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The interactions between rotons in superfluid helium are similar to those between dipoles in a polar
fluid. Models developed to describe polar fluids may therefore be used to study the influence of roton
interactions on various physical quantities in helium IL. In this paper we use the Onsager model of a
dielectric to calculate the temperature dependence of the energy of the roton minimum in the excitation
spectrum, the entropy density, and the normal fluid density, at three different pressures. The results
obtained agree well with experimental values for temperatures up to a few tenths of a degree below the
M\ temperature; the agreement becomes better with increasing pressure. Our theory contains only a
single adjustable parameter, the roton hard-sphere radius, for which we find a value close to half the

distance between nearest neighbors in the helium fluid.

1. INTRODUCTION

The distinctive properties of liquid helium II
were explained by Landau® on the basis of a postu-
lated spectrum of elementary excitations, which
is shown in Fig. 1. This form of the excitation
spectrum was confirmed by microscopic calcula-
tions of Feynman? and experimentally by inelastic
neutron scattering experiments.®> Thermodynami-
cally the most important regions of the spectrum
are the “phonons” at low momentum and the
“rotons” near the energy minimum. The latter
provide the dominant contributions to all thermo-
dynamic quantities above 1 °K.

In Landau’s theory the phonons and rotons are
treated as noninteracting bosons. Interactions be-
tween quasiparticles, especially between rotons,
must be assumed in order to explain the viscosity
of helium II and the existence of two-roton bound
states.? They also manifest themselves in certain
aspects of the thermodynamic properties and of
the neutron scattering data. For example, the
roton minimum in the excitation spectrum, as
measured by neutron scattering,?'5' 6 decreases
with temperature; the fact that the decrease is,
at low 7, roughly proportional to the total number
of rotons suggests strongly that this shift is due to
roton interactions. When the excitation spectrum,
as determined from neutron scattering, is used to
calculate the entropy or the normal-fluid density,
using the independent-particle picture, one finds
values which are significantly higher than the ex-
perimentally determined ones, especially at higher
pressures.

As early analysis of these phenomena was given
by Cohen.” He developed a quantum-mechanical
many-body formalism with which one could, in
principle, treat a system of rotons with arbitrary
interactions. However, his formalism has not
been developed to a point where a comparison with
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experimental results is possible. In this paper we
develop a much simpler treatment, both from a
conceptual and from a calculational point of view;
however, our method is only applicable for one
particular approximate form of the roton-roton in-
teraction.

From Feynman’s picture of a roton as a micro-
scopic vortex ring it follows that the superfluid
flow pattern at some distance from the roton has
a dipolar form. Two rotons at a large relative
distance interact mainly via this velocity field. In
Sec. II we will show that this interaction has the
same form, apart from an over-all minus sign,
as that between two electric dipoles in a polar
fluid. This analogy was noted by Feynman® and
further developed by Donnelly and Roberts.® In re-
cent years the theory of polar fluids has developed
rapidly.® The results from that field can be applied
to the roton problem when one assumes that the
asymptotic form of the roton-roton interaction is
exact for all distances larger than some hard-core
diameter 2a; the hard-core repulsion replaces the
actual short-distance interaction. Some additional
simplifications will be made for calculational con-
venience.

In Sec. II we will state the analogy between rotons

and polar dielectrics and specify our model of ro-

ton interactions in more:detail. In Sec. III we de-
scribe a self-consistent scheme which enables us
to calculate the energy of the roton minimum and
the roton-number density for various tempera-
tures and pressures. We also show how the nor-
mal fluid density and the entropy density may be
calculated from these two basic quantities. The
entire procedure contains only one adjustable pa-
rameter, the hard-sphere radius a, which we
choose to be 1.984 at 0 atm.

In Sec. IV we present the numerical results for
0, 10, and 20 atm. and compare them with experi-
mental data. In Sec. V we discuss the successes
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and limitations of the model and some possible
refinements. We also compare our results with
those obtained by other authors.

By pursuing the analogy between superfluids and
di€lectrics we are able to construct a theory of
liquid helium II in which interactions between ro-
tons can be treated and their effect on various
measurable quantities can be evaluated. In the
simple form presented here the model gives good
agreement with experiment for three physical
quantities as a function of temperature: the energy
of the roton minimum, the normal-fluid density,
and the entropy density. The agreement remains
good for temperatures up to a few tenths of a de-
gree from the A transition, and it improves with
increasing pressure. The remaining disagree-
ments can be understood qualitatively and related
to the simplifying assumptions made in our treat-
ment.

II. ANALOGY BETWEEN DIELECTRICS AND SUPERFLUIDS

The analogy between dielectrics and superfluids
has been developed in detail by Donnelly and Ro-
berts.® We briefly restate two basic observations
(for simplicity we restrict ourselves to the situa-
tion in which the normal fluid is at rest). First,
the energy of a roton of momentum p changes by an
amount VP, when it is placed in a superfluid ve-
locity field V4%

E7(D)=Eo(D)+D" Vs 2.1)

Secondly, around a stationary roton with momen-
tum P at ¥’ there is a superfluid velocity field,?
which at large distances becomes equal to

V(F) = (4m)"T(F - ) B, (2.2)

where p is the mass density of the fluid and
T(T -1') is the dipole tensor

T(F-F)==ViV2,|F-F| . (2.3)

The relations (2.1) and (2.2) resemble the ex-
pressions for the energy of a dipole in an electric
field and for the electric field around a dipole;
the quantities corresponding to the electric field
E and the electric dipole moment {1 are given by

E— (4mp)V?¥,,
[~ (4mp)~*/2p .

