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The mean spherical model (MSM) for dense fluids is solved for an arbitrary mixture of equal radii
charged hard spheres with permanent embedded dipole moments. The model provides a treatment of
ionic solutions that includes the feature of a molecular solvent. Thus, it gives a basis for
investigating deviations from the familiar continuum dielectric model in ionic solution theory. The
arbitrary polar—ionic mixture is first reduced to an effective two component problem. One component
is an effective charged species while the other is an effective polar species. This two component
problem is solved in terms of three parameters closely related to the thermodynamic functions of the
fluid. Nonlinear algebraic equations for these parameters are obtained. Although these equations
appear to be analytically intractable for arbitrary ionic and dipolar strengths, explicit results are
obtained for low ionic strength. In this limit, the ion-ion contribution to the Helmholtz free energy
is given by the classical Debye-Hiickel result. The dielectric constant in the Debye-Hiickel formula is
that of the MSM polar fluid mixture that results if the ionic components of the polar-ion solution
are discharged. The self-energy of charging, however, differs from the classical result. The model also
exhibits Debye shielding of the solvent-solvent and solvent-solute interactions as well as the more

familiar solute-solute shielding.

. INTRODUCTION

We present an exact solution of the mean spherical
model (MSM) for an arbitrary mixture of charged equal
radii hard spheres with permanent dipole moments. Our
motivation for addressing this problem is to investigate,
for the first time, a nontrivial model for concentrated
ionic solutions that includes the feature of a molecular
polar solvent. The model provides a basis for exam-
ining deviations from the usual continuum dielectric ap-
proximation widely employed in ionic solution theory.

The MSM was introduced by Lebowitz and Percus’ as
a generalization to fluid systems with hard sphere inter
actions of the spherical model for Ising spin systems.
The MSM which is specified in Sec. II, is based on rea-
sonable though somewhat drastic approximations. It
invites study because it has the virtue of yielding analy-
tic results for systems of physical interest.

{

QOur method of solution is a generalization of the in-
variant expansion technique for the solution of the MSM
for neutral hard spheres with multipolar interactions
developed by Blum. 2 These techniques derive from the
fundamental work of Wertheim® on the pure MSM polar
fluid. In the limit of vanishing charge, our model re-
duces to MSM for polar mixtures® and in the limit of
vanishing dipole moment, our model reduces to MSM
for equal radii charged hard sphere mixtures solved by
Waisman and Lebowitz, °

The reader will find that despite efforts to present
only the essential features of the solution to the model,
the analysis presented is quite involved. Accordingly,
we summarize here our main results and indicate where
these results may be found in the body of the paper.

(1) The arbitrary mixture of charged hard spheres
with permanent dipole moments is reduced to an effec-
tive two component fluid where one species bears an ef-
fective charge é Eq. (IIL. 62) at an effective density 7,
Eq. (IIL. 64) and one species bears an effective dipole
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moment [ Eq. (IIL. 63) at an effective density 7,, Eq.
(IIL 65). ‘

(2) The solution to the MSM is formally obtained in
terms of the direct correlation function wc®(w) of the
effective two component fluid as a polynomial of fourth
order in w= (r/d) Eq. (III. 98). Here d is the hard
sphere diameter. Explicit results for the coefficients
of the polynomial require numerical solution of a cou-
pled set of nonlinear algebraic equations, Egs. (IIL 122),
(111, 123), (III. 124).

(3) The model displays the interesting feature that the
asymptotic potentials of mean force between the solvent
dipoles exhibit Debye shielding due to the presence of the
ions. There also is Debye shielding between the solute
ions and the solvent dipoles as well as between the sol-
ute ions. See Egs. (I1I. 82), (IIlL. 80), and Appendix C.

(4) The thermodynamics of the model derived from
the internal energy, is obtained in terms of the proper-
ties of the effective two component fluid Eq. (V. 2). The
Helmbholtz free energy is determined by three different
charging processes, Egs. (V.4), (V.5), (V.7).

(5) Explicit results for the model are obtained in Sec.
IV in the limit of low ionic strength. See Egs. (IV.28)-
(IV. 37) in conjunction with Eqgs. (I11. 109)—(III. 112).

