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The theory of Debye and Bueche for the frictional properties of dilute polymer solutions is placed on
a microscopic basis. It is shown that the microscopic foundations for the theories of Debye-Bueche
and Kirkwood-Riseman are identical, but that the theories differ in their statistical analysis. The
Debye-Bueche equations are applied to the rotational friction coefficient of a spherically symmetric
polymer with arbitrary radial density distribution. An exact result is derived for a Gaussian
distribution of low density. A variational principle of minimum energy dissipation is formulated’

which is suitable for numerical work.

I. INTRODUCTION

The theory of the nonequilibrium properties of dilute
polymer solutions was significantly advanced in 1946
when Debye! pointed out that the reason for the failure
of the older theories to account for the experimental data
was due to the neglect of hydrodynamic interactions be-
tween different parts of the polymer, In fact, when a
polymer is subjected to an external flow, each segment
will move in a local fluid velocity field which is the su~
perposition of the external flow and the disturbances of
the flow due to all the other segments. Debye analysed
the effect of these hydrodynamic interactions by studying
a simple continuum model, consisting of a uniform
sphere which is permeable to the flow and exerts a fric-
tion proportional to the local relative velocity of poly-
mer and fluid, Debye calculated the intrinsic viscosity
for a dilute solution of such spheres, and Bueche calcu-
lated the translational friction coefficient, They pub-
lished their results in a joint paper? in 1948. Indepen-
dently similar calculations for the same model were
made by Brinkman, 3

At the same time Kirkwood and Riseman* presented a
theory based on Debye’s idea of hydrodynamic interac-
tions between polymer segments but starting at a micro-
scopic level, They restricted themselves to linear
chains and used the knowledge of the conformational
statistics of such chains, Hence the Kirkwood—-Riseman
(KR) theory is based on a much more detailed picture of
the polymer than the Debye— Bueche theory. Although
the results of the two theories were qualitatively the
same, the Kirkwood-Riseman theory appeared to be
more trustworthy quantitatively, and their theory has
been the basis of much of the later work.® A serious
drawback of the KR theory is that, although starting at
a microscopic level, it contains several ad hoc assump-
tions about statistical averages which are made purely
for computational convenience, In our view the statisti-
cal treatment of the KR theory is strongly biased by the
fact that it is formulated for linear chains (or at most
branched chains, see Ref. 5, p. 317).

The relation between the Debye~ Bueche and Kirkwood-
Riseman theories seems not to have been clearly under-
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stood.® It is one of the objects of this paper to demon-
strate that the microscopic basis of the two theories is
identical. In fact, we show that starting from the same
microscopic equations as Kirkwood—Riseman one can
derive the basic macroscopic equations of Debye- Bueche
by a simple mean field approximation. Thus the differ-
ence between the two theories rests solely on the differ-
ence in statistical treatment, We feel that the Debye-
Bueche equations, once placed on such a microscopic
basis, have the appeal of simplicity and truth, More-
over one has the advantage that the theory allows one to
avoid the “preaveraging” which is required as a practi-
cal matter in the KR approach. From a statistical point
of view the mean field approximation'is a natural start-
ing point. In any case it is straightforward to correct
for correlations between segments as will be shown in

a later paper.

The basic equations of our theory are the linear Na-
vier-Stokes equations for incompressible, stationary
flow, with added friction terms, and are identical to
those used by Debye and Bueche, We differ in that we -
aim to treat more general density distributions than the
uniform sphere. This will make a quantitative differ-
ence. In this article we present the general formulation
and apply the theory to the rotational friction coefficient,
which is the simplest frictional property of spherically
symmetric polymers. To our knowledge this transport
coefficient has not been treated in the Debye—Bueche
theory. Throughout we adhere in our notation as closely
as possible to the monograph by Yamakawa, °

In later articles we shall deal with the translational
drag coefficient and the intrinsic viscosity; numerical
work will also be presented. We believe that the quan-
titative numerical results based on the present theory
will be more reliable than those following from the KR
theory.

The present work should be seen in perspective of
other important developments following the KR and De-
bye—Bueche theories. These developments include ex-
plicit consideration of the internal polymer segment dy-
namics in order to investigate such phenomena as the
frequency dependent intrinsic viscosity., The most fa-
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mous model for dealing with such dynamical effects is
associated with the names of Rouse,™ Bueche, ™ and
Zimm,? An alternative approach is based on the more
fundamental Kirkwood™ diffusion equation. These de-
velopments are reviewed by Yamakawa® and we note the
recent contributions by Bixon™ and by Zwanzig™ that in-
vestigate the relationship between the two approaches.

