partic-
ular surface density 7 =[rn/(47R?)] is related to ny,, by

T=(1 = &) npe/(4R?) | (7.3)

where £={(ny, —7)/nm,] is the fraction of spheres re-
moved. Hence one finds a value of (kR?) given by

(kRP=(3¢/2myB%R) 1 - £)=(3*/20/B) (1= &), (7.4)

where in the last relation we have employed Stokes’ law
for each segment ¢{=6mnb. Consequently according to
Eq. (5.17) our theory predicts

(7.5)

) 1-¢
Ja=6T0R T B3/

For £=0 this result shows a decrease of the friction co-
efficient as 8= (b/7) increases owing to the increase in
the size of the gaps between the spheres. One finds

fa/6mnR =1/(1+0.276p) (7.6)

in contrast to the numerical result obtained by Bloom-
field et al. [Ref.(10); Eq. (25)] who on the basis of the
Kirkwood approximation'' predict a linear increase with
with B:

fa/6TmR=1+0.258 . (7.7)

At present we have no explanation for this discrepancy.
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Perhaps the most interesting result of the Bloomfield
et al. numerical analysis is the weak dependence of
(f,/87moR) on & for low values of 8. The values of ¢
must be surprisingly large before this ratio declines
appreciably from unity. Qur analytic result Eq. (7.5)
is consistent with this important effect. For example if
B8=0.1 and (1 — £)=0.2 we find (f,/67meR) =0, 88 which is
within the scatter of the numerical result for this case
if 80% of the spheres removed.

Future work will be directed toward (a) obtaining nu-
merical results for frictional properties with more
realistic segment densities for both the exact mean field
and simplified PAA theories; (b) application to problems
of chemical interest; and (c) investigation of the effects
of correlations on the mean field results.
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