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A new formal relation is obtained for the frequency-dependent dielectric constant of a polar material
in terms of a dipole “memory function,” i.e., a modified correlation function with projected
propagator. In contrast to conventional expressions for the dielectric constant in terms of
dipole—dipole correlation functions, the memory function expression does not depend on sample shape.
The memory function may thus be calculated either by considering the total dipole moment of a
molecular sample in vacuum or the dipole moment of a smaller region embedded in the sample. It is
shown that this formalism agrees with usual expressions for the dielectric constant and particular
relations between the dielectric constant and dipole correlation functions of embedded regions.

. INTRODUCTION

In the conventional linear response theory of dielec-
tric relaxation in polar media, the polarization of a
system is related to the external field acting on the sys-
temvia a dipole correlation function expression. Formal
relations between the dielectric constant and the dipole
correlation function are derived by expressing the ex-
ternal field in terms of the average field in the medium
by use of Maxwell’s equations, As is well known, the
forni of these relations depends on the shape of the sam-
ple and on the nature of its surroundings, although on
physical grounds we expect the dielectric constant to be
a property of the material independent of sample shape
or surroundings. Considerable controversy !~® has
developed over the correct relation between the dielec-
tric constant and the dipole correlation function of a
small sphere embedded in an infinite continuum of the
same material. This sample geometry has received
particular attention, as in the Kirkwood® theory of the
static dielectric constant, because it presumably elimi-
nates the need to consider surface effects in the calcula-
tion of the dielectric constant. Furthermore, it is al-
leged that the embedded sphere correlation function is
more directly related to relaxation processes on a mo-
lecular level than the corresponding quantity for other
sample geometries, e.g., a sphere in vacuum. The
controversy arises over the correct treatment of the
effect of the surrounding medium on the interactions
between particles in the embedded region, which is rep-
resented by a reaction field that generally depends on
time and on the past history of the motion of these par-
ticles. A recent analysis by Titulaer and Deutch® of the
conflicting proposed relations between ¢ (w) and the em-
bedded sphere correlation function concludes that the
Fatuzzo-Mason"? expression is correct while that pro-
posed by Glarum3~® is not.

In this paper we obtain a formal expression for the
dielectric constant e{w) which, in contrast to relations
between €(w) and the dipole correlation function of a
sample, is independent of sample shape or surroundings.
Our motivation for seeking such an expression for ¢(w)
is to circumvent the past controversy as well as to eluci-
date the long-range character of the dipole correlation
function., Furthermore, such an expression should be
convenient for carrying out molecular analyses. Thus
we proceed with a similar motivation and approach as
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that recently adopted by Cole, ® although our conclusions
differ greatly from his, While the formal shape inde-
pendent expression we obtain for €(w) is new, it is quite
possible to arrive at apparently different expressions
by alternate derivations. If the analyses are correct,
we expect these different expressions to be equivalent.
In particular we remark that the result recently obtained
by Fulton® from a different point of view is equivalent
to the result presented here, Our approach, however,
has the advantage of giving a formal expression for ¢(w)
which reveals more explicitly the dependence of €(w)
on molecular quantities.

The model of the fluid we adopt consists of molecules
bearing permanent dipole moments and, in addition, in-
teracting via arbitrary short-range anisotropic forces.
The complication of molecular polarizabilities is not in-
cluded here.

In Sec. II we demonstrate that € (w) may be related
to a dipole “memory function” which arises in a formal
expression for the shape-dependent dipole correlation
function. This expression is constructed by use of an
appropriate projection operator which eliminates the
shape dependence in the relation between ¢(w) and the
memory function, and accordingly the latter is asserted
to be a short-range quantity independent of sample shape.

The analysis in Sec. II is carried out for samples of
arbitrary shape in vacuum. We demonstrate that the
memory function may be evaluated by considering only
the dipole moment in a smaller region embedded in the
sample. In Sec. III it is shown that this formalism is
consistent with expressions relating €(w) to the dipole
correlation function of the embedded region. Here we
treat at the outset both the immersed region and sur-
rounding as a molecular dipolar medium and formally
incorporate all interactions between dipoles in the two
regions, With minor approximations, such as neglect-
ing surface effects between the two regions, the usual
relations for the dielectric constant are obtained,

Since the relation between €(w) and the memory func-
tion is the same regardless of sample shape,the memory
function is a natural quantity on which to base calcula-
tions of the dielectric constant. Such modified correla-
tion functions have been the basis of numerous investi-
gations of nonequilibrium phenomena, *° and in the pres-
ent case should provide a suitable starting point for in-
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troducing refined relaxation models, %!

il, THE DIPOLE MEMORY FUNCTION

In this section we apply the techniques of linear re-
sponse theory to compute the polarization of a system
of N molecules bearing permanent dipole moments, con-
fined to a volume V of arbitrary shape in vacuum, when
the dipoles interact withan external electric field Eylr, ).
The Hamiltonian for the system is

H(t)=Hy, —f dr’ u(x") By (x', 8), 2.1)

where Hj is the time-independent Hamiltonian in the
absence of the external field; u (r) is the dipolar density,

u(r)=2q: ped(r — 1), (2.2)
i=1

where W, is the dipole moment of molecule ¢ with posi-
tion r;, and the dependence of p; on orientation w,; is not
explicitly indicated. The polarization P(z, f} of the sam-
ple is equal to the nonequilibrium expectation value of
the dipolar density in the presence of the external field,
From linear response theory'? we find