There are two differences between the dielectic
and the superfluid case: (i) The sign of the inter-
action term in Eq. (2.1) is positive; the rotons
tend to align antiparallel to the superfluid velocity
field. (ii) Equation (2.2) is strictly valid only for
rotons with velocity zero, i.e., with energies
equal to the minimum energy 2A. This limitation

(2.4)

is not too serious, since most rotons have ener-
gies quite near to kA, We will briefly return to
this point in Sec. V.

Various physical quantities in a superfluid have
a simple dielectric analog. As an example we
mention the normal-fluid density p,. This quantity
is related to the total momentum P, carried by all
elementary excitations when the superfluid has a
small velocity v, with respect to the normal fluid'®:

i;ex = -pn-"’a . (25)
A comparison with the expression for the tot:_i_l
electric polarization P, in an external field E in
terms of the dielectric constant €,

- € - 1

Pel = Am

E, (2.6)

gives the correspondence
e—1-p,/p. 2.7

Note that the “dielectric constant” of the superfluid
is a number between zero and unity, as expected
for a substance in which the dipoles tend to align
antiparallel to the field (like the induced dipoles in
a diamagnetic material).

In order to make further progress we now assume
that rotons behave as hard spheres with radius a
and interact only via the velocity field V, described
by Eq. (2.2). The potential energy for N, rotons
with positions T; and momenta P, is

Nf

U=%(4”P)'lz§i°;i'u(;i -T;)D;. (2.8)
=

SPECTRUM OF ELEMENTARY EXCITATIONS
IN SUPERFLUID HELIUM
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FIG. 1. Spectrum of elementary excitations in liquid
helium II as postulated by Landau (Ref. 1). Above 1°K
the most important contributions to the thermodynamics
are made by the rotons with momentum near p, and en-
ergy near 2 A.



10 DIELECTRIC MODEL OF ROTON INTERACTIONS... 1347

As a further simplification we replace the magni-
tude of each roton’s momentum by the magnitude
at the roton minimum, i.e., p; is approximated by
Pi(py/|D;]). ‘Then the expression (2.8) is equal,
apart from an over-all minus sign, to that of a
system of hard spheres with embedded dipole mo-
ments of strength pu=p (410) V2. The replacement
of p by p, is reasonable in view of the fact that for
most rotons p is approximately equal to p,. If
further accuracy is desired, it would be necessary
to include corrections in Eq. (2.2) as well, since
this equation is accurate only for p=p2,.

The specific model for a polar fluid, a system
of hard spheres with embedded permanent dipole
moments, has received considerable attention re-
cently.® Even this simple model cannot be solved
exactly, although some Monte Carlo results are
available.!! However, there are a number of ap-
proximate theories: the Onsager model,'? as modi-
fied by Nienhuis and Deutch,!® the mean spherical
model, solved by Wertheim,!* and a thermodynamic
perturbation scheme augmented by Padé approxi-
mations, which was developed by Stell, - Rasaiah,
and Narang.!® In this paper we will use the Onsa-
ger model, which is the simplest and adequate for
our purposes. (Results with the other two models
are briefly discussed in Sec. V.)

A basic quantity in the Onsager model of a di-
electric is the quantity

y =4mun, /9RT, (2.9)

where 7, is the number of dipoles per cm®. The
corresponding quantity for the roton case is [cf.
Eq. (2.4)]

y==pgn,/9kTp, (2.10)

where 7, is the number of rotons per cm?; the
minus sign is connected with the change in sign in
the interaction. In terms of the parameter y the
dielectric constant of the Onsager model is given
by

e()=1{1+9y +[(1 +9y)? +8]1/2}. (2.11)

This expression leads, via the correspondence
(2.7), to an expression for the normal-fluid den-
sity in terms of the number of rotons. This ex-
pression cannot be trusted at low temperatures,
where the contribution of the phonons is important,
or at temperatures near the A point, where exci-
tations with momenta far from the roton minimum
contribute significantly. Note that our Eq. (2.7)
reduces to the familiar one for the roton contri-
bution to the nermal-fluid density,®

Pry =p°2n,/3kT,

when we substitute the low-y approximation €(y)
=1+3y. The difference between Eqs. (2.11) and

(2.12)

(2.12) is caused by the backflow fields of the other
rotons. This leads to a local superfluid velocity
different from the externally imposed one (cf. the
difference between external and local fields in a
dielectric).

