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Figure 7. Intensity of the resonance Raman line V I  as a function of 
percentage degradation for PVC samples degraded at 190”. 

as its very high sensitivity is concerned, is that it permits 
solution studies on comparatively insoluble samples with 
normal levels of degradation. I t  is interesting to note that 
the results obtained from measurements on solid samples 
enable values to be obtained for the approximate degree of 
degradation of the samples examined by Liebman, et al. 
The most heavily degraded of these contains about 0.003% 

of conjugated polyenes only, making the assumption that 
the distribution of sequence lengths is not markedly differ- 
ent from that of the samples examined in the present work. 
This provides another cogent example of the very high sen- 
sitivity of the technique. 
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Partially Melted Rodlike Molecules. Light-Scattering and 
Translational Diffusion 
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ABSTRACT: A simple method is presented for determining physical properties of partially melted polymers. The 
model employed treats “unmelted” regions as rigid rods and “melted” regions as Gaussian random coils. The re- 
gions are separated by universal joints. The physical properties explicitly considered are the structure factor for 
scattered light intensity and the Kirkwood translational diffusion coefficient. Four cases of melting are considered: 
melting at one end into a single strand; melting at one end into two strands; melting at both ends; and interior 
melting. 

We present a method for determining physical proper- 
ties of partially melted polymers. The simple model we em- 
ploy replaces the “unmelted” regions by rigid rods and the 
“melted” regions by Gaussian random coils. The two prop- 
erties that are explicitly considered are the Debye intramo- 
lecular structure factor P, (0) for the angular distribution 
of scattered light intensity from a single chain1 

and the Kirkwood expression2 for the translational diffu- 

sion coefficient D 

In eq 1 n is the number of segments in the chain; the sums 
are over all the segments; lql = (4a/Xo) sin B is the scatter- 
ing wave vector for light of wavelength XO, scattered at 
angle 0; and Rij is the vector position between segments i 
and j .  In eq 2 T is the temperature, k is Boltzmann’s con- 
stant, is the friction coefficient for an individual segment, 
and 90 is the solvent viscosity. While the expression for D 
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is known not to be exact3 it is believed to have practical 
value.4 In the absence of hydrodynamic interactions 

D = Do = ( k T / n b )  

ifi j )  = J f ( R ) P ,  (R)dR 

(3 ) 

In these two expressions the averages are defined by 

(4) 

where pij ( R )  is the probability density for the distance be- 
tween segments i and j .  For a rigid rod composed of seg- 
ments of length a 

Pij'(R) = [ 4 ~ (  ) i  - j la)2]-i6[R - Ii - j 1 a] (5) 

For a Gaussian coil 

Pi ,"(R) = [ 'h r ( R i  j 2 )  J 3 l 2  exp[- 3R2/ 2(R j2)] (6) 

where 

( R ~ ~ ~ )  = a2 1 i - j 1 (7) 

Excluded volume effects might be crudely taken into ac- 
count, as usual, by replacing Ii - j l  by ) i  - j l  I f f  in this ex- 
pression for ( R i j z ) ,  but we will not explore the conse- 
quences of this modification here. 

Expressions for P (0) and D are known for a rigid rod1X2 

p;(e) = (2/nqa)[si(~zqa) + 
(nqa)-i(cos nqa - l)] = R(nqa) (8) 

D' = Dol l  i- (6/6xq0a)(1n n - 1 + y ) ]  (9) 

the Gaussian coil132 

and the "once broken" rodj,6 with a universal joint at  posi- 
tion (una) on the rod 312 5 u 5 1. 

P,b(P) = a2R[aqna] + (1 - U)2R[(1 - a)?~qa]  + 

,Si(aqalz)Si[(l - a)qanl (12) 
(qan) 

Db = D,{1 + (~/3mlon)[ln ?z - 1 + v + (g/a)]} (13) 

where 
* sin Z g(a) = 2 ( 1  - a) In a; Si(?() = ~ d 2  (14) 

and y = Euler's constant. Our expression for Pnb(0) is an 
obvious generalization of the expression obtained by Peco- 
ra7 for the special case u = 

Here we consider the calculation of P, (0) and D for mac- 
romolecules composed of two or more portions at  least one 
of which is a rigid rod and one a random coil. Our motiva- 
tion for presenting these results is that many macromole- 
cules undergo shape transitions from rodlike to flexible coil 
when temperature or solution pH is varied. In the melting 
region the sample will contain macromolecules in interme- 
diate conformations containing both rodlike and random 
coil regions. An experiment will measure an average prop- 
erty of the sample with a particular weighting of the differ- 
ent conformations. The appropriate average will depend on 
the experiment, e .g . ,  quasi-elastic light scattering, and the 
characteristic time of the measurement compared to the in- 
terconversion rate of the conformations. The method and 
results we present indicate how to determine properties for 
the different conformations of the macromolecule in the in- 
termediate melting region. 