(6) In Sec. V the low ionic strength results are used
to obtain an explicit expression for the excess Helm-
holtz free energy AA.

BV lad = gVt AA (W)~ (127) '3+ 5o S . (.1)

The first term is the excess free energy of the MSM
hard sphere dipolar mixture in the absence of charges. 4
The second term is the classical Debye—Hiickel result
where k,, denotes the inverse Debye screening length in
a fluid of dielectric constant €,,. Here €, is the Wert-
heim dielectric constant® obtained for the MSM hard
sphere dipolar mixture.* The final term p,S is propor-

Copyright © 1974 American Institute of Physics 3935

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3936 S. A. Adelman and J. M. Deutch: Mean spherical mode! for electrolytes

tional to the density of the charges and accordingly cor-
responds to a self-energy of charging. In contrast to
the ionic interaction term at low ionic strength, this
self-energy term does not reduce to its classical elec-
trostatic value.

We wish to emphasize that our solution to this MSM
model gives the first calculation of the Debye-Hiickel
limiting expression for the free energy with the dielec-
tric solvent treated on a molecular basis.

Our future efforts on this model will be directed to-
ward obtaining explicit results at higher ionic strength.
These results may be employed in combination with a
variety of thermodynamic perturbation theory procedures
to investigate solvent effects in concentrated ionic solu-
tions from a molecular viewpoint.

Il. SPECIFICATION OF THE MODEL

Consider an m~-component fluid mixture of charged
hard spheres with permanent embedded dipole moments.
The ith component of the mixture is characterized by a
hard sphere diameter d;, a dipole moment ;, a charge
¢;, and a number density p;. For reasons of mathemati-
cal simplicity, we assume all the d; are equal to a com-
mon value d. The dipole moments, however, can have
any nonnegative value including zero. The charges can
have any value including zero but must satisfy the total
electroneutrality condition.

m

2ipie;=0. (. 1)

i=1
The ionic solution is of course an important special case
of the system described above as is the polar fluid mix-
ture.

It will prove convenient to represent the collections of
dipole moments, charges, and densities as diagonal ma-
trices U, e, and p, respectively; i.e.,

By 0 ++e 0

O by - ? (L 2)

0 0 o U,
with corresponding definitions for e and p.

In this notation the total electroneutrality condition
Eq. (I1I. 1) becomes

trpe=0 . (11. 3)

The Ornstein- Zernike equation for our mixture is

Hi;(X,X,5) - Cyy (X, X5)

m
= (41r)-lkz_fka’Cik(X1X3)ij (X3 Xp)X5 . (IL. 4a)
In Eq. (IL. 4), X;=(r;, ;) denotes the position r;, of
molecule ¢ and the orientation £; of its dipole moment.
The functions H;;(X,X,), C;;(X,X,) are, respectively,
the direct and indirect correlation functions for species
z and j. We rewrite Eq. (I1. 4a) in matrix notation as

H(X . X;) - C(X,X,)

= (41)7 [ C(X Xy)pH(X 3 X, )dX,

The Mean Spherical Model® is defined by the above
equations along with the closure conditions

(1L 4b)

VX X;)= or H(X,X,;)=-1, for ]rz—r1|5712<d (11. 5)
(1. 6)

In Egs. (I1. 5) and (IL. 6), V(X,X,) is the potential en-
ergy matrix which for our model includes hard sphere,
charge-charge, charge-dipole, and dipole-dipole inter-
actions. The quantity 8 is the inverse of Boltzmann’s
constant times the temperature while | is a matrix with
all elements equal to unity.

C(X,X,)==-BV(X,X,), for v ,>d.

HI. FORMAL SOLUTION OF THE MODEL

In this section we obtain a formal solution of the mod-
el described above. We express the direct correlation
function matrix C(X,X,) in terms of certain auxiliary
quantities which are solutions to a set of coupled non-
linear algebraic equations.

In Sec. IV, we obtain explicit expressions for these
quantities (which are closely related to the thermody-
namic functions of the system) in the limit of low ionic
strength.