P(r,t)= [ at’ f ar' (e, r';t') e Bylr', =),  (2.3)
0 v
where the response function x(r, r’; f) is given by
XT38 = - B2 WO, 1), (2.4

In Eq. (2.4) the angular bracket denotes an equilibrium
cannonical ensemble average with respect to the Hamil-

tonian H,, and the time dependence
W(r, 1) = Lot u(r) (2.5)

is determined by the Liouville operator L, of the unper-
turbed system governed by H,. For an external field
with time dependence

Eq(r, £) = Ey(r, w)etvt,
we find that the steady-state polarization
P(r, 1) = Pr, w)e et

is given by
P(r, w) = f dr'j(r, r'; )« By(r', @), 2.6)
where
xX(r,r';w) = f dtoty(r, r's 1). 2.7)
0

In the long wavelength limit, i,e., when the wave-
length of the external field is large compared with the
sample dimensions, the average macroscopic field in
the sample E(r, w) is related to the polarization by!'®

E(r, w) - Ey(r, w) + f ar'T(r, r') « P(r', w), (2.8)

where T(r,r’') is the dipole-dipole tensor

T(r,»')= vv—l—, .
lr-r")

We introduce the space-dependent susceptibility

Xolr, r';w) as the coefficient relating the polarization to
the average field E(r, w) as follows:
P(r, w) =f dr' Yoz, r';w) E(r', w). (2.9)
v
From Egs.

sponse function ¥ (r,r
are related by

(2.6), (2.8), and (2.9) we find that the re-
“w) and susceptibility ¥,(r, r’; w)

X(r,r';0) =Xo(r, 75 0)

+f drdr, io(r, ;@) e Ty, 15) ° X(rp, v'50).
v

(2.10)
In the limit of zero frequency, ¥(r, r’;w) becomes the
static dipolar density correlation function,

X(r, r';w=0) = Bp(r)p(r)), (2.11)

which can be analysed using the microscopic theory of
Nienhuis and Deutch.* The microscopic expression for
the static correlation function, Eq, (2.11), is

(W) )= j dw, dw, Hy(r, w3 ', wp) plw,) plw,),

(2.12)
where (in the notation of Ref. 14}
Hz(r, wl;r,, wz) = (p/ﬂ) 6(1‘ - r’) G(wl - wz)
+Gz(r,wl;r1,wz). (2.13)

In these equations, w; denotes the orientation of dipole
i, = [dw,, and p=NV"! is the number density; G,(r, w,;
r’,w,) is the reduced two-particle correlation function
for positions and orientations. From the analysis of G,
in Ref. 14 it can be shown that X(r,r';w=0), Eq. (2.11),
satisfies an integral equation analogous to Eq. (2.10).
In this zero-frequency limit ,(r, r’;w =0) is given by

X, r'w=0)= 3[‘1‘”14‘”2”2(0)(3', Wy, wy) w(w,) p(wy),

(2.14)
where H{® is obtained from H, by replacing G, in Eq.
(2.13) by the function G{’. Nienhuis and Deutch'* have
demonstrated that G{* is of short range, and therefore
X, r'; w=0), Eq. (2 14), is a short-range function.
For 1sotrop1c media, the static dielectric constant is
given in Ref. 14 by

€0)~1

—a—) =B/‘:dwldwz dr’ HO(r, w,;r";w,) plw,) plw,)

where | is the unit tensor.

(2.15)

It We tentatively assume that for arbitrary frequencies,
%(r, r’; w) is of short range and the average field E(r, w)
has neghglble spatial variationover the range of ¥, (r, r Lw),
then Eq. (2.9) may be written as

P(r, w) =€—(%:—1— E(r, w), (2.18)
where
e(“’) L fdr Ro(T, r'50) . (2.17)
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If X, is indeed short-ranged, the integration in Eq. (2.17)
may be extended over all space and accordingly this for-
mal expression for €(w) will be entirely independent of
the sample shape. The expression for €(w) in Eq. (2.17)
generalizes to arbitrary frequencies the expression for
the static dielectric constant in Eq. (2.15).

We seek an alternative expression for X,(r,r’; w) and
proceed by constructing a formal relation for the shape-
dependent response function ¥(r,r’;w) in terms of a
modified dipole correlation function by means of a pro-
jection operator. This procedure follows closely the
projection operator theory of Zwanzig”® and Mori'® for
evaluating time-correlation functions. With the explicit
time dependence given in Eq. (2.5), the response func-
tion x(r,r’; f), Eq. (2.4), may be written as

x(r,r’s )=~ B% (u(rettot u(r'))

= - B(u(r)et ot iLy u(r')). (2.18)

We introduce the projection operator P defined by its
operation on an arbitrary function O(r):

PO(r) =p f dr, dr, p(r) - S(r,, 1) (u(r,) 0@),  (2.19)

where S(r,, r,) is the inverse of the static correlation
function ¥(r,, r,; w=0), Eq. (2.11), in the sense that

fu dr”x(r,r"; w=0). 8{x", r')=1 8(r-r’). (2.20)