The ensemble average of the potential energy
(2.8) in the Onsager model is'®

PN, e-1

U “32mpad 2€+1° (2.13)

The dipolar excess entropy (i.e., the entropy of
hard spheres with dipoles minus the entropy of the
pure hard-sphere system) is equal to N, Asap
with!®
-k €e-1 (e-1)?
As"*?‘sznn,a3< Va1t €
—%1n[§(2€+1)]) .

These expressions will be used in Sec. III.

+31ne

(2.14)

III. SELF-CONSISTENT METHOD TO DETERMINE THE
ENERGY OF THE ROTON MINIMUM

The results of Sec. II enable one to determine
various thermodynamic properties of liquid helium
I in terms of the number of rotons. Another quan-
tity which may be determined in this way is the en-
ergy of the roton minimum in the elementary ex-
citation spectrum obtained from inelastic neutron
scattering. Neutron scattering data give the ener-
gy associated with the creation or absorption of
one additional roton with momentum p. This ener-
gy is the sum of the energy E( P) needed to create
an isolated roton and the energy of the interactions
of the new roton with ql! the existing ones. In par-
ticular we find for the average energy kA(p, T)
needed to create one additional roton with momen-
tum p,

kA(p, T)=kA(p, 0) +2N7XU) , (3.1

where (U) is given by Eq. (2.13). The energy
needed to create an isolated roton is equal to
kA(p, 0) since the roton density approaches zero
when the temperature goes to zero.

Relation (3.1) expresses A(p, 7) in terms of the
number of rotons. To determine both quantities
we need a second relation between the same two
quantities. This second relation is found by an
adaptation of the treatment by Bendt, Cowan, and
Yarnell (BCY)!” of a roton system with tempera-
ture-dependent energy levels. These authors ne-
glect the influence of the interactions on the num-
ber of quantum levels corresponding to each ener-
gy interval. In this approximation they obtain for
the number of rotons in a volume V with momenta
between pand p +dp,
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0. T -1
N,(p,dp):zl:rzz;a[exp<E(pé;’ )>+1} dp.

(3.2)

In this expression E(p;p, T) is the energy needed
to add or remove a single roton with momentum p
at helium density p and temperature 7. The read-
er is referred to Ref. 17 for the derivation of Eq.
(3.2), which is nontrivial for the case of temper-
ature-dependent energy levels.

Equation (3.2) cannot be applied without modifica-
tion to our model of interacting rotons, since it
allows configurations in which the roton hard
spheres overlap. This effect is taken into account
in an approximate way by replacing the volume V

.in Eq. (3.2) by an effective volume V *. The same
procedure is used to derive the van der Waals
equation of state for a fluid.'®* We determine V *
by comparing the free energy A,, of N hard spheres
in a volume V with the ideal-gas value A;, for N
particles in the same volume at the same temper-
ature. In terms of these quantities V * is defined
by

An(N, V, T) = Ay(N, V, T)=NET In(V*/V). (3.3)

We calculate A, by integrating the pressure of the
hard-sphere system over volume from a value V
where A, and A, are virtually identical to the
actual volume V:

14

AN, V, TV =Au(N, Vo, )= [ p@3/ V", T)av" .
14
]

(3.4)

A good approximation to the pressure is given by
the Carnahan-Starling hard-sphere equation of
state'®:

3T n+m2+m3 -7t
4ma® (1-7n)3
where 7 =§ 7a®N/V is the volume fraction occupied

by the hard spheres. By combining Egs. (3.3)-
(3.5) we obtain for the effective volume V*,

Vx=an,)V=V exp[- (47 -312)/(1 -n)?]. (3.6)

pIN/V, T)=

(3.5)

For low 7 this reduces to the familiar result V*
=V(1 -4n).

We now return to Eq. (3.2). Clearly we must
replace V in this equation by V*. In addition we
need an expression for E(p;p, T), since Eq. (3.1)
gives the value of this function only for p=p,. In
view of the approximations made thus far we can
expect good results only when almost all rotons
have momenta near the roton minimum. We will
therefore not lose much accuracy when we replace
the actual roton spectrum by a parabola of the
form

E(p;p, T)=kA(p, T)+[p - b4(p)]2/2u (0, T).
(3.7)

The assumption that p,(0) is independent of T [as

was also assumed in the discussion preceding Eq.
(3.1)] is confirmed by neutron scattering experi-

ments.® The same experiments indicate®° that

i (p, T) obeys the relation

Alp, T)
A(p, 0)

As a last simplification we replace the Planck fac-
tor [exp(E/kT)+1] ! in Eq. (3.2) by the Boltzmann
factor exp(-E/kT). This is justifiable since E is
always large compared to 27 in the roton region.
In this way we obtain the following expression for
the total number of rotons per cm3: '

o, =502 [ *p exp(2LLD)ap

I-L(p’ T)=

(p, 0). 3.8)

o~ a(nr)[Po(P)]zf ZﬂkTA(p, 0) >1/2
2n2z3  \u(p, 0)A(o, T)

Xexp(#). (3.9)

In evaluating the integral we neglected a factor

1+u(p, TIRT/P2,

which changes 7,.(p, T) by less than half a percent.