We begin by expanding the correlation functions®
(F=H or C) in a complete set of rotational invariants”;
i.e., we expand:

F(X,X;)= (4m)*” Ez H Lol 55 7 12) D1 41014(R12:9212) , (1L 1)
Iilals

where the invariants q5,1,2,3(9192912) are given by®

¢, 11213(9192912)

<~ 4 I, 1
= _ 7Zn4m (_)’"2< ! ¢ s > Yi"lml(QﬂYzzmz(Qz)Yz3m3(912) .
mams —my My my (IIL. 2)

The solid angles @, and Q, describe, respectively, the
orientation of the dipoles on molecules one and two
while the solid angle Q,, specifies the orientation of the
internuclear vector ry,= (7, Q) =1, - 1y,

From the relation
F(X.X1)=FT(X,X,)

we obtain from Egs. (III. 1) and (III 2) the important sym-
metry condition
1 lolg; v) = (=) 12Tl g 7) .

Inserting Eqgs. (III. 1) and (I11. 2) into Eq. (II. 4) gives
the following set of coupled equations for the Fourier
transforms of f(I,1,l4v)"

h( \Loxg; k)= € (1L o235 k)

(111. 3)

=(@n2 25 (=)'2M[(20g+ 1)(2g+ 1)(2Ly+ 1))

Iglgly
{la Lg >‘3{<ls La )\3>
X L, 1, 125 0 o o/ CUddsklphlLoLsk),
(111. 4)
where
t(lylals; k)
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1 3/2 X
) <2—7r) JAemr flylslg; 7)d r

4mi’s [

= n ), 2, Uor) $(Llylys )

(I11. 5)

The quantity j,, (k¥) is the spherical Bessel function of

order 1,. Smce],( x)=(-)}4,(x), we see that
F Lola; — k)= (= )3, L L5 k) . (II1. 6)
We can write Eq. (II. 4) more compactly as’
h™ (L Ly k)~ €™ (L Ly k)
= (=)(2m)¥2 2 e ™ (UL kIR (oL k) (I1L. 7)
iz
where
(m) wefti I g
(1 k) = E(ZZ +1) fllsls k) . (I11. 8)
'3 m -m 0

<h‘°’(00,-k)

h(O)(Ol;k)> (C (0)(00; k)
hO(10;2) hO(11%)/

We will solve Egs. (III. 9) and (III. 10) by Fourier
transforming them back to # space and then applying a
generalization of Wertheim’s® method for the hard
sphere Percus-Yevick problem. We thus define the
Fourier transforms

..1 ©
T Lolys )= (4-—)37 k sinkr (11,05 k)dk
{for I, even) , (II1. 11a)
1
Fyloly; 7)= 4—””—,zj k coskr 11,15l k )Xik
(for 15 odd) . (I1I. 11b)
The inverse relations are
Rl (e -
1, 13, k)= (4"—), v sinky 1l Lyly; v )dr
(for I even) , (II1. 12a)
.k_l «© _
(1, L1y R) = ~ % J 7 coskr T l,le; ¥ )dv
(2m) 0
(for I, odd) . (I11. 12p)

Note that Egs. (III. 12) are consistent with the parity
relation Eq. (IIL. 6). This is the motivation for defining
the Fourier transforms differently for even and odd Z,.
Had we used, for example, the sine transform for odd
I3 we would have created an inconsistency.

We also define the quantities [cf. Eq. (IIL. 8)]

f""’(lllz;r)=2(2l3+1)“2<ll L2 l3>?(zllzzg;v). (111. 13)

13 m —-m 0

©(01 k)) 0132 <
C®(10;k) ¢ (11 k) c®(10;£) ¢O(11;k)

So far our development has been free of approxima-
tions. We now specialize to the MSM. We also restrict
ourselves to the model of the last section; that is we
assume that the quadrupole and higher moments vanish.
This last assumption leads to substantial simplification
of the analysis but is not essential.