One verifies with Eqs. (2.20) and (2.11) that P defined
by Eq. (2.19) is idempotent: P%=P. Next we use the
operator identify

ot Lot = i -P) gt +ft ds eiLes PiLyet t-PILpt=9  (3.21)
0
in Eq. (2.18) to obtain
(@, r';8) =~ Blp(r) e ¢P ot 5Ly pu(x")
t
- p? L ds f dr, dr, (u(r) e**o p(r,))
v

- S(ry, T,) - (Blr)iLye* P Tt 51 u(r’).
(2.22)
Using the relation
Pet-Pilgt = p
which follows from the fact that P is idempotent, and
using
(w(r)iLy uir)) = {u(r) (")) =0,

one can show that the first term on the rhs of Eq. (2.22)
vanishes, Therefore Eq. (2.22) can be written

xr, v’y =8 fo “ds [ dr, dr, (u(x) 70* ulr))

. s(ru rz) . (Il(rz) et “'P)Lo(t-s)h(r’»- (2.23)

The function f((r, r'; w) in Eq. (2.17) is the Laplace trans-
form with transform variable —iw of x(r,r’;#). Taking
the Laplace transform of Eq. (2.23), using the definition
in Eq. (2.18) and the relation between the Laplace trans-
form of a function and the transform of its derivative,
we find

iwX(r, r'; w) :f dr dry[X(r, T3 0) - X(x, 743 0 =0)]

. S(r,, ry) - K(Tyr'; w)=~k(r, r'; w)

+f drldrzi(r, r;w). S(ry, r,)- fc(rz, r's w),
v

(2.24)
where in obtaining the second relation we have used Eq.
(2.20), and defined k(r,r’; w) by

k(r,r';w)=£[8u(r) e ©Prot 4(x))], (2.25)
the symbol £ denoting Laplace transform with z = — jw.
We now seek a relation between the modified correla-

tion function K(r,r’; w) and the susceptibility X,(r,r’; w).
We shall prove that this relation is

iwXy(r, 1’5 w) = —&(r, r'; w) +f dr, dr, X,(r, 13 )

« Sy(ry, 1) - R(ry, 15 w), (2.26)
where Sy(r,, r,) is the inverse of the short-range corre-
lation function ¥,(r, »’; w =0), Eq. (2.14), in the sense
that

fdr"so(r,r”)- Xor', rie=0=18r-r). (2.27)

To establish Eq. (2.286) it is convenient to employ a con-
densed operator notation, We first rewrite Eq. (2.10)
as

$(@) = Xo(@) + Xp(w) * T *¥(w) (2.28a)

or

Xolw) =X(@) *[1 + T* X(w)], (2.28b)

where the explicit dependence on the spatial arguments
has been suppressed and A* B symbolizes the convolu-
tion
A*B:fdr”A(r,r')-B(r”,r'). (2.29)
v
In Eq. (2.28b), 1 denotes the function [5(r — 1), If we
operate on Eq. (2.28a) in the w =0 limit with §;, and if
the resulting expression operates according to Eqg. (2.29)
on S, we obtain using Egs. (2.20) and (2.27)

S$=5,~T. {2.30)
In the same notation, Eq. (2.24) may be written
X(w) =R(w)*[S* R(w) = i(w)L] ™. (2.31)

Eliminating X(w) between Egs. (2.28b) and (2.31), mak-
ing use of Eq. (2.30), leads to

Xo(w) =K(w)* [Sp* K(w) —twl]™?, (2.32)

which is equivalent to the relation Eq. (2.26) that we
wish to establish.

The noteworthy feature of the relation between Xo(w)
and K(w) in Eq. (2.26) is that it involves only S,, the in-
verse of the static short-range correlation function,
which is itself of short range. In contrast, the relation
between ¥,(w) and x(w) in Eq. (2.10) explicitly contains
the long-range dipole-dipole tensor T.
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We shall assume that K(w) is short-ranged, Then we
may conclude from Eq. (2.26) that X,(w) is also short-
ranged and hence the dielectric constant €{w) may be ex-
pressed by Eq. (2.16). We shall further assume that

k(r, r’; w) depends only on the separation [r—r’|. Then,
for isotropic media
J'dr'?c(r, s w) =k(w)1, (2.33)
v
where k(w) is a scalar quantity independent of r. Note

that because of the assumed short-range character of
k(r,r’; w), the region of integration in Eq. (2.33) need
not be extended over the entire volume V. The integral
becomes essentially independent of the region of integra-
tion once past the range of #(r, r’; w). We shall use this
fact shortly.

From Eqgs. (2.15) and (2.27) one sees that

fdr S,(r, r)= (0)

Integration of Eq. (2.26) over r’ and use of Egs. (2.17),
(2.33), and (2.34) leads to the result

| (2.34)

€lw)-1 D)
0y -1 Dlw)-iw’ (2.35)
where
_4r k(w)
Dlw)=coy—1 (2. 36)

The result Eq. (2. 35) for the dielectric constant has
been d;erived for arbitrary sample shape. In particular,
Eq. (2, 35) does not display any explicit shape-dependent
terms as are obtained in relations between €{w) and the
dipole—-dipole correlation function based on Eq. (2.10).'®
The molecular analys1s required to justify the assump-
tions that ik, r'; ;w) is short range and translationally
invariant will be formidable, but we beheve on the ba-
sis of experience with the static case, possible. We do
not undertake this task here.