There, of course, have been several different attacks
on the approximation of preaveraging the hydrodynamic
interaction, In addition to the formal investigation of
Fixman and co-workers, 3 there have been some exact
results by Zwanzig and co-workers® and by Paul and
Mazo, % most notably for plane polygons, that avoid the
preaveraging approximation. These latter results may
prove useful for assessing the consequences of the ap-
proximation of neglecting correlations in the theory pre-
sented here,

1. BASIC EQUATIONS

The frictional properties of dilute polymer solutions
are usually studied on the basis of the following simpli-
fied model. The solvent in the absence of polymers is
assumed to satisfy the Navier-Stokes equations for an
incompressible fluid in stationary flow with neglect of
inertial effects

2.1)

where vo(r) is the flow velocity, py(r) is the pressure,
and 7, is the solvent viscosity, The presence of poly-
mers disturbs the flow and hence affects the transport
properties of the fluid, For low concentrations we need
only consider the effect of a single polymer, Moreover
we neglect non-Newtonian behavior and regard the poly-
mer as a rigid structure in each of the many conforma-
tions it may adopt, We consider the usual simple model
of a polymer consisting of segments connected by rigid
bonds whose effect on the flow is negligible., We shall
allow cross linking between segments, so that the poly-
mer is not necessarily a linear chain, Provided the
segments are sufficiently small the effect of each seg-
ment on the flow is given by the Oseen fields, i.e., if

- F, is the force on segment j then the flow disturbance
is given by

ngvsz—' Vpoz 0, Ve VO: 0,

5,v(r)=T(r-r)F,, 5,p(r)=Qr-r)*F, (2.2)
where the Oseen tensor T(R) and the Oseen vector Q(R)
are given by

1 RR | 1R
T(R):ﬁ(-ﬁ+-§§'>, Q(R)='Er'§§ (2.3)

The Oseen fields satisfy

(2.4)

In the Appendix it is shown that the pair (T, Q) can be re-
garded as the Green solution to the linear Navier-Stokes
equations (2, 1),

where 1 is the unit tensor.

NVET - VxQ=-15(R), V,-T=0,

The microscopic fluid flow field and pressure are
given by summing the contributions (2. 2) from all n seg-
ments

v(r) = vy(r) + f_‘; 5,v(r), (2. 52)

p(x) :po(rni;a,p(r). (2. 5b)
7=
By construction v{r) and p(r) satisfy
NeViv-Vp=—1£(r), Vev=0 (2.8)

where £(r) is the microscopic force density defined by

n
f(r; {r,}) = 2; F,6(r—r,). 2.7
i=
Since we have assumed the polymer to be a rigid struc-
ture the polymer velocity field u(r) is given by

u(r) =uy+wx(r-R,), (2.8)

where U, is the translational speed and the second term
describes the rotation about the center of mass position
R,. The force - F, on the jth segment is given by

F, = tlu(r) - v'(x))], (2.9

where { is the friction constant of the segment, and
v'(r,) is the fluid flow velocity (2. 5a) at the location of
the segment with exclusion of the self-contribution.
Hence the hydrodynamic interactions between all seg-
ments of the polymer are described by the set of equa-
tions

F, = tlulr,) - vo(r,)) - ;z"; Ta B, (=1, 00 ,m),
k=

e (2. 10)
where T,,=T(r,-1,). For simplicity we suppose that
all segments have the same friction constant ¢; the ex-
tension to heterogeneous polymer chains is immediate.

We shall assume that the polymer structure has a cer-
tain randomness which is given in terms of a known sta-
tistical distribution of the segment positions ®(ry, **+,T,)
In order to extract useful information from the micro-
scopic equations obtained so far we must average over
this distribution. In carrying out the averaging proce-
dure explicitly one is forced to make approximations of a
statistical nature. The KR theory* of the frictional prop-
erties of linear chain polymers makes in its formulation
and approximations strong use of the linearity of the
molecule, In addition, practical application of the KR
theory requires preaveraging of the Oseen tensor. Thus
we propose a different averaging procedure which has
the added advantages that it is not limited to linear
chains but allows cross linking, and that it does not re-
quire preaveraging,