0 

Method 

Consider a single macromolecule divided into two por- 
tions containing respectively n A and n g segments. For con- 
venience we locate at  position (nA + 1) a segment which 
serves as the joint separating the two sections. Thus the po- 
lymer contains n = n A  + ng + 1 = n A  + n~ segments. I t  is 
clear that the average of any function f(Ri,) of the distance 
of separation Rij of two segments on the chain may be ex- 
pressed as 

n sn +I n cn ci n n +n r l  
A A B  A B  A B  C (fi,>B + 2 (fi j)AB (15) 

i-1 j = n  +Z i = n  +2 j = n  4 
A 

where the superscript A(B) on (fv ) denotes the average in 
eq 4 with a probability density PI, * (R) [PL,  B ( R ) ]  appropri- 
ate to the pure chain section. The superscript AB on the 
last term in eq 15 refers to the probability density PI, AB(R)  
of separations between segment i on chain A and segment j 
on chain B. Clearly the first two terms on the right-hand 
side of eq 15 give the contribution to (f) of two unconnect- 
ed pure chains A and B of length nA and ng, respectively; 
the last term gives the interference contribution due to the 
chain connection. 

For light scattering fI, = exp[i q - R ]  and for diffusion fii 
= R-I. The calculation of the pure chain contributions 
proceeds as usual and our problem is reduced to consider- 
ation of the cross term. 

Our method for determining the cross term is based on 
the observation that for chains with a universal joint where 
excluded volume effects are ignored 

The convolthon form of this expression suggests employ- 
ing Fourier transforms to compute the cross term Xi 

(17) 

With the definition 

one easily finds that 

(20) 
For the case of light scattering f(qo) = (2a)36(q - qo) and 
the cross term is 

nA nB+! 

x, = c c Fi,iA(q)&,jB(q) (21) 
is1 j = 2  

while for the case of translation diffusion the cross term is 
n A  n R + i  

where we have set the Fourier transform of f ( R )  = R-l 
equal to f (q )  = 4rq-2. 

Evaluation of these formulas is relatively straightfor- 
ward. For example for the case of the once-broken rod we 
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Figure 1. Cases considered for partially melted polymers: (a) rod 
with n A  sigments melted a t  one end into coil of n g  segments; (b) 
rod melted a t  one end into two coils; (c) rod melted a t  both ends 
into coils; (d) rod with interior melting into coil. 

take both A and B to be rods and from eq 5 we find 

Substitution of this expression into eq 21 and 22 and subse- 
quent evaluation of the integral and sums leads to values of 
X D ~  and X L ~ .  When these values are combined in eq 15 
with the rigid rod results and use is made of the definition 
of P,(O) and D one obtains the results for Pnb(0) and Db 
displayed in eq 12 and 13, respectively. 

Results for Partially Melted Chains 

(see Figure la )  the light scattering cross term is 
For the case where A is a rigid rod and B a random coil 

Here we have used eq 9 and the fact that (see eq 6, 7, and 
18) 

P i jG(q )  = exp[-$a2!i - j / / 6 ]  (25) 

Replacement of the sums by integrals leads to the results 

where u B = (q2a 2n ~ / 6 ) .  Consequently the structure factor 
for light scattering is 

with Y A  = (nA/n) and Y B  = (nB/n). In passing we note that 
the coefficient of the q2 term in the expansion of P,(e) 

';v 
0 2  0 4  0 6  0 8  IO 01 

0 = FRACTION COIL SEGMENTS 

Figure 2. Diffusion coefficient of a partially melted rod. The frac- 
tional hydrodynamic contribution to the Kirkwood translational 
diffusion coefficient is plotted us. the degree of melting u = ( n g /  
n ) for n = 1000. Here n g is the nnmber of coil segments and (n - 
n g )  the number of rod segments. The polymer is melting a t  one 
end as exhibited in Figure la. 

equals (- lk) times the radius of gyration of these partially 
melted chains. 