The function 2(w) defined by Eq. (2. 33) may be written
ina more explicit form by noting that

f dr’ p(r)=M,

where M is the total dipole moment of the sample in V.
Then from Eq. (2. 33) and the expression for k(r, r’;w)
in Eq. (2. 25) we find

= (8/V)E[(Mé* @-PZot ¥y, (2.37)

where we used the assumption that the integral in Eq,

(2. 33) is independent of r to replace the variable ()
by MV™'. The function (Me! "PZot ) is the unnormal-
ized memory function one usually encounters in evalu-
atmg the t1me correlation function (MM(?)) in the Zwan-
zig! -—Mor1 formalism, The expression Eq. (2. 35),
togethe-r with Eqs. (2.36) and (2. 37), provides a formal
relation for e(w) in terms of the memory function,

There are a number of techniques for approximate eval-
uation of these modified correlation functions, for ex-
ample methods based on Mori’s!? continued fraction ex-
pan5101‘1 of the memory function, !®

k(@)

Because the modified correlation function R(r,r’;w)
is expected to be of short range, one need not be con-
cerned with sample shape dependence in evaluating the
memory function 2(w). The short-range character of
*®(,r’;w) also suggests that an alternative expression
for k(w) may be obtained by considering the sample
volume V to be composed of two regions, an embedded
volume V| of arbitrary shape and a surrounding volume
W. The alternative expression for k(w) is

E(w)1 =f,—£ [(xhe“l"”“'ﬁa)], (2.38)
0
where m refers to the dipole moment of the embedded
region V,. The definition of P, L, and the implicit
equilibrium distribution function in Eq. (2. 38) still
include all molecular interactions in the composite re-
gion (Vy+ W), The expression Eq. (2.38) may be estab-
lished by extending the region of integration in Eq. (2.
33) only over the embedded volume V, rather than the
entire molecular volume V= (V,+ W). This step is jus-
tified due to the assumed short-range, translationally
invariant character of k(,7’; ), provided # in Eq. (2.
33) denotes a position within the embedded region V
which is not near the boundary of V, and the latter in-
cludes the range of variation of k¢, 7"; w).

In the following section we shall demonstrate that the
formalism outlined above, in particular Eq. (2. 38), is
consistent with treatments relating the dielectric con-
stant to the dipole correlation function of the embedded
volume V.

111, CORRELATION FUNCTIONS FOR EMBEDED
GEOMETRIES

Most previous theories of dielectric relaxation in
polar media have considered the relation between the
dielectric constant €(w) and the dipole correlation func-
tion of a small sphere embedded in an infinite continuum
of the same material Egs. (1)-6). In this section we
shall examine the more general case where the em-
bedded sample is of arbitrary shape and the surround-
ing medium, is'allowed to have a different dielectric
constant €,(w).

As in the previous section, we consider the entire
molecular medium to occupy a volume V, which is
composed of an immersed region of volume V, and a
surrounding region of volume W, The response func-
tion § (r,7'; w) is defined by Eqs. (2.4) and (2.7), where
the ensemble average and Liouville operator L, depend
on all interactions between particles in the entire re-
gion V ={V,a+ W). The expression Eq (2. 10) relating
R, 7";w) to the susceptibility X, 7";w) and Eq. (2.26)
relating the latter to the modified correlation function
Tc('r, 'r',; w) are unchanged; however, we shall rewrite
these equations to explicitly indicate that V is composed
of the sum of V, and W:

X(r,r'0)=X,(r, 1" 0)
+ f drl drzio(r, rl;w) °T (r1, rg)
wopw)

* X(r,, v’ 0); (3.1)
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iwXo(r, 1';0) = - k(T r';w)
+f dr, dr, X,(r, vy @) * Solry, 1)
wgw)

sk(r,r';w). (3.2
We shall again assume that £(r, r’; w) is of short range.
It follows from Eq, (3. 2) that xo(r, r’; w) is of short
range and accordingly the dielectric constant at some
point r in the medium is given by Eq. (2, 17), which in
the present notation can be written as

elr;w)-1 =

ym (3.3)

f dr'¥,(r, v';w),
wgiw)
where we have allowed the possibility that the dielectric
constant depends on position in the sample. Due to the
short-range character of ,(r, r’;w), the integration in
Eq. (3.3) gives a non-negligible contribution only when
r’ is within a microscopic region surrounding point r,
We shall consider the case where

€(w) rin V,

e(r;w)= { (3.4)

€(w)rinw '

If the arguments r and r’ are positions in the embedded
volume V, but are not within a nicroscopic region at the
boundary of V,, the region W gives a negligible contribu-
tion to the integral in Eq, (3.2). In this case Eq. (3.2)
may be written

iwXolr, ¢’ ;w) = - k(r, v’ ;w)

+ J dr.dr, Xo(T, T';w) * Sylry, T,)
vo

(3.5)

Neglecting surface contributions which arise when r or
r’ are near the boundary of V,, we can obtain from Eq.
(3.5), by integrating r' over V,, the result for the di-
electric constant €(w) of the embedded volume given in
Eq. (2.35). This procedure also results directly in the
expression Eq. (2. 38) for k(w) in terms of the memory
function of the embedded region.

s K(r,, 1 w).