We define the average flow velocity, average pressure
and average force density by

V(r)=(v(r)), P(r)=(p(r)), F(r)=d@),

where the average is over the statistical distribution
®(r,, *++ ,1,). Averaging Eqs. (2.6) one finds

NV -vP=-F(r), V-V=0,

(2.11)

(2.12)

where now the functions vary relatively slowly in space,
In order to use these equations one needs a further re-
lation between F and V which must be obtained by aver-
aging the force equations (2. 10). Before performing
this average it is convenient to rewrite the equations in
a continuum description. We can drop the restriction
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B+#7 in (2. 10) by slightly modifying the Oseen tensor

T(R) by cutting out a small sphere of infinitesimal radius

€ about R=0, In the final equations (2, 15) and (2. 16) we

take the limit € = 0. We define the microscopic number

density v(r) and its statistical average p(r) by
vir; {r,}) = i;, 8(x-1,), plr)=r;{z,}. (2.13)

i=
Multiplying (2. 10) by 5(r - r,) and summing over j one
finds the exact microscopic equation

£(r) = tv(r)[ulr) - vo(r)] - zv(r)f'r(r— r') e f(r') dr’. (2.14)
Hence one has for the average force field the exact equa-
tion

F(r) = tp(@)ulr) - vo(r)] - £ (v(r) f T{r-r') - £(r") dr'> ;

(2.15)
As the next step we make a mean field approximation and

simply break the average on the right hand side.® Then
F(r) satisfies the closed integral equation

F(r) = tp(r)[ulr) - vo(r)] - Ep(r)J’ T(r-1")* F(r')dr'.

(2. 16)
This can be written in the abbreviated form
F(r) = tp(r)[u(x) - V(v)], 2.17)
where V(r) satisfies the integral equation
V@) =vy(e) - £ [T(r- )o@ VE) ~ue)lar.  (2.18)

Averaging the defining equation (2, 5b) for the pressure
one finds

P(r) = pylr) +—1 r-r_. F(r’)dr’,

i) e .19

It is shown in the Appendix that (2. 17-19) are consistent
with Eqs. (2,12). By substitution of the constitutive
equation (2. 17) we can now write (2. 12) in the form

V2V = £o(r)[V(r) - u(r)]-vP=0, V. V=0. (2. 20)

These are the starting equations of Debye and Bueche. ?
Hence we have shown that the microscopic foundations
for the theories of Kirkwood-Riseman and Debye~
Bueche are identical, The relation between these two
theories has not always been clearly understood. ¢

When the first term in (2, 20) is omitted and u(r) is
put equal to zero one obtains £{pV = -~ VP which is known
as Darcy’s law!® for a porous medium. The product
[£o(r)]™! is called the permeability. Thus in adopting
Egs. (2.20) one essentially considers the polymer as a
porous body. In this and following papers we shall carry
the analysis of Eqs. (2.20) much further than it was
taken by Debye and Bueche, and make a careful compar-
ison with the results of the Kirkwood-Riseman theory.

Hl. ROTATORY FRICTION OF A SPHERICALLY
SYMMETRIC POLYMER

The simplest frictional property of a spherical poly-
mer is the rotational drag, It is convenient to choose a
coordinate system in which the polymer is at rest with
center of mass at the origin., Then u(r)=0, and our

basic equations (2. 20) can be written

VvV - 2V -;lvpP=0, V-V=0, (3.1
where «%(¥) = £p(r)/1, has the dimension (length)=2,
For rotation the unperturbed flow is given by
v,(r) =wxr, p,=constant, (3.2)

We introduce spherical coordinates (7,8, ¢) and corre-
sponding unit vectors (e,, &, e,). Choosing the z axis
along the direction of w we attempt to solve (3. 1) by
(V, P) of the form

V(r) = wr¢(7) sinde,, P(r)=py. (3.3)

The unperturbed flow is of this form with ¢(#)=1. One
easily checks that v - V=0 is automatically satisfied.
Substituting in (3. 1) one finds that the ansatz (3. 3) works
provided ¢(7) satisfies

r2¢" + dre’ - k¥(N)rip=0, (3.4)

where a prime indicates differentiation with respect to
7. At large distances k*(r) tends to zero rapidly and
(3.4) becomes a free field equation with independent so-
lutions 1 and 1/73. Fitting to the unperturbed flow we
can therefore write the asymptotic behavior

¢(r)~1-A/r% as y—oo, (3.5)

where A is a constant to be determined. The rotatory
friction coefficient f, can be expressed directly in terms
of this constant, We shall show that the total torque
about the origin exerted on the fluid is given by

T = - 81MpAw, (3.6)
Since on the other hand 9= - f,w we have
f, =8mg A =8mya’ (3.7

where a is an effective radius defined by A=a®, For a
hard sphere a would coincide with the sphere radius.