With the restriction to MSM ionic-polar mixtures, we

find that only the functions f(00;k), +2(01; %),
£0(10; k), $9(11;k), and #9(11;%) are nonvanishing.
We note that these functions all have definite parity, be-
cause of Eqgs. (IIL. 6) and (IIL. 8), and we will make use of
this below. In fact /©(01;%) and £‘(10;%) are odd func-
tions of & while the others are even in k.

For our model, Eq. (IIL. 7) reduces to

hP(11; k) - e (115 k) = - (2m)32 cV(11; k)ph' P (11; )
(IIL. 9)
for m=+1. Form=0, we obtain the set of four coupled

equations

c9(00, 2) c<°’(01,.k)> p(h“”(OO;k) h‘°’(01;k)>
hO(10,k) hO(11;k))

(I1L. 10)
[
For our model we only require
1000, ) = F(000; 7) , (I11. 14)
#9(10;7)= — T(101;7) , (I11. 15)
#9001, 7)= - F(011;%) , (I11. 16)
011, 7)= (5)2{V2 F(112;7) - F(110;7)} (I11. 17)
(11, 7)= (H)2{5V2T(112;7)+ F(110;7)} . (LI 18)

The above 7-space functions are related to the corre-
sponding f(’"’(lllz; k) by simple sine and cosine trans-
forms like those in Eqgs. (III. 11), (III. 12). This is be-
cause the relevant §™(],1,; k) have definite parity. Com-
bining Eqgs. (IIL. 8), (III. 11), and (III. 13) then gives

amrt =

t(00; 7) :(z—ﬂ)Wi k sinky (00, k)dk | (IIL. 19)
©n1- 47” L §(0)
f (01,1/)_ kcoska £9(01; k)R, (111. 20)
1010, 7)= 4’”" f kcoskr £9(10; k)dk , (I 21)
-1
£™(11,7)= 4” f k sinkr £ (11, k)dk
(form=0,1). (111. 22)

We can now Fourier transform Egs. (III. 9)—(III. 10) to
obtain a set of »-space integral equations for the func-
tions f™(1,,1,;;¥). One slight complication arises.
Equation (III. 10) in addition to containing the usual bi-
nary products of even 2-space functions contains prod-
ucts of two odd k-space functions and also mixed prod-
ucts of even and odd functions. The usual three dimen-
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sional Fourier convolution theorem for spherically sym-
metric functions applies only to transforms of products
of even k-space functions. In Appendix A we work out
the convolution theorems for odd 2-space products and
for mixed k-space products. All three convolution the-
orems take a similar form.

Using Egs. (A9)-(A11) we find for the transforms of
Eqgs. (III. 9)—(III. 10),

h(11;7)- ¢ V(11 7)

=-2m™ f* wdu [ veV(13;u)ph(11;0)dv, (111 23)

u=rl

h@(00;7) - ¢(00; »)
B -1 [ u+r
- ZW fO udu flu-rl

- 2m! fowudu f'::r

v ¢®(00; u)ph™(00; v)dv
ve‘Q(01; u)ph'®(10; v)dv, (IIL. 24a)
h®(01;7) - ¢ ©(01;7)

—27T7"1f udu fwr w’(OO;u)ph(O)(Ol;v)dv

v2mt [ udu ST 0e®(01;0)ph® (115 4)dv, (IIL. 24b)

h®(10;7) - ¢ ®(10;7)

= 2m°t fom udu f::rvcm’(lo;v)ph(o’(oo; u)dv

+ 2mr! jo“’udu ST 06 @115 2)ph ™ (10; v)dv, (II1. 24¢)

h@(11;7) - ¢ (11, 7)

== me'lfowudu fu'_‘:rvc“”(lo,- uw)ph©@(01; v)dv

+ 27" 1f uduf1 UC(O)(ll u)Dh(m(ll ).

u=rl

(1. 244)
We now relate the solutions of the above integral equa-
tions to the coefficients f({,l5l5;7) in Eq. (IIL. 1). Actually
we only have to relate the coefficients f(I,l,l4; 7) to the
transforms f (,1,l5;7) defined by Eq. (IIL. 11) since these
latter functions are related to the solutions f(l,1,;7) by
Eqgs. (III. 13)-(I11. 18).