Next we investigate the relation between €{w) and the
time-dependent dipole—dipole correlation function ¥, 0(w)
of the embedded region V,, which is given by

d I
"vo(“’):'x%"c[a?(m m(t)>] = fvodr X(r,r';w), (3.6)

where the argument r in ¥(r, r'; w) is a point in V, which
is not near the boundary. In Eq. (3.6) one integrates
only over the embedded volume V,, while the relation
between R(r, r’;w) and the susceptibility ¥,(r, r';») in
Eq. (3.1) involves integrations extending over the en-
tire region V=(V,+ W). We shall demonstrate by elimi-
nating the integrations over the external region W that
Eq. (3.1) can, with minor restrictions, be written as

X(r,v’;w)=%o(r, v’ ;w)+ | dridrgy(r, r;w)

Yo
. [T(rl, r2)+ HW(rb rz;el(w))]

- R, v50) 3.7

D. E. Sullivan and J. M. Deutch: Molecular theory of dielectric relaxation

In Eq. (3.7), Ry(r, r’;€,(w)) has the physical interpreta-
tion of a “reaction field” tensor; R,(r,r’;¢,(w))« P is
the field at r in V, due to polarization of the region W
caused by a dipole P oscillating with frequency w at
point ' in V,, when V, is empty and W is filled with a
continuum of dielectric constant €,(w).

This equation may be understood in the following way,
In the presence of an external field Ey(r, w) which inter-
acts only with the dipoles in the embedded region V,, the
polarization at a point r in Vj is given in linear response
theory by

Pr,w) - f ar'§(r, r';0) « Eolr, w) . (3.8)
Vo
When the external region W is a macroscopic continuum
of dielectric constant €,(w) the relation that holds be-
tween E(r, w) and the average field E,(r’,w) in the long
wavelength limit is!*

E,(r, w)= Eo(r, w)

+ [ ar'[T(r,r')+Ryr, v’ &(w)] e P(r;w) .
"o (3.9)
The subscript m on E,(r, w) denotes the fact that this is
the average field inside Vi, when W is a macvoscopic
continuum. We seek a relation between the polarization
and E,,(r, ) of the form
P(r, w)=| dr'¥(r, r’;w)s E,(r, w). (3.10)
Yo
From Eqgs. (2.8), (3.9), and (3. 10), the relation be-
tween {(r, r’; w) and Xo(r, r’; w) is found to be that given
in Eq. (3.7). Therefore, Eq. (3.7) is the appropriate
relation between §(r, r'; w) and Ry(r, r’; w) when the vol-
ume V, is embedded in a macroscopic continuum W of
dielectric constant €,{(w). We shall demonstrate later
that Egs. (3.6) and (3. 7) lead to well-known relations
between €(w) and Xy,(w). For the present, we wish to
show that, with minor restrictions, Eq. (3.7) for ¥(r,
r’; w) is equivalent to Eq. (3.1). We emphasize the fact
that Eq. (3.1) is exact and that the functions £(r, r’; w)
and §o(r, r’; w) depend on all interactions between dipoles
in the entire region V= (Vy+W).

One notes that the equivalence of Eqs. (3.7) and (3.1)
for the relationship between ¥ and ¥, is analogous to the
equivalence of Egs. (3.9) and (2. 8) for the relation be-
tween E and E,. Neither Eq. (3. 9) nor Eq. (2.8) re-
quires a constitutive relation to hold between P and E.
If we assume that W is a dielectric continuum where
forx’/ in W,

PG, w)= =2 g, ),
and that E, vanishes’in W, then it can be shown by mac-
roscopic electrostatic arguments that Egqs. (2.8) and
(3.9) are equivalent., This demonstration is based on
relations satisfied by the reaction field tensor Ry de-
rived previously'* and summarized in the Appendix. A
similar procedure will now be employed in the micro-
scopic analysis to show that Egs. (3.1) and (3.7) for
x(r, r%w) are equivalent when both r and r’ are points
in the embedded region V.
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If Xo(r,r’; w) is of short range and r is in V; (however
not in a microscopic region near the boundary of V;) the
integration in Eq. (3.1) over r; will give a negligible
contribution unless r, is in V;,. We then write the inte-
gral in Eq. (3.1) as the sum of two terms, depending on
whether r, is integrated over Vj or W:

X(®, r'; w)=X,(r, r';w)

+ j drl drzio(r, rl; w) 'T(rl, 1‘2) . i(rz, r’; w)
Yo

+ | dryXolr, 15 0) - Alry, T 0), (3.11)
Yo
where we have defined
A(r, r’;w)=f dr'’ T(r,r'")e X(*'',r'; w) . (3.12)
W

The arguments r and r’ in A(r, r’; w) are points in the
embedded region. The function A(r, r’; w) can be evalu-
ated by substituting for X(r'’,r’; w) in Eq. (3.12) the re-
lation Eq. (3.1). At this stage we introduce two approx-
imations. The arguments r’/ and r’ of X(r'’,r';w) in
Eq. (3.12) denote postions in the regions W and V,, re-
spectively. Then, except for a microscopic region at
the boundary between Vy and W, the short-range function