In order to derive (3. 6) we introduce the stress tensor
o= TIO(VV), - Pi ’ (3- 8)

where (VV), ,,=(8V, /8x,)+ (8V,/0x,). Then (3.1) can
be written

Veo=7xV, V-V=0, (3.9)
and one can easily show the identity
9
T%(Uasx,_o'yﬁxa)=" (F %, — F,x,). (3.10)

Integrating both sides over a volume £ bounded by a sur-
face T and applying Gauss’s theorem one finds

-f rx(a-n)dS=f rxF(r)dr. (3.11)
C 1]

This shows the equality of two alternative expressions
for the torque exerted on the fluid in £, The total torque
is'found by extending the integral on the right over all
space,

= fer(r) dr=- L:Jr xV(r)p(7) dr. (3.12)

Substituting (3. 3) one finds
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3:—w%§f®r4¢(r)p(r) dr. (3.13)
o

From the left-hand side of (3. 11) and the asymptotic be-
havior (3. 5) one finds & = — 87M,Aw, which is (3. 6).
Thus we have two expressions for the rotatory friction
coefficient, viz., (3.7) f,=81m,4 and
81, (7
=3¢ fo r (P p(r) dr. (3.14)

The problem of calculating the rotatory friction coef-
ficient amounts to solving the differential equation (3. 4)
for ¢(») with the conditions that ¢(») behave asymptoti-
cally as given in (3. 5) and be regular at the origin. To
explore the latter condition we note that for the flow
(3. 3) one has

(3. 15)

Hence the condition that ¢(#) tend to a constant at »=0
is sufficient for the stress tensor to be regular at the
origin, Note that (3. 4) is identical to the Schrédinger
equation for the radial wave function (divided by 7) of a
particle scattering with angular momentum /=1 from the
potential k*() at zero energy. Henceforth we shall call
k2(r) the potential, in analogy to the quantummechanical
problem,

(VV), =wr¢' sinb(e,e, + e,8,).

IV. EXPLICIT SOLUTIONS FOR UNIFORM SPHERE
AND SPHERICAL SHELL

For sufficiently simple potentials k*(y) the differential
equation (3, 4) can be solved explicitly, We consider
first the uniform sphere for which

k%(7) = k® constant for 0 <7 <R,
=0 for R<r <o, (4.1

Then one has in the two regions
coshxy sinhky
=B|——~-——75—)f0 €7<
¢(1’) ( 7_2 K‘}’s ) r 0<7<R,

p(r)=1-A/7?

where the constants A and B must be found by fitting the
solutions at ¥=R. The boundary conditions for the orig-
inal problem are that all components of V and the nor-
mal-normal and tangential-normal components of ¢ are
continuous at the boundary surface. These conditions
are satisfied when ¢(7) and ¢'(7) are continuous at »=R.
Hence one finds for A and B

A=RY1+3/0% - (3/0)cotho],
B=3R?/(0 sinho),

4.2)
for R<r<ew,

(4.3)

where o=« R is Debye’s shielding ratio.? Thus we find
that

£, = 8mm,R¥ 1+ 3/0® - (3/0)cotha]. 4.9

Note that with a proper interpretation of constants the
same expression gives the magnetic moment of a super-
conducting sphere in the London theory of superconduc-
tivity. 1!

In the limit of strong potential x -, one obtains for
the effective radius a=R, which is the hard sphere re-
sult. For soft potentials k=~ 0 one has

E=RIgF-Z o'+ 0], Kk-~0. (4.5)

The first term gives the free draining limit for the fric~
tion coefficient. Using f, = 877ya® and n =% 7R%p one finds
f.=¥ntR?