The relationship between f(I,1,l,;7) and ?(lllzl's;r) is
obtained by using the second form of Eq. (III. 5) in Eq.
(III. 11). We find

Fllals; )= (2/m) [ 77/ 240 1ol g; 7/ )Qu, () v )y, (1L 25)

where
Qi (', 7)=i'sy"! fomk sinkv j, (kr’)dk for Iy even

I NPRS fO”k coskr j, (kv')dk for I3 0dd .
(II1. 26)

For I; even, Q,a(r r) was evaluated in a previous
paper,* The same method can be applied for I3 odd and,
in fact, the result is identical for both cases. We find

Qi 7)=5"5 [(r'—r)—%ew'—v)z’{s(%)] » (1L 27)

N
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where 6(x) is the unit step function and P/(x) is the de-
rivative of the /th Legendre polynomial. Combining
Eqgs. (IIL 25) and (IIL. 27) then gives'®

Fylalg;v) =11 Lyl 5 7)
=7 [T Pl /v W(lylglys v )dr’ . (IIL 28)
The inverse relation can be similarly obtained. We find

f(Lloly; 7) = F Uy Ly v)

A

We now obtain closure conditions for the integral Egs.
(I11. 23) and (II1. 24).

7Pl /)Ll v N (II1. 29)

We make an invariant angular expansion of the poten-
tial energy [cf. Eq. (IIL 1)]
V(X X,)= (47) 3/212 Vi lal3; )P 1y1,14(02:00) -
12l

For our model only the following radial coefficients
v(l,l,14;7) are nonvanishing

(I11. 30)

v(000; 7 )= vys ()l +eler™ (I11. 31)
v(101; 7) = — (3)"2pler2 (I11. 32)
v(011;7)= (§)elur? (I11. 33)
v(112; 7)== 3)"2plur-® (I11. 34)

The quantity vy4(#) is the potential for hard spheres of
diameter d while the other terms are the multipole in-

teractions. The MSM closure conditions Egs. (II. 5),
(1. 6) thus become
h(000; )= 7 <d (111 35a)
€(000; )= — Beler™? ¥ >d (I11. 35b)
h(101;7)=0 r<d (I11. 36a)
c(101;7)= (5)*puter™  v>d (IIL. 36b)
h(011;7)=0 r<d - (0L 37a)
c(011;7)= - (3)"2elur? 7>d (I11. 3b)
h(110;7)=0 v <d (I11. 38a)
c(110;7)=0 v >d (I11. 38b)
h(112;7)=0 r<d (I11. 39a)
c(112;7)= (§)Bulur™ v >d (II1L. 39b)

In addition to satisfying the above closure conditions,
the correlation functions must satisfy the local electro-
neutrality constraint

(1/4m) [ ax, é[Hi,(X1X2)+ 1pse,=—e; . (II1. 40)

This states that the total charge in a large sphere cen-
tered on a molecule of species ¢ vanishes; that is the
charge on the “ionic atmosphere” surrounding the mole-
cule exactly cancels its charge.

Equation (III. 40) can be simplified by using Eq. (II. 1),
changing to matrix notation, introducing Eq. (III. 1) into
the resulting relation, and then integrating over angles.
We finally obtain
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4n [ " dv v*h(000; 1)pel = —el . (IIL. 407)

We will now obtain closure conditions for Egs.
(I11. 23)~(111. 24). We write out the transforms (III. 28)
and (III. 29) explicitly for the correlation functions we

require. These are
T(000; ') = £(000; 7) (I11. 41)
T(110; 7)= #(110;7) (111, 42)
£(101;7)= £(103;7) ~ ™" [ T#(101; 7 )’ (IIL 43)
£(101;7)=1(101;7) - 72 [ F(101; 7 )dr” (I11. 44)
(112;7)=1(112;7)- 3 fr" (/7112 7)dr’ (111 45)
#(112;7)=F(112;7) - 373 fo'r'z?(nz,-y')dr' . (111 46)

The relations between £(011;#) and f(011,7) are by Eq.
(IIL. 3) identical in form to Eqgs. (IIL. 43) and (III. 44). We
now define the dimensionless quantities

w=r/d (II1. 47)
1= (1d®/6)p (II1. 48)
and introduce the simpler notation
f1,,00) = 90k 7).
(I11. 49)

P w)= 10(11;7) .