J

4

Xo(r'’, *'; w) is essentially zero. Thus our first approxi-
mation is to neglect entirely the boundary effects be-
tween V; and W. In this case Eq. (3.1) can be written
('’ in W, r' in V)

i(!‘”, r,; w) =[ dr],j(- )drzio(r": Ty, w) T (1'1, rz)
w votw

- X(rg, 1’5 w). (3.13)
The second approximation is to replace the short-range
function ¥o(r*’, ry; w) in Eq. (3. 13), where both argu-
ments denote points in the region W, by the local func-
tion

Ro(e", ry; @)= =Ly (3. 14)

which is consistent with the definition of the dielectric
constant of W in Eqs. (3.3) and (3.4). Thus Eq. (3.12)
for A with use of Eqs. (3.13) and (3. 14) becomes

Alr,r'; w)

€ -1
S e T
w

vgtw)
 X(rz, v’ ), (3.15)
which can be rewritten as an integral equation for A :

Alr,r’; w)= ﬁ%i[j; ,dl'1d1‘aT(!', ) T(ry, 1) 52(1'2, r'; w)
vo*w

—f dr,dr,T(r, r)) - T(ry, rs) - X(rz, r'; ) —f dryT(r, ry)«Ary, r’; w)] ,
00 00

(3.18)

where the definition of A in Eq. (3.12) has been employed. From the Appendix, Eq. (A2), we have the following

relationship:

4 -
[ dry T(r, ry)« T(ry, r)= - 47 7T(r, T2+ (w;r_'l‘ Rty o) (7, T25 €7 (w))
Vo) 1

'I dry R’("vown (r, ry;€w) . Tlry, 1p).

(VW)

3.17)

This is an exact mathematical relationship despite the appearance of the parameter €,{w) on the rhs of Eq. (3.17).

The mathematical integrity of Eq. (3.17) is assured by regarding it as the definition of the quantity R’{VO,,W, . How-
ever, it turns out that R’("vo.w, can be given a simple physical interpretation in terms of macroscopic electrostatics.
Rather than pursue the mathematics we adopt the physical picture herewith. Thus R’{V o) is interpreted such that
Rivew) (T, £’ €1(w)) » p is the reaction field at r due to a dipole p at r’ when the total volume (Vo+ W) is empty and the
infinite space outside (V,+ W) is filled with a continuum of dielectric constant €;*(w).

When Eq. (3.17) is substituted into the first integral on the rhs of Eq. (3.16), use is made of the result (r, r’in
Vo) v

-1/ ~ € -
dera Ry (T, T2;€Hw)) - x(ra,!";co)=“1(“"l—1 f dry

47 dry R’(kvo’W)(r: ;€ W) Ty, T2) - X (xz, ;5 0),
.4

(Vg+w)

which follows in the same way that Eq. (3. 15) is derived from (3. 12), and using again the definition of A in Eq.
(3.12), we find that Eq. (3. 16) becomes

€ (w)A(r, T'; w)= f a1, [RYypor(T, Ty €54(w)) + (1 = €(@DT(x, 1)) *X(ry, '; ©)
o

€(w)-1 . -
—(—-’%——)j dry[T(r, £)) +Rigum(T, Ty ef(w))]*[A(r,, r'; w)+f dr, T(ry, 1,)* X(xp, r'; w)].
vg ”0
(3.18)
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The solution to this equation is

A, 15 @)= [ drgRy(r, 5 eyf@)) s Rty T ),
Yo

(3.19)
where R, is the reaction field tensor for the reaction in-

side V, when the latter is empty and the region W is filled

with a continuum of dielectric constant €,(w). This re-
sult can be verified by substituting Eq. (3.19) into (3. 18)
and noting that the resulting integral equation for R, is
identical to Eq. (Al).

With the result Eq. (3.19) for A we find that Eq. (3. 11)
becomes

X(r, v @) =R(r, 75 w)+ [ drydr,Rolr, 755 0)
Y,
0

* [T(rn rz)+Rw(r1, rz,' 61(“’))].)2(1‘27 rl; (JJ),

which is the desired result, Eq. (3.7), for the response
function.

To summarize, we have shown that the exact integral
equation Eq. (3.1) for x(w) reduces to Eq. (3.7), which
is the form appropriate for the response function of the
embedded region V, when the surrounding W is treated
as a macroscopic continuum. This result has been ob-
tained under the approximations that boundary effects
may be neglected and that )Zo(r, r’; w) is a local function
of the form Eq. (3.14) when its arguments denote points
in the external region W. Formally, however, interac-
tions between the two regions are still to be included in
evaluating the susceptibility )Zo(w) of the embedded vol-
ume, Although it is beyond the scope of this paper, we
expect that a detailed microscopic analysis of X4(r, r’; w),
or equivalently the modified correlation function
k(r, r'; w), would reveal that interactions between di-
poles in V, and those in W give negligible contributions
to these short-ranged correlation functions. This is in
keeping with the physical expectation that the dielectric
constant of the embedded region is independent of the na-
ture of the surrounding medium.