The free draining limit can also be obtained from (3. 14)
by using for ¢ the unperturbed value ¢{#)=1, Hence one
finds for any spherically symmetric density distribution

{free draining). (4. 6)

f.=%n&(r% (free draining), 4.7)

where {(rZ=n"t [ »2p(¥)d». For a uniform sphere (»2)
= ¢ R?, which agrees with (4, 6),

When the segments are distributed in a spherical shell
of radius R one has

2(r)= us(r-R) (4.8)

where 1= £7/M, and 7T is the uniform surface density,
7=n/4rR?. The solutions in the regions »<R and >R
are

¢(r)=B
o) =1-A/r3

0<7<R,
4.9
R<y<oo, ( )

The jump conditions for the original problem are that V
must be continuous at =R, while the tangential -normal
components of the stress tensor jump by [o,,]= 71V, and
loy,]= o1t V, . The normal-normal component of ¢ is
just — P, which is constant throughout. V, is the only
nonvanishing component of V and one easily finds the con-
ditions that ¢ must be continuous at »=R while ¢'(»)
must jump by ¢! —¢’= u¢(R). Hence one obtains

A=R® uR/(3+uR),

B=3/(3+uR). (4.10)

In the limit p— < one finds again the hard sphere result
a=R, while the free draining limit (u~ 0) is A~ uR*/3
which implies f, = 3 #£R?, in agreement with (4.7). From
Eq. (4.10) one finds that the rotatory friction coefficient
of the shell may be expressed as

f,=8mgR® LR/(3+ uR)=8mR® 0¥/(9+0?),

where 0%=3uR = 3nL/4mpR, as in the case of the uniform
sphere,

4.11)

V. ENERGY DISSIPATION AND VARIATIONAL
PRINCIPLE

The differential equation (3.4) can be solved only for
a few special cases and hence we are obliged to look for
perturbation methods allowing us to handle more realis-
tic density distributions, e.g., a Gaussian. In this sec-
tion we show that a study of the energy dissipation leads
to a variational principle which will be useful in numer-
ical work. This variation principle is not related to the
very powerful variational principle introduced by Rotne
and Pragner!? to study the consequences of the hydrody-
namic interaction in the Kirkwood diffusion equation.

From (3. 9) one easily shows the identity
V. (Ve0)=$no(VV)2+n?V2,

Integrating this over a volume { bounded by a surface =

(5.1)
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and using Gauss’s theorem one finds

jv-o»nds:nof [$(VV)2+ k*V¥)dr . (5.2)
T a

The left hand side of this equation represents the work
done on the fluid in @ from the outside," so that the right
hand side gives the energy dissipated in Q. The energy
dissipation is the sum of the usual viscous dissipation

in the fluid and the dissipation due to friction between
fluid and polymer. The friction term can also be written
nk®VEi= —F . V. The total energy dissipation is given by
the integral over all space

W:%J’[%(VV)§+ «*V3dr . (5.3)

For the case of rotational flow one can substitute (3. 3)

and (3.15). Performing the angular integrations one
finds
:83—7Tn0w2f [0 2+ k%P2 |ridr . (5.4)
0
Integrating by parts one can transform this to
87 ©
=3 Mow? [(v‘w') - J' ¢(L¢>r2dr], (5.5)
0 "0
where L is the linear operator
d? d a3
= - . 5.6
L 'rzE;g+4rdr k*(r)r (5.6)

We note that the equation L¢ =0 is identical to (3.4).
Hence the integral in (5.5) vanishes. The first term in
(5. 5) can be calculated from the asymptotic bebavior
(3.5). This yields ‘
W= 877"7qu2 =fr‘-'-’2 ’

as was to be expected.

(5.7)

Another important observation is that L¢ =0 is also
the Euler equation for the functional W as given in (5. 4)
upon variation of ¢. This shows that the energy dissipa-
tion is stationary for the actual flow. Somewhat more
explicitly we calculate W{¢] to second order in variations

o= ¢ +69,

W +09]- wiel~ 2 1o 20 00) | -2
0
X j (60 ) (Lep)ridr+ j- [6p )2+ x2(60)2 1 dr] . (5.8)
0 0

The first line shows that W is stationary when L¢ =0 for
variations 8¢ for which the boundary terms vanish, The
expression in the second line is positive definite, Hence
the stationary point is actually a minimum. This princi-
ple of minimum energy dissipation can be traced back to
the same principle valid for the general form of W given
in (5.3). Since we do not need the more general formu-
lation in this article we shall be satisfied with the sim-
ple form (5. 8).