Combining Eqs. (IIL. 14)-(I1I. 18), (III. 35)~(III. 39), and
(IIL. 41)-(I11. 49) then gives the closure relations

hgolev) = ~1 w<l (II1. 50a)
Coolw)= — Belewd)! w>1 (I11. 50b)
hyow)= - nygo™ w<1 (IIL. 51a)
Colw)=0 w>1 (I11. 51b)
hy, @)=~ 2n,, w<l1 (I11. 52a)
c,,)=0 w>1 (II1. 52b)
hif'(w)=-ny, w<l (I11. 53a)
ciP(w)=0 w>1. (I11L. 53b)
The quantities n,y and ny; are given by
mo==d"! [ h(101,7")dr’ (111 54)
3VA(= 1
ny,= (5> L 2 h(112;7")dr . (1IL. 55)

Because of Egs. (IIL. 3), (IIL 13), (IIL 25), and (III. 49)
(I11. 56)

and this is why we have not given the closure relations
for fy,(w).

foi(w)= - t1(w)

It is important to notice that e,5(w), €,,w), and ¢ (w)
vanish outside the hard core; i.e., for w>1. The un-
transformed functions e(l,l,l4;7) are nonvanishing out-
side the hard core [cf. Egs. (III. 35)-(II. 39)]. Thetrans-
formation (III. 28) thus has the important property of
truncating the long-range multipole tails for all the
c(l4l,l337) except ¢(000;7) which remains Coulombic out-

side the hard core. Because of this truncation, our
problem can be treated by a suitable adaptation of Wert-
heim’s technique® for the hard sphere Percus—Yevick
(PY) problem.

In fact, for the MSM polar fluid mixture! problem
where fo(w)= fio(w)= 0, the solution can be expressed
solely in terms of PY hard sphere correlation functions.
The functions f{}’(w) in our problem will also be ex-~
pressed in terms of PY hard sphere solutions but the
quantities flﬂz(w) are of more complicated form.

We now reduce our multicomponent problem t{o a much
simpler form,!! Eq. (II. 23) will simplify to a one-com-
ponent PY hard sphere problem. The set of Eqs. (III. 24)
will reduce to two uncoupled problems. One is the PY
hard sphere problem for the (one-component) reference
fluid withe = u=0. The other is a set of equations for
an effective two-component problem which we will solve
below.

To accomplish this reduction we assume that the solu-
tions of Eqgs. (III, 23)- (I1I. 24) have the form

foo(w) = Fus@)l + é 2ele fop(w) , (IIL. 57)
fio(w)= (1€) 'ulef o) | (II1. 58)
for(w)= €LY Telpfo ) , (111. 59)
fw)= 072 f ) (I11. 60)
)= 2 2pInf 3 w) . (II1. 61)

In the above equations é is an effective charge given by

e2=m™ el
i=1

(111 62)

and [I is an effective dipole moment defined analogously
as

ﬁzzm'liZiu, (1. 63)
We also require the effective reduced densities

fg=é"2trne? , (111. 64)

fiy= B 2tonp? (IIL. 65)
and the true total reduced density

n=tr7n . (I11. 66)

We first reduce Eq. (III. 23) to one-component form.
Combining Eqgs. (III. 23), (IIL 47)-(11I. 49), (II. 61), and
using the definitions (IIL. 63) and (III. 65), and also using
the identity

Il=1trx (11, 67)
valid for diagonal X we find the equation
hiYw)-ci(w)

= - 12/} fowucl(i’(u)du f;::lvhﬂ’(v)dv . (I11. 68)
The closure Eq. (III. 53) becomes

rPw)==-ny,; w<l (IIL. 69a)

ciPw)=0 w>1 (I11. 69b)

where 7n,, is defined by the equation
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ny=n 0% (I11. 70)

Equations (III. 68)—(IIL. 69) define a PY hard sphere
problem for a reduced density of — [#;n,;]. Thus we have
reduced Eq. (III. 23) to a PY hard sphere problem, the
solution of which is well known.