The calculation of the cross term for diffusion X D  is a 
bit more lengthy. From eq 22,23, and 25 we find 

and the integral over q can be performed to yield 

A convenient expression for calculational purposes is ob- 
tained by replacing the sum over i by an integral; one ob- 
tains 

(32) 
The function @(n A,n B) can be evaluated asymptotically for 
nA 2 n~ >> 1. Under these circumstances (incomplete 
melting) the upper limits on the above integrals can be ex- 
tended to infinity. One finds 

- 1 [f In (A) + 1 - y ] }  (33) 
2 

The general expression for the translational diffusion coef- 
ficient of the partially melted chain may be expressed as 
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Figure 3. Structure factor P,, (0) for interior melting. P, (0) is plot- 
ted us Z = qan for several values of u = ( n  B / n ) ;  n g  is the number 
of coil segments and n A = n c = %(n - n B) are the number of rod 
segments. The polymer melting is symmetric and corresponds to 
Figure Id. For u = 0 the result reduces to  the once broken rod with 
its joint in the center. 

In Figure 2 ADlDo is plotted for n = 1000 with the as- 
sumption of Stokes law [!: = 6xqoa] as a function of u = 
( n B / n ) .  The asymptotic expression for @(nA,nB) (eq 33) is 
completely adequate representation of (AD/D ) to values 
of u beyond 0.95. For larger values of u an adequate ap- 
proximation to (ADIDo)  is the contribution from the 
Gaussian portion of the coil. 

More Complex Cases 
Once the method is established for determining P, (0) 

and Ll for a chain with one break into a rod and random 
coil portion it is clear that the same technique may be used 
for chains with more breaks or with several branches. Any 
particular case may easily be examined. For example Fig- 
ure l b  presents a crude model of a double helix melted 
from one end. We consider a rigid (helica1)length of n~ seg- 
ments attached to two coil lengths of n B and n c segments. 
In addition to the two pure coil and one pure rod contribu- 
tioiis to Pn(0) and D one must consider cross terms be- 
tween the two coils as well as between each coil and the 
rod. I t  is an easy matter to show by the method developed 
above that the two pure coil contributions and the coil-coil 
cross term combine to give a single contribution of an effec- 
tive coil with ( n  B + n e )  segments. This result is physically 
reasonable and one may immediately conclude that the 
structure factor P, h(0) for this case is 

where n = n~ + n~ + I Z C  and ucy = (q2a2na/6).  Similarly 
the translation diffusion coefficient D will be given by 

The analysis for a chain with several breaks composed of 
many rigid rod and random coil links is more involved, 
especially for the calculation of D. For illustrative purposes 
we consider two cases: melting of a rodlike macromolecule 

at  its ends and also interior melting of the rodlike macro- 
molecule. We idealize a polymer undergoing melting at its 
ends as two random coils joined by a rod, Figure IC. Simi- 
larly we regard a polymer undergoing interior melting as 
two rods linked by a coil portion, Figure Id. 

For both cases we require PijAC(R), the probability that 
segment i on end portion A with n A  segments will be a dis- 
tance R from segment j on end portion C with n C  segments 
given that the central link B contains n B  segments. With 
our previous assumption that the different portions are 
connected by universal joints we see that 

Accordingly we find 

The contribution to a property f ( R )  from the cross terms 
between segments on end A and segments on end C is thus 
(cf. eq 21 and 22) 

For the case of a macromolecule melting at  its ends (Fig- 
ure IC), the structure factor and Kirkwood diffusion coeffi- 
cient can be written as a sum of two pure coil terms, a pure 
rod term, two rod-coil terms, and also the cross contribu- 
tion of eq 39. We find for the structure factor for end melt- 
ing 

To obtain the diffusion coefficient, one must evaluate eq 
39 with T(q) = 4 ~ q - ~ .  This can be accomplished for end 
melting if (nA + nc)1/2 << nB, that is when the melting is 
incomplete. One finds 

Thus 

The structure factor for interior melting (Figure Id)  can 
also be easily worked out. One finds 
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We expect on physical grounds that the structure factor 
for interior melting should reduce to that for a once broken 
rod, eq 12, when n g  - 0. From eq 43 we see that this is in- 
deed true. Calculation of the diffusion coefficient for interi- 
or melting involves more labor since the integral in eq 39 is 
difficult to evaluate analytically for this case. One can, 
however, perform the double sum analytically and evaluate 
the remaining integral over qo numerically. 