We shall conclude this section by verifying explicitly
that Eq. (8.7) for the response function of the embedded
region, when used to compute the correlation function
xvo(w) in Eq. (3.6), leads to expressions for the dielec-
tric constant which agree with previously derived re-
sults, We shall restrict ourselves to consideration of
uniform polarization geometries, that is sample shapes
for which the integral (r in V)

F(w)Ef dr'[T(r, r')+R,(r, r'; €,())]
Yo

|

FIG. 1. An example of the system considered in Sec. III. A
sphere of radius a and dielectric constant €(w) is embedded in
a larger sphere of radius R and dielectric constant €, (w).

is independent of r. In particular, we shall consider the
geometry illustrated in Fig. 1. V, is a sphere of radius
a and W is a concentric spherical shell of outer radius R.

By integrating both sides of Eq. (3.7) over r', we ob-
tain using Eq. (3.3), (3.4), and (3.86)

- - -1
&uo(w)f(‘;’zr 1 [l-(‘(“’zﬂ 1) F(w)] . (3.20)
From Eq. (Al), one can show that
-1
F(w):il(lw)[|+<€1(°‘2ﬂ‘ I)G(w)] -G(w), (3.21)

where (r in V,)
G(w)= [ dr'[T(r, 1) +Rpu(®, 75 .
Yo

When the outer surface of W is a sphere of radius R,
Eq. (A3) gives an explicit expression for the reaction
field tensor R{yg.w). From this one finds for the case
where V; is a concentric sphere of radius a

. -87 fe,(w)—1)\ d&°
f% dr'R(’:'o'rW)(r, r'; €(w)) =—§—<—1_——) i I

€, (w)+2 (3.22)
This equation, together with the result for a sphere
dr'T(r,r') = _34ﬂ ,
Yo
gives

].. (3.23)

Glw) = —47 [(el(w)+ 2) B + 2(¢;(w) = 1)a®

3 (e,(w)+2)R*

This result for G(w) is substituted into Eq. (3.21) for F(w), which in turn leads to the expression for xVo(w),

X;ﬁ(w) = E((;)T_ 1 {

The expression Eq. (3.24) relates the dielectric con-
stant €{w) of a sphere of radius ¢ embedded in a larger
sphere of radius R and dielectric constant €;(w) to the

(2€, (w) + 1X€ ;(w) + 2)R® — 2(g, (w) = 1¥a’ ] |
(€1(w) + 2x2€1 (w)+ E(w))Rs + 2(€2(w) - 1)(€(w) -€ (w))as )

(3. 24)

|

Laplace transform of the dipole-dipole correlation func-
tion of the embedded sphere. This result agrees with
Eq. (2.1) of Ref. 19 when the latter is specialized to
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this case. In the case a=R, Eq. (3.24) becomes

_ 3 (ew) - 1)
Xp(w) Tan (e(w)+2 I
which is the well-known relation between €(w) and the
correlation function of a sphere in vacuum. On the other
hand, when R>>a and ¢;(w) =€(w), we obtain from Eq.
(3.24)

(3.25)

_(elw) —1X2€(w) +1)
©) = e (@) :

which is the relation, first derived by Fatuzzo and Ma-
son, ! for a sphere embedded in an infinite continuum of
the same dielectric constant.

Xv,( (3.26)

The long-range part of the polarization fluctuations
in the embedded sample V; may be determined from the
expression Eq. (3.7) for X(r, r'; w). From Egs. (2.4)
and (2. 7) the polarization fluctuations are related to
X(r,r'; w) by

X(r,r';w)= —ﬁ«ﬁ[ft-(u(r)u(r', ¢ )>] .

The long-range part of these fluctuations is defined by

Xr, o5 w) =X, 175 ) - Ro(r, 5 w). (3.27)
Thus we may write Eq. (3.7) as
Xilr, v 0) =f dry dr,(r, Ty w)
%
[ T(ry, 12) + Rylry, 125 €(w))]
[ Xo(ra, 15 @) + Xy, 775 )] . (3. 28)
When X(7, #; w) is approximated by (r,r’ in V)
Rolr, 15 @) =821 o), (3.29)

Eq. (3.28) becomes

_1\2
Xdr, r'; w) =(ﬁ-%—L> [T(x, r'; w) + Rp(r, r'; €, (0))]

+(i‘;’—1),_—1)ihdr"[ﬂr, )+ Ry(r, r''; €(w))]

niL(r”, r’; (.0). (3.30)

This equation involves both parameters €(w), €(w).
Using techniques similar to those described by Nienhuis
and Deutch™ (see also the discussion in Ref. 19, Sec.
IV), we can show that the solution to Eq. (3.30) is

$ ’. — 1 €(Q.))—1 2
X (r, 7' @) -«—m(——u )

X [T(r, ')+ Rvo(r, ;e(w), (w))]. (3.31)

The tensor Ry, in Eq. (3. 31) describes the reaction field
inside V, dueto polarization of the region W with dielec-
tric constant €;(w) when V} is characterized by dielectric
constant €(w). This result is equivalent to that obtained
by Titulaer and Deutch'® on the basis of macroscopic
fluctuation theory, in the limit where retardation effects
are neglected.

The approximation in Eq. (3. 29) is equivalent to an

approximation made by Nienhuis and Deutch™ [in passing
from Eq. (3.28) to (3.29) in Ref. 14] in order to obtain
an explicit expression for the long-range part of the
static polarization fluctuations. One notes that this ap-
proximation need nof be invoked to obtain resuits for the
dielectric constant.