From Egs. (3.9) and (3.1), with substitution of
Egs. (2.13), (2.11), and (2.9), we can now deter-
mine 7,(0, T) and A(p, T) in a self-consistent way.
(A similar procedure was used by Ruvalds in Ref.
21). For our calculation we need the parameters
A(p,0), wu(p,0), and p,(p), which are taken from
experiment, and the hard-sphere radius a, which
plays the role of an adjustable parameter, The
best value for a is very close to half the average
distance between a helium atom and its nearest
neighbor; we therefore assume that the hard-
sphere radius varies with the inverse cube root
of the helium-fluid density. This is exactly the
variation with density found® for the other length
associated with a roton, Zp;l. With this assump-
tion for the density-dependence of a there is only
a single free parameter left in our model. Once
we know %,, we can use Egs. (2.7), (2.11), and
(2.9) to determine the normal-fluid density.

Another interesting quantity is the roton contri-
bution to the entropy of 1 cm? of helium. From
the independent-particle picture and the approxi-
mate expression (3.7) for the roton spectrum one
obtains for this quantity!®

S,,u=kn[Ap, T)T! +3]. (3.10)

To this result we add the hard-sphere correction,
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AS, hs = kn'r ln[a (nr)] ’ (3. 11)

with a(n,) defined by Eq. (3.6), and the dipolar
correction

AS, 4ip="884p, (3.12)

with Asg, given by Eq. (2.14). The contributions
(3.11) and (3.12) are both negative, as expected.
When we.compare the result with experiment, we
must also add the phonon contribution, which is
equal to'°

1675k < kT 3
45 \2whc(p, T)) ’

Spn = (3.13)
where c(p, T) is the velocity of sound. Since the
phonon contribution itself is rather small we make
no attempt to correct this “ideal-gas” value. Our
prediction for the entropy per cm? is therefore
equal to

S=Spu+S, 10 +AS, ps +AS, 43 (8.14)

the terms are defined in Eqs. (3.10)-(3.13).

The model developed in this section and Sec. I
predicts the energy of the roton minimum, the
normal-fluid density, and the entropy density as
a function of temperature for various densities in
terms of a number of known experimental quanti-
ties associated with zero.temperature and a single
adjustable parameter, the roton hard-sphere radi-
us at a single density. In the course of the deriva-
tion we made a number of approximations, to which
we will return in Sec. V. In Sec. IV we will pre-
sent the numerical results of our calculations and
compare them with the values found in various ex-
periments.

IV. RESULTS AND COMPARISON WITH EXPERIMENTS

The procedures described in the preceding sec-
tions give values for the three physical quantities
A, p,, and S as a function of temperature for vari-
ous densities, given the parameters of the roton
spectrum at zero temperature at the same densi-
ties and a value for the roton hard-sphere radius.
The experimental data are given as a function of
temperature and pressure. For a comparison we
need the equation of state for liquid helium II; as
such we use the empirical equation of state ob-
tained by Brooks and Donnelly?? from a numerical
analysis of various experimental data.

The values of the parameters entering our cal-
culations are given in Table I for three densities
corresponding to 0, 10, and 20 atm at T=0. The
momentum at the roton minimum p, and the hard-
sphere radius a are strictly proportional to the
cube root and the inverse cube root of the density,
respectively. The values of A(p, 0) and p(p, 0) at

densities encountered for higher temperatures at
the three pressures considered are obtained by
linear interpolation in p. The 25-atm data used
for this purpose are given in the last column of
Table I.

Table II lists our results for the energy of the
roton minimum A(p, T), the entropy density S/p,
and the normal-fluid ratio at 0, 10, and 20 atm for
temperatures between 1°K and the A point, togeth-
er with experimental values for the latter two
quantities. Experimental values given for p=0 are
actually obtained at saturated vapor pressure;
even at the A point this pressure is only 0.05 atm.
The experimental values for S/p are the smoothed
values given by van den Meijdenberg et al.?%; the
data at 0 atm are extrapolated to 2.1 °K using the
specific heat measurement of Lounasmaa and
Kojo.?* Experimental values for p,/p at p=0 are
those of Tough ef al.?® At higher pressures the
high-temperature data are direct measurements
by Romer and Duffy.?® The low-temperature val-
ues for p,/p are obtained from the velocity of sec-
ond sound, as measured by Maurer and Herlin,?”
via the relation

u2‘=p = Pn T(S/p)z
2 pn (GC/P)’

where u, is the velocity of second sound and C, is
specific heat per cm? at constant pressure. In
determining p, from u, and Eq. (4.1) we employed
values of S/p from Ref. 23, the values of C, mea-
sured by Wiebes and Kramers,?® and the correction
factor C,/Cy, which is close to unity, from model
calculations by Brooks and Donnelly.?? The in-
directly determined values of p,/p agree well with
the directly measured ones for temperatures where
both are available (see Ref. 26).