Equation (ITL. 24), as mentioned above, cannot be re-
duced to a hard-sphere PY problem. Istead using Eqgs.
(I11. 4'7)~(II1. 49), (IIL. 57)-(IIIL. 66), the total electroneu-
trality condition Eq. (II. 3), and the identity Eq. (III. 67)
gives us two equations. The first equation

hygg(w) = ¢ yglew)

weu

= 12! fowucﬂs(u)du flw_uluhHs(v)dv (I11. 71)
along with the closure relations,

hgs)=-1 w<1 (II1. 72a)

Cus)=0  w>1 (II1. '72b)

describe the reference PY hard sphere fluid.

The second equation is a matrix set of equations which
describe an effective two-component system. These
are

hoolt) = € golt0)

= 12ﬁ0w'lf:ucoo(u)du f:i:lvhoo(v)dv

- 127w} f: uc oy (u)du fu':;wvhm(v)dv , (IT1. 73a)
hoy(w) = coi(w)

= 12ﬁ0u7'1f0wu000(u)duf " vhg (v )dv

u
w=u

12007t [ " by, (w)du f:fu” veo, )y | (II1. 73b)

hyolw) = ¢ o)
=+ 120! fowuhoo(u)du fwﬁuUC‘m(U)dU

+ 120wt fow uc (wydu j:_);"vhw(v)dv , (II1. 73c)

By () = ¢ ()

== 127w fow ucolu)du fu:wvhol(v)dv

+ 120wt fow uc () du f;::l vhy(v)do . (TI1. 73d)

Defining #, by
nyo=ny0(é) tule (II1. 74)

we can write the closure conditions for Eq. (III. 73) as

Rgo(w)=0 w<l (I11. 75a)
Coolw) = - p220wdy"  w>1 (I1L '75b)
NOERS ”10“'-1 w<1 (111, 76a)
Cyp(ew)=0 w>1 (IT1. 76b)
hyy @)= - 2ny, w<l (IIL. 77a)

¢, w)=0 w>1, (I11. 77p)

Notice that because of the total electroneutrality con-
dition Eq. (II. 3) we have been able to completely decou-
ple the reference fluid problem. This provides a sub-
stantial simplification.

The symmetry relation Eq. (IIL. 56) and the local elec-
troneutrality condition Eq. (ITI. 40a) provide additional
constraints on the correlation functions. These con-
straints can be written in terms of our new functions as

Forw) =~ frolw) (111. 78)
1+ 240 [."whoolw)dw =0 (I11. 79)

Finally from Eq. (IIL. 75b) one can verify that the first
double integral in Eq. (III. 73b) is divergent unless

fo " why(w)dw =0 . (I11. 80)
The above condition implies that
lim fo'r'ﬁ(lm;y')dwz 0. (111. 81)

k]

The physical interpretation of this result is one of the
interesting consequences of our model. Comparing Eq.
(II1. 81) with Eq. (IIL. 44) shows that h(101; 7) falls off
faster than 7”2 for large 7 [since h(101;#) is of short
range]. Thus the charge—dipole component of the as-
ymptotic potential of mean force decays more rapidly
than 72, Debye screening of the charge-dipole interac-

tion in the fluid®® is responsible for this rapid decay.

We also expect Debye screening of the dipole—dipole
component of the potential of mean force. * From Egq.
(II1. 46) this implies

fo“r'z?(nz,- r)dr'=0 . (I11. 82)

In terms of our new functions this condition may be

written as [see Egs. (IIL. 17)-(I1I. 18)]
f: w?h ,w)dw = - fowwzhﬁ’(w)dw . (I11. 83)

Now we must solve the coupled system Eq. (III. 73).
To do this we introduce the following quantities.

boolww) = hgow) , (II1. 84a)
biow) = = boy(w)=higw) + nyw™ (IIL. 84b)
by )= Go) + 20y, (I11. 84c)
e gy’ ()= ¢ golew) + B2*(dw) ™!
e ggli0) ¢ e (I11. 85)
Note that
biee)=0 w<1 (II1. 86a)
Q=0 w1 (IIL. 86b)
where
cfPo)=ciaw) =00
=c ) 7j+00. (111 87)