Suppose one considers a trial function ¢ ,(r)=¢ +&¢,
which is regular at the origin and has asymptotic behav-
ior

pr)=1-0d/7 as r~o (5.9)

2395

with a trial value g, for the effective radius, If ¢ is the
desired exact solution of L¢ =0 with asymptotic behavior
(3.5), then the first line in (5. 8) vanishes and one has
wl¢]<w[¢,]. This can be expressed in two ways, using
either (5.4) or (5.5). The first gives the variational

principle

asséj:[¢{z+xz¢§] rdr (5.10)
while the second gives

a<al -%f ¢ (Lp ) dr. (5.11)

The latter principle has a form familiar from a similar
expression for the scattering length in quantummechan-
ics.’® The former is the most convenient in practical
calculations. Once a variational calculation has been
set up and a best trial function ¢ (r) has been found by
applying either (5. 10) or (5. 11), one can go back to

(3. 14) and compare the values for the friction coefficient
as given by (3.7) and (3. 14).

VI. PERTURBATION THEORY

It is straightforward to do ordinary perturbation theory
with the strength of the potential x%(») as a small param-
eter. We shall carry this scheme only to first order.
The zero order solution ¢4(7)=1 corresponds to the un-
perturbed flow. From (3.4) it follows that the first or-
der perturbation satisfies

721 +4rd] - k¥ (r)r?=0. 6.1)

Solving this one finds

1 1 ¢
()= —é-j 7 k') dr' —FJ‘ v e} dr’, (6.2)
r 0
where we have chosen the constants of integration to suit
the boundary conditions at zero and infinity. Provided
the potential k%(¥) falls off more rapidly than 1/7° the
asymptotic behavior is given by
1 ("
¢4(r)= —3—;§j ' k¥#)dr' + 0(1/7%) as r~w (6.3)
0
If one uses the value for A, implied by Eq. (6.3) in (3.7)
one finds for f, the free draining result (4.6), which we
had found by using the unperturbed function ¢4=1 in
(3.14). The first order correction to the free draining
limit can be found by using the first order function (6. 2)

in (3.14). The result can be cast in the form
0, (1 _2 2y 871 Qf
r e =3nk{r®) 3 o

x j; [ nrtowpernarar (6.4)
0

where 7(7,) is the smaller (larger) of  and »’. For the
important case of the Gaussian distribution.
p(r)=n(3/27(r ) 2exp| - 3r%/2(r?)] . (6.5)

The integral in (6.4) can be evaluated explicitly. In
terms of Kirkwood’s dimensionless parameter

X=(1/67""3)(nt/nelr HY 2) =4 (31 2k3(0)r ?)
one finds

(6.6)

J. Chem. Phys., Vol. 62, No. 6, 15 March 1975

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2396 B. U. Felderhof and J. M. Deutch: Friction of dilute polymer solutions. |

WP =S nt(r®1 - V3X] . ©.7)
Hence to this approximation one has a correction factor
G(X)=1-5V3X+0(X? (6.8)

which is to be compared with a similar factor for the
sphere (4. 4)

G(X)=1-8ViXx+0(x?). (6.9)

This shows that for the Gaussian the corrections to the
free draining result are smaller by a factor of about ;.
The friction coefficient of the corresponding sphere is
smaller than that for the Gaussian. The approximation
(6. 8) to G(X) leads to values for f, that agree within 10%
with the results obtained by Kirkwood, Zwanzig, and
Plock! for X<0.5.

Clearly the perturbation theory can be carried sys-
tematically to any desired order. For strong potentials,
however, a different type of expansion is called for. In
the region where the potential is strong a WKB approxi-
mation should work well. In the region of large » where
the potential vanishes, or at least is weak, the present
approximation scheme will be the most suitable. It is
difficult to devise an analytic scheme which simulta-
neously works in all regions, Thus our strategy will be
to do WKB in the region of small 7, ordinary perturba-
tion theory in the region of large 7, and to fit the approx-
imate solutions by continuity at a point Ry where the po-
tential has an intermediate value. Subsequently the best
value of Ry can be determined by applying the variational
principle (5.10). Finally, the approximate value for the
rotational drag f, is found either from (3.7) and (5. 10),
or by substituting the best approximate function in (3. 14).