Experimental values of A(p, T) are only available

(4.1)

TABLE I. Values for several physical parameters in
helium IT as used in our calculation. The values for the
density p, the energy and momentum at the roton mini-
mum, A andp, the roton effective massu, and the
roton hard-sphere radius @ are those at T'=0 for vari-
ous pressures. The numbers are discussed, e.g., in
Ref. 22 (except a, which is a parameter specific to our
theory). The values for the transition temperature Ty
are given for illustrative purposes only; our theory be-
comes unreliable for temperatures too close to T} .

b p(0) A0 w0 b,(0) a(0) Ty
@tm) @g/cm® (K) (my) (1071%gcm/sec) (A) (°K)

0 0.1451 8.65 0.160 2.01 1.98 2.18
10 0.1589 8.02 0.145 2.07 1.92 2.06
20 0.1685 7.47 0.134 2.11 1.88 1.92
25 0.1725 7.20 0.130 oo ces coe
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TABLE II. Values for the energy of the roton minimum A, roton density », , entropy den-
sity S/p, and normal-fluid fractionp, /p, as a function of temperature, as calculated from
our theory at three different pressures. Experimental values for S/p are taken from Ref. 23;
those for p, /o are from Ref. 25 forp =0 and from Ref. 26 at 10 and 20 atm (the 10-atm data
are obtained by interpolation from data at 10.37 and 5.28 atm). Numbers marked with an
asterisk are obtained by combining data from several experiments; the procedure is de-
scribed in Sec. IV. The values of the density p for different temperatures and pressures are

taken from Ref. 22.

» T ) A n, S/ (S/Pexpt
(atm) (°K) (/cm® (K em™3) @/g°K)  [@/g°K)  (on/o)y  (PulP),,
1 1.0  0.1451 8.64  9.43x1018 0.016 oo 0.006 oo
1 1.1 0.1451 8.63  2.19x10!? 0.029 oo 0.013 0.015
1 1.2 0.1451 8.61  4.45x10%® 0.049 0.0515 0.025 0.028
1 1.3 0.1451 8.58  8.18x10!? 0.078 0.0865 0.042 0.047
1 1.4  0.1451 8.53  1.39x10% 0.119 0.1325 0.066 0.074
1 1.5  0.1452 8.47  2.22x10% 0.174 0.196 0.097 0.113
1 1.6  0.1452 8.39  3.36x10% 0.242 0.284 0.135 0.170
1 1.7 0.1453 8.28  4.90x 102 0.328 0.398 0.181 0.238
1 1.8 ' 0.1454 8.16  6.84x1020 0.426 0.545 0.233 0.325
1 1.9  0.1455 8.01  9.25x10% 0.538 0.732 0.290 0.430
1 2.0 0.1456 7.84  1.21x10% 0.658 0.963 0.348 0.556
1 2.1  0.1458 7.66  1.54x10% 0.785 1.226% 0.404 0.727
10 1.0 0.1589 8.00 1.81x10!° 0.018 e 0.012 oo
10 1.1 0.1590 7.98  4.01x10!? 0.035 cee 0.024 oo
10 1.2 0.1591 7.93  7.87x10!? 0.061 0.0635 0.042 0.041*
10 1.3 0.1592 7.88  1.40x10%0 0.099 0.102 0.069 0.066*
10 1.4  0.1593 7.719  2.35%10%° 0.151 0.157 0.106 0.102*
10 1.5  0.1595 7.67  3.712x10% 0.221 0.232 0.153 0.151*
10 1.6  0.1597 7.53  5.62x 1020 0.308 0.332 0.211 0.217%*
10 1.7  0.1601 7.32  8.24x10%0 0.416 0.464 0.281 0.312
10 1.8  0.1605 7.07  1.17x10% 0.540 0.637 0.359 0.418
10 1.9  0.1611 6.75  1.61x10% 0.674 0.863 0.440 0.564
10 2.0 0.1618 6.40 2.14x10% 0.807 1.164 0.516 0.768
20 1.0 0.1686 7.43  3.18x10!° 0.025 X 0.020 cee
20 1.1 0.1687 7.38  6.81x10%? 0.048 oo 0.039 oo
20 1.2 0.1688 7.31  1.30x10% 0.084 0.086 0.068 0.066*
20 1.3 0.1690 7.21  2.30x 1020 0.135 0.135 0.109 0.101*
20 1.4  0.1692 7.06  3.84x10% 0.207 0.205 0.165 0.155%
20 1.5  0.1695 6.85  6.15x1020 0.302 0.300 0.238 0.227%
20 1.6  0.1700 6.55  9.60x1020 0.426 0.430 0.330 0.335
20 1.7 0.1705 6.13 1.47x10% 0.577 0.602 0.440 0.457
20 1.8  0.1713 5.62  2.17x10% 0.733 0.838 0.549 0.610

for a few temperatures. The measured values of
Dietrich et al.® and of Henshaw and Woods® are
presented in Fig. 2; the smooth curves are drawn
through our calculated values. The lowest-pres-
sure data in Ref, 6 were obtained at 1 atm.