IV. CONCLUSION

The principal aim of this paper has been to justify
Eq. (2.35) as an alternative formal relation for the fre-
quency-dependent dielectric constant of polar media,

In contrast to expressions for €(w) in terms of dipole—
dipole correlation functions, Eq. (2.35) contains no ex-
plicit shape-dependent terms and therefore reveals
more directly the dependence of €(w) on short-ranged
molecular quantities, In the present theory, the fun-
damental guantity determining €{w) is the dipolar mem-
ory function k (w), which as indicated in Eqs. (2.37) and
(2. 38) .can be evaluated either by considering the total
dipole moment of a molecular sample in vacuum or the
dipole moment of a smaller region within the sample.
Since the time dependence of the memory function is
governed by a projected Liouville operator, one might
say that the projection operator “projects out” the long-
range behavior from the full dipole correlation function,
although as is generally the case it is difficult to attach
any physical meaning to the use of projection operators.

A second result of this work is the analysis in Sec.
III of the relation between correlation functions of a
sample in vacuum and of a smaller region embedded in
the sample. The analysis reveals clearly the origin of
the frequency-dependent reaction field term in Eq. (3.7)
which represents the long-range correlations between
dipoles in the embedded region and those in the sur-
roundings. One notes that the approximations necessary
to obtain Eq. (3.7) from Eq. (3.1), i.e., neglecting
surface effects and replacing the susceptibility of the
external region by a local function, are in analogy with
the procedure of reducing Eq., (3. 8) for the Maxwell
field to Eq. (3. 9) by specifying the constitutive relations
of the surrounding medium. Therefore the connection
between response functions of distinct spatial regions,
in the approximations of Sec. III, is already contained
in the solution to Maxwell’s equations together with the
constitutive relations,

An analysis of the relation between short- and long-
range time-dependent correlations in dipolar media
from a somewhat different standpoint has recently been
presented by Fulton.® His discussion is equivalent to
that presented here in that both are based on Eq. (3.1)
as the relation between the shape-dependent response
function and the short-range susceptibility. However,
Fulton eliminates surface effects at the outset by con-
sidering only media which are infinite in extent. In
relating the susceptibility to a memory function, the
present work also has the advantage of indicating a
method, albeit formal, for directly calculating the sus-
ceptibility in a sample of arbitrary shape. The use of
this theory in practical calculations of the frequency-
dependent dielectric constant will be investigated in
subsequent work.

J. Chem. Phys,, Vol. 62, No. 6, 15 March 1975

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2138 D. E. Sullivan and J. M. Deutch: Molecular theory of dielectric relaxation

Finally we note that the formalism we have developed
holds for all models of isotropic materials consisting
of rigid dipoles. The particular model is not specified
until the form of the Liouville operator L, is specified.
While we have adopted the language of a polar fluid, our
analysis applies with minor modification to polar lat-
tices, for example the lattice diffusion model investi-
gated by Zwanzig?! and Cole, 8

APPENDIX: REACTION FIELD TENSORS

In Ref, 14, Nienhuis and Deutch derived an integral
equation relating the reaction field tensors Ry and
R (yqew (these have been defined in the text). This
relatlon may be employed for the case where ¢€,(w)
depends on frequency, provided the wavelength associ-
ated with frequency w is large compared with the di-
mensions of the volume V;. The relevant equation, Eq.
(2.23) of Ref. 14, generalized to the frequency-depen-
dent case is

e @)[T (6, 1)+ R* (T, T €7 ()]

=T(r,r')+ Ry(r,r';e;(w)) +(Z_:g(_)u;—1> Vdr"[T(r,r")
0

+ R(vo + W)(r, r”; 51'1("-’))] '[T(l"', r') +RW(r”, r'; e (w))] .
(A1)

E the region W is not present, then Ry =0 and Eq. (A1)
becomes an integral equation for the reaction field tensor
R*, (r r’; €,7Y(w)) describing the reaction field inside

Vo when the latter is empty and the infinite space out-
side V, has dielectric constant €, (w). By replacing

Vo by (V,+ W), we then can obtain an equation for

R* (Vge® since the latter depends only on the total volume

(Vo+ W) and not on the two volumes separately. Thus we
have

M W)T(x, 1) + Riyvgem(r, ©'s€7H(w))]
=T(r,r')+ (51@_)_-_1) f
Vi

7" n
dre (@) dr”[T(r,r"")

(Voew) *

+ Ry (0, T 5 @] T, 2 . (A2)

One notes that the integration in Eq. (A2) is over the
total volume (Vy+ W).

In general, explicit expressions for the reaction

field tensors Ry and R*%.W, are difficult to compute.
However, when (Vy+ W) is a Sphere of radius R an ex-
pression for R* .y, has been given by Nienhuis and
Deutch.* From Eq. (58) of Ref. 14 we have

* -
R(V0+W)(rl » Tp5€1(w))

1 1+1 !
:V'1V'22( l(csg;uz)((l :1)) (;121;33 Py(c0s0y,),  (A3)

where P; are the legendre polynomials and 6,, is the
angle between r; and r,.
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