The trial function ¢,(7) in the region Ry< 7 <« is

- ‘iﬁ !‘, ° 1 2f ’
¢,('r)-1—73—3r r'ké(r") dr

+317J; r ki) dr' (6.10)
where A, is a constant which will be determined from
continuity of ¢, and ¢{ at ¥=R,. In applying WKB in the
region 0<r< R, we are guided by the known solution (4. 2)
for constant k%, when the two independent solutions of
the differential equation are

e’ 1
¢>*('r)=;—g— (1*5) (constant «). (6.11)
Accordingly we put
on-Lg) _ ¥ (6. 12)
and find for » the differential equation
P = =)y’ = 9)=0 (6. 13)

We now apply the WKB perturbation scheme by writing
KEr)ery’ - $)=0,
¥(r, €)=explx(7, €)/€],

63,,.4‘,111 - €pru -
(6.14)

xX(7, €)=xo(7) + €xa(7) + €¥xalr) + -+,

where € is a formal expansion parameter which finally

is put equal to unity. Expanding in powers of € one finds
to zeroth order

xéaz KZ(,V), XO(T): iJ‘ K(’r')dr’ , (6. 15)
and to first order
x{:_l(i'l_':ﬁlﬁ’ (6.16)
2xg 1-7xy
so that
() 1%3rktr)
)(1(1’)— j K(T') I:F’VK(‘V') . (6. 17)

We therefore have to this order the two independent so-
lutions

$.(r) = explx K(r) - L(n)], (6.18)
where
~ r , Kl(,r/),rl ,
K("')‘J(; I:K(r )+ 1- k2"’ 2] ar’,
(6.19)

C(TKr) 1-3kE(y ',
L(r)—fo 2k(r’) 1 -w2(r)r'2 .
The trial function ¢ () in 0< < R, follows from (6. 12)
and must be chosen as the linear combination which is
regular at ¥=0. Hence on (0, Ry)

{ [wir) —;M(ﬂ] _ (9.1 —;P-(V)]} . (6.20)
v

¢ r)=3%B, 7

Finally the constants A, and B, are determined by re-
quiring continuity of ¢, and ¢; at r=R,. This leaves R,
as the only undetermined parameter.

The trial function ¢ (7, Ry) can now be substituted in
(5. 10) and the best value of Ry can be determined, The
rotatory friction coefficient follows from (3.7) with
(5.10), or from (3. 14). Note that for the uniform sphere
one automatically finds the exact solution. Numerical
work on the Gaussian distribution will be reported else-
where.
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APPENDIX

In this appendix we demonstrate a fundamental prop-
erty of the Oseen fields, Consider a velocity and pres-
sure distribution (V, P) defined by

V(r)= j T -r')- X(r')dr’
(A1)
P)= [Qe - 1) X dr,
where T(R) and Q(R) are defined in (2. 3), and where

X(r) is a given continuous force density. We shall prove
that then

NoVV -VP=-X(r), V°-V=0. (A2)

By differentiation one has
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gy + Oayls+ 0geqs — 3aese,]

(A3)
where e=R/R. When differentiating V in (A1) one must
be careful with the interchange of differentiation and in-
tegration. The integrals in (A1) do not change in value
when a small sphere of infinitesimal radius € and r is
excluded from the region of integration. Hence one finds

8Tqs/0R, = (1/8moR)| -

8Vo _
a7, 087,

f TopXpdr'= J’ —-—ﬁX dr' - f T e Xge, ds ,
8

(A4)
where the second integral is over the surface of the
small sphere, Taking the limit €~ 0 one finds that the
surface integral vanishes, From the first integral and
(A3) it follows that V- V=0, Taking a second derivative
of V, one obtains

82 Va Iﬂ aszﬂ X

8T
= [ %las
97,87, 87,87, Is o7, Xato s . (45)

Substituting (A3) one can perform the angular integra-
tions over the surface of the small sphere using
€a€s5=% Oap, €q€p6y€5 = 'i% (548070 + 6 ayOss + Basdsy) (A6)

where the overhead bar indicates angular averaging.
Hence one finds

1
f——ée,ds-l 57 (4000 ~0mbm =0l (A7)

a7,
so that
9%V, I“ 83T, 2
= —=oB vy odr' ——X (r) . (A8)
87,87, " ) 8787, ° 3
Similarly
9 Q
i:f 59 oy Xadr 43X, (x) . (A9)
o7y J

Combining these identities using (2.4) one finds that
(A2) is satisfied. This analysis also shows that Egs.
(2.17-19) are consistent with (2, 12),
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