The agreement between our model calculations
and the experimental data is good up to a few tenths
of a degree from the A point, and it improves with
increasing pressure. In particular we succeeded
in obtaining good agreement for both the roton
minimum and the entropy density at high pressures
and not too close to 7T'\. Such agreement could not
be obtained by Dietrich ef al.® or by Brooks and
Donnelly?? by means of a treatment in which roton
interactions are neglected. The calculated entropy

values at 0 atm differ rather strongly from the ex-
perimental ones, even for temperatures far below
Ty. This discrepancy may be attributed complete-
ly to our approximation of the roton spectrum by a
parabola. The effect of this approximation may be
judged by means of a comparison with the work of
Bendt et al.,'” who calculated the entropy using the
actual excitation spectrum, but neglecting roton
interactions. From Fig. 2 of Ref. 17 the contri-
butions of various parts of the spectrum may be
determined separately.

To give an impression of the order of magnitude
of the various contributions to the entropy density
we consider the situation at T7=1.8 °K. The roton
interactions result in a reduction of the indepen-
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dent quasiparticle expression for the entropy by
9%, 18%, and 34% at 0, 10, and 20 atm respective-
ly. Inclusion of excitations other than phonons and
rotons will increase the entropy with approximate-
ly 20%, 10%, and 5% at the same pressures. This
agrees with the general picture: independent
quasiparticle calculations are too high at high tem-
perature and the disagreement gets worse with
increasing pressure!™®; our values are too low and
the disagreement becomes less with increasing
pressure (see also the remarks on linewidth ef-
fects in Sec. V). In Table III we give both the total
value of S/p from Ref. 17 and the contributions
from the phonons and the region near the roton
minimum; the contributions from these two re-
gions will be predicted correctly in our treatment.
One sees from Table III that the difference be-
tween our calculated values of S/p and the experi-
mental ones is, at least at low temperatures, es-
sentially equal to the contribution of excitations
with momenta outside of the phonon and roton re-
gions determined by Bendt ef al. The excellent
agreement obtained by Bendt ef al.'” at high tem-
peratures is slightly fortuitous. Subsequent experi-
ments®'® showed that their values of A(T) are some-
what too high at high temperatures.

o ENERGY OF THE ROTON MINIMUM
versus TEMPERATURE

"\‘O\
°~N
8 x
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ENERGY OF ROTON MINIMUM A(p,T) (in°K)
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FIG. 2. Theoretical and experimental values for the
energy of the roton minimum as a function of tempera-
ture at 0, 10, and 20 atm. The experimental points are
taken from Dietrich e al. (DGHP, Ref. 6) and Henshaw
and Woods (HW, Ref. 5). The theoretical curves are
drawn through the values given in column 4 of Table II.
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V. DISCUSSION

A. Comparison with other treatments

The model presented in this paper provides a
simple physical picture of roton interactions and
allows us to evaluate the effect of those interac-
tions on three physical quantities: the shift in the
roton minimum, the normal-fluid density, and the
entropy density. Earlier papers were more limit-
ed in scope. Bendt et al.'” and Dietrich et al.® cal-
culated the entropy density from the experimental
excitation spectrum; Brooks and Donnelly?? took
the form of the excitation spectrum from experi-
ment, but determined the energy of the roton mini-
mum from the observed values of the entropy den-
sity. The theory used in each of these papers ne-
glects the effects of roton interactions; as a con-
sequence their results are rather poor at high
pressures, where interaction effects are impor-
tant. At low pressure their results are superior
to ours, since they use the observed form of the
excitation spectrum, rather than its approximation
by a parabola.

A treatment somewhat similar to ours was given
by Ruvalds.?! He argued that the shift in the roton
minimum is in lowest-order preturbation theory
equal to

kK[A(T) - A(0)] = -28,2,(T); (5.1)

TABLE III. Experimental values of the entropy den-
sity S/p as a function of T (°K) at 0 atm (inJ /g °K) from
Ref. 23 and theoretical values obtained by us, compared
with the values calculated by Bendt et al .!” The last col-
umn, OM, gives the theoretical values from the Onsager
model. The third, (BCY),,, and fourth, (BCY),,, col-
umns give, respectively, the contribution from all ele-
mentary excitations and the contribution from the roton
and phonon regions only. The numbers suggest that, ex-
cept at temperatures close to T, the discrepancy be-
tween our values and the experimental ones is caused
entirely by our use of an approximate excitation spec-
trum, in which only the phonon and roton regions are
described correctly. For the further discussion see the
last part of Sec. IV.

T Expt. (BCY)yot (BCY)y, OM
1.2 0.0515 0.051 0.048 0.049
1.3 0.0855 0.084 0.077 0.078
1.4 0.1325 0.132 0.114 0.119
1.5 0.196 0.196 0.168 0.173
1.6 0.284 0.283 0.237 0.242
1.7 0.398 0.398 0.328 0.328
1.8 0.545 0.545 0.441 0.426
1.9 0.732 0.738 0.586 0.538
2.0 0.963 0.983 0.761 0.658
2.1 1.266 1.315 0.986 0.785
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the coupling parameter g, is treated as an adjust-
able parameter. He employed Eq. (5.1) and the
free-particle expression for the roton density,
J2 -A(T)
n (D) =gt nurr e S0, 6.9

to determine 7,(T) and A(T) self-consistently. The
normal-fluid density is determined from the free-
particle expression (2.12). A good fit for the ex-
perimental values of p, at 0 atm is obtained for g,
=3X107%8 erg/cm?; a good fit to A(T) at 1 atm re-
quires g,=5X107% erg/cm3. At higher pressures
it is even harder to obtain good values for p, and A
simultaneously. This is not too surprising; in Eq.
(5.2) and (2.12) the roton interactions, which be-
come more important at high pressure, are ne-
glected.