In Figure 3 the structure factor for interior melting is 
plotted against 2 = qan for several values of the melting 
parameter u = ( n ~ / n )  with nA = nc = (n/2)(1 - a) .  The 
figure has been constructed for the regime where 2 is of 
order unity but u = (nq2a2/6)  = Z2/6n2 << 1 so that the 
structure facture depends only on 2. Physically this condi- 
tion states that the wavelength of light is large compared 
with all possible coil lengths but comparable to possible rod 
lengths. The curve u = 0 corresponds to the once-broken 
rod case. 

Concluding Remarks 
We have presented a simple method for determining the 

properties of partially melted macromolecules when these 
properties depend upon some function of the distance be- 
tween pairs of segments of the polymer. We find that in 
partially melted conformations the macromolecule exhibits 
significantly different behavior than in the extreme cir- 
cumstances of no melting or complete melting. Quantita- 

tive results are displayed for the light-scattering structure 
factor and the translational diffusion coefficient for a num- 
ber of cases. 

The analysis may be extended in a number of ways, e.g., 
to heterogeneous chains, to polydisperse systems, or to 
other hydrodynamic or equilibrium properties. Experimen- 
talists should note that the proper interpretation of mea- 
surements in the melting region must take into account the 
variation of partially melted chains as discussed here. A 
particular measurement will require an appropriate aver- 
age over the different conformations represented in the 
system during the process of melting. 
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ABSTRACT: The thermal transition behavior of two series of polyurethane block copolymers, one based on 2,4-tol- 
uene diisocyanate, the other on 2,6-toluene diisocyanate, was studied to determine the influence of an asymmetric 
diisocyanate structure, such as that represented by 2,4-toluene diisocyanate, on domain organization and polyure- 
thane properties. The 2,4-TDI polyurethanes were transparent and amorphous, and the properties varied progres- 
sively with urethane concentration; the 2,6-TDI polyurethanes were opaque, semicrystalline, and hard but tough. 
In the 2,4-TDI samples the glass transition T, was a strong function of urethane concentration. Similar behavior 
was shown by an intermediate temperature transition 2‘2.  A higher temperature transition Ta was detected only in 
the samples of highest urethane content and then only on the initial heating. In the 2,6-TDI samples T ,  was gener- 
ally independent of urethane concentration. No TP transition was observed. The 173 transition was repeatable and 
increased with urethane concentration. I t  is suggested that the T2 transition which occurs in the 2,4-TDI polyure- 
thanes is indicative of weak domain structure and that the increase in T, with urethane concentration is due to ex- 
tensive hard segment mixing with the soft segment phase. The absence of a 2‘1 transition in 2,6-TDI is taken to in- 
dicate that all domain structure which occurs is highly ordered and, therefore, that hard segment-soft segment 
mixing is minimal. This is in keeping with the strong Ti transition and observed crystallinity and could account for 
the invariance of T ,  with urethane concentration. 

The thermoplastic polyurethanes are linear segmented 
copolymers which consist of alternating soft and hard seg- 
ment units. The soft segment is commonly a low molecular 
weight polyether or polyester whereas the hard segment 
generally consists of an aromatic diisocyanate condensed 
with a low molecular weight diol. I t  is now generally accept- 
ed that the properties of these materials are primarily due 
to the phase segregation of soft and hard segments leading 
to the formation of hard segment domains which are dis- 
persed in the rubbery matrix. The polyurethanes based on 

* Army Materials and Mechanics Research Center. 

diphenyl methyl diisocyanate (MDI) have been the subject 
of intensive investigation by a variety of techniques. Three 
characteristic endothermic transitions have been detected 
by differential scanning calorimetry and penetrometer 
techniques:l-3 a transition at  80’ which is attributed to the 
disruption of domains with limited short-range order; a 
transition a t  130 to 150’ which represents the dissociation 
of domain structure with improved short-range order; and 
a transition above 200’ which is due to the melting of crys- 
talline structure in samples with sufficiently long hard seg- 
ments. Annealing studies2 have shown that the lower 
sitions can be shifted continuously upward to merge with 