When the temperature is increased one reaches
a point where the Eqgs. (5.1) and (5.2) no longer
have solutions. Contrary to the impression given
in Fig. 2 of Ref. 21, this happens for a finite value
of A; at 0 atm the value of p, at the endpoint is
slightly higher than p. The solution of our model,
on the other hand, can be continued to tempera-
tures above the XA point; in this region A(T) be-
comes almost constant. The experimental values
of A(T) also reach a constant value,® but that val-
ue is significantly lower than the one predicted by
our theory.

The behavior of Ruvalds’s model for increasing
T was noticed earlier by Jickle.?®* He identifies
the point at which Eqgs. (5.1) and (5.2) no longer
have solutions with the A transition; the normal-
fluid fraction at this point is made equal to unity
by means of an ad hoc modification of the free-
particle relation between roton density and normal-
fluid density. The singularity in the specific heat,
however, is not the finite jump expected for a
second-order phase transition in the mean-field
approximation, but a (T — T,)"'/2 divergence.

Nagai3® and Tiitto%! developed theories analogous
to Ruvalds’s in which the roton linewidth as well
as the shift in A(T) are considered. It turns out
to be very difficult to find values for the various
coupling constants which give good values for both
these quantities when only two-roton terms in the
perturbation series are considered.

An expression of the form (5.1) was derived by
Kebukawa®? by means of a perturbation treatment
of Bogoliubov’s theory of quantum liquids.3?
Straightforward pérturbation theory would lead to
divergences, but these are eliminated by a re-
normalization procedure,®® in which the quasipar-
ticle energies of Bogoliubov are replaced by the
ones obtained by Feynman and Cohen.? When one
assumes that the interaction between the renor-
malized quasiparticles is the same as that be-

tween the unrenormalized ones, one obtains Eq.
(5.1) with g,~18.107% erg/cm?. This value is
much too large to give good agreement with experi-
ment. The magnitude of the discrepancy was not
noticed by Kebukawa, since he calculated the ro-
ton number from the zero-temperature excitation
spectrum. The need for a renormalization of the
coupling constant in Kebukawa’s theory was dem-
onstrated recently by Rajagopal et al.%®

The theories of Ruvalds and Kebukawa are based
on an expansion in terms of the roton-roton cou-
pling parameter, and consequently the shift in A
is proportional to n, at low T. In “dielectric”
theories the natural expansion variable is y~n,/T
and our shift of A with temperature is proportional
ton,/T rather than n,. Unfortunately the linear
range is too small and the experimental values are
too uncertain to determine which of the two rela-
tions is closer to reality. The replacement of a
straightforward density expansion by a low-density—
high-temperature expansion is a typical feature of
systems with long-range forces.*® In the roton
system this “hot, dilute” limit is reached for T
going to zero; the decrease in the roton density
with decreasing T is much stronger than the in-
crease of the factor 7-!. The anomaly is caused
by the fact that temperature and density are no
longer independent variables in the roton system.

We conclude with a number of remarks on the
approximations made in this paper and on possible
ways to improve the theory.

B. Roton-roton interactions

The long-range part of the interaction we used
is generally believed to be correct for rotons with
momentum near p,.2** For other rotons Feynman’s
conservation of current argument? would predict
a dipolar flow pattern proportional to p-ym, where
v is the roton velocity and m the mass of a helium
atom. Further corrections, especially for rotons
with momenta larger than p,, may be required be-
cause of hybridization between the one- and two-
roton branches of the excitation spectrum, as pre-
dicted, e.g., by Zawadowski, Ruvalds, and Solana.3”
One could allow a variation of the equivalent dipole
moment of a roton with momentum and develop an
analogy with the theory of polar-fluid mixtures'®
rather than that of simple polar fluids.

The replacement of the short-range roton inter-
action by a hard-sphere repulsion is a drastic
simplification and its consequences are difficult
to estimate. The distance of closest approach for
two rotons used in this paper, 3.96 A at zero pres-
sure, is physically reasonable; it is almost exact-
ly equal to the nearest-neighbor distance between
two helium atoms (4.015 A for an fece configuration
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at the same density). This agrees well with the
intuitive impression that two rotons cannot be cen-
tered on the same atom.

A similar estimate of the cutoff in the dipole-
dipole interactions follows from the treatment by
Miller, Pines, and Noziéres,*® who explain the di-
polar interaction as an exchange of a phonon. This
suggests deviations from the dipolar form when
the exchanged momentum approaches the roton
region. This corresponds to distances of the order
of the nearest-neighbor distance.?

Estimates of the roton hard-sphere radius from
the viscosity of helium® lead to a much smaller
value for the hard-sphere radius (around 1 ix). On
the other hand* a calculation of the energy of the
two-roton bound state leads to a cutoff distance
for the dipole -dipole interaction of approximately
5A (corresponding to a radius of 2.5 A). However,
the latter calculation uses a potential which vanish-
es below 5 A. When a hard-core repulsion is intro-
duced in the formalism of Ref. 4, the estimate for
a will surely decrease.

From the examples just mentioned one sees that
our interaction potential is too simple to describe
all aspects of short-range roton-interactions in a
satisfactory manner. The general question of scat-
tering and binding of rotons is discussed in Refs. 4
and 23 and in recent papers by Solana et ql.*® and
by Roberts and Donnelly.*

It is perhaps worthwhile to point out that the ef-
fect of a hard-core repulsion on the temperature
dependence of A differs radically from the effect
expected from a soft repulsive part in the interac-
tion. The quantity (U) in Eq. (3.1) may be written
more fully as

<U>=f...er-U/u/f.,.fe—u/n’ (5.3)

in which [---[ indicates integration over the posi-
tions and orientations of all rotons. Configurations
in which any two hard spheres overlap do not con-
tribute to the integrals, and the integrand in the
numerator is negative semidefinite after integra-
tion over orientations. A soft repulsive part in U
would cause the integrand to be of indeterminate
sign; in some circumstances one might even find
an increase of A with temperature, as was pre-
dicted, e.g., by Parry and ter Haar.*

C. Excitation spectrum and linewidth effects

By comparing the actual excitation spectrum in
Fig. 1 with the parabola we used as an approxima-
tion one sees that our predicted values for the ro-
ton density will be systematically too low. How-
ever, the decrease of A(p,0) with pressure leads
to a decrease of the relative contribution from all
momentum regions except the one near the roton

minimum. The increase of the velocity of sound
(238, 303, and 348 m/sec at 0, 10, and 20 atm,
respectively) leads to a decrease in importance of
the phonon region and the region to the right of
the roton minimum; in the latter region the curve
E(p) changes from quadratic to linear at the point
where its slope becomes equal to the sound veloc-
ity.® The contribution from the region near the
maximum in E(p) also decreases in importance
due to the increase of the value of this maximum
(13.8, 14.7, and 14.8 °K, respectively).

Another reason why our roton densities are too
low at high temperatures is our failure to account
for effects of the width of the excitations; near
the X transition this width is considerable, and the
creation and absorption peaks in the inelastic neu-
tron scattering spectrum actually coalesce at Ty
for momentum transfer near the roton minimum.®
One might take the finite lifetime into account by
using a Boltzmann factor averaged over the line
profile rather than one associated with the maxi-
mum of the line; this was done in Ref. 6.

Alternatively, one might try to include a prob-
ability distribution for the possible values of the
potential energy of a roton, instead of simply the
average value; however, this would require a
much more complex theory of dielectrics, which
does not yet exist. We expect that a refinement
of our calculation, using the actual roton spec-
trum and correcting for the finite width of the ro-
ton levels, would lead to improved agreement
with experiments. In particular the higher roton
density would lead to a much faster decrease of
A(T) when T approaches T,, and to higher values
of Sand p, in this temperature region. Some addi-
tional assumptions concerning the temperature de-
pendence of various parameters of the spectrum
would however be necessary in such a treatment.

D. Alternative dielectric models

Instead of the Onsager model of a dielectric one
may use either the mean spherical model** or the
thermodynamic perturbation scheme of Stell and
co-workers.!® Calculations using these two other
models give practically the same results as those
using the Onsager model, at least for temperature
values for which the latter agrees well with experi-
ment. For temperatures near the X point the the-
ory of Stell et al. gives somewhat better agree-
ment with experiment than the Onsager theory,
but the improvement is not very significant. For
example, at 2 °K and 10 atm, the respective values
of A(T), S/p, and p,/p with the thermodynamic
perturbation theory are 6.01 °K, 0.854 J/g °K,
56.1%; with the Onsager model, the values are
6.40 °K, 0.807 J/g °K, 51.6%, while the experi-
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mental values are 4.42 °K, 1.164 J/g °K, 76.8%.

In the two alternative models the equations cor-
responding to Eqs. (3.1) and (3.9) may have more
than one solution, and the system shows a first-
order phase transition from a state with interme-
diate to one with very high normal-fluid density.

In the latter state the value of A(T) lies below 1 °K
and the value of the transition temperature depends
on the validity of our approximations for complete-
ly unphysical values of A(T) and »,; its physical
meaning is therefore rather questionable. We
point out in this connection that the X transition

in our model does not correspond to any special

point in the analogous dielectric system; the tran-
sition is reached when the difference between p
and our parameter p,, which contains only a roton
contribution, becomes equal to the contribution to
the actual p, by elementary excitations other than
rotons. Since the latter are not included in our
treatment, we cannot predict the » temperature
from our model with any accuracy.
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