Also define the following Laplace transforms
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Hiy(S)= [ e s why w)dw (111. 88)
Biy(8)= J, ¢S wby,w)dw , (111. 89)
Cyy(S)= j;le'swwci(f’(w)dw . (111. 90)

In terms of these Laplace transforms, the local elec-
troneutrality condition and the charge-dipole Debye
screening condition, respectively, become

Béo(o) = (247\70).1
Hoy(0)=H,4(0)=0 .

(111 91)
(111. 92)

We can now Laplace transform Eq. (III. 73). . Since
Laplace transformation of some of the convolution inte-
grals in Eq. (III. 73) is quite invelved, we work out one
of the integrals explicitly in Appendix B to illustrate the
general procedure. We find using the relation Cyy(S)
=~ Cy, (S) that we can write the Laplace transform of Eq.
(IT1. 73) in matrix notation as

B(S) - C(S)= R(S)+ 12yS"*M% B(S)

-1287[c(S)-cT(-S)IB(S) . (IIL.93)
In Eq. (I11. 93)
T O
ﬁ=<n0 .> (111 94)
0
10
M( ) (II1. 95)
00

and v is as defined in Eq. (IIl. 85). Some of the elements
of R(S) are quite complicated. Rather than list them ex-
plicitly, we give the following prescription for obtaining
them. Expand all quantities but R(S) in Eq. (IIL. 93) in a
Laurent series about $=0 using the fact that C(S) and
H(S) are analytic at S=0. Then R(S) is the quantity re-
quired to make the singular parts of both sides of Eq.
(IT1. 93) agree. For example,

Roo(S) =~ vS™! - 24 {figyBo(0) + 71146C 10(0)}S™2 . (IIL. 96)

We wish to obtain wcdy (w)= £71C(S), where £7! denotes
an inverse Laplace transform. For w <1, the range for
which ¢ () is nonvanishing, we find from Eq. (III. 93)

—we@w)= £IRS)+ 1287STICT(- S)MB(S)] . (III. 97)

The above equation follows from Eq. (III. 86a) and the
Laplace convolution theorem. £7'R(S) is easy to obtain
[see Eq. (IIL. 96)]. The second inverse transform in Eq.
(I11. 97), however, cannot be performed in a straight-
forward manner. Wertheim, ® however, by means of an
ingenious application of complex variable theory, has
shown how to overcome this difficulty. Since his method
hag been described elsewhere in connection with several
different problems®® %1 and since the calculation is
quite lengthy for our case we omit the details here.

We find for ¢ (w)

_wc(o)(w)z V+Ww+sz+ YYA):‘]-FZZU‘i N (III- 98)

where V, W, X, Y, and Z are (2X2) matrices which are
independent of w. Explicit results for these quantities
are presented below in terms of a briefer notation which

we now introduce,

We define the dimensionless strength parameters

850= 24i,pe%d ™" (I11. 99a)

63,= (§)24M,BA%"° (1I1. 99b)

8%0= B0 y; = (3)"/247B 064", (II1. 99c)
where

7= (o) . (111. 100)
Note that

Bgo= Kod , (II1. 101)
where }

Ko= (4mPoé®p)'/2 (IT1. 102)

is the Debye inverse shielding length for an electrolyte
in a solvent with unit dielectric constant. The quanti-

ties g, P, are the effective densities associated with the
reduced densities fj, 7;.

We also require the relation

1
C1o(0)= fo we ow)dw = 85/ 247

which follows from Eqs. (III. 15), (III. 36b), (III. 44), and
(III. 51b) written in terms of the effective two component
fluid, A similar calculation gives another important
relationship

(1I1. 103)

g -q =98¢, (111. 104)
where

¢'=1- 247, [ wic s (w)dw (IIL. 105a)

g =1+ 247, [ w'e Pa)dw . (ITL 105b)

As mentioned earlier c¢{P(@w) is the PY hard sphere
direct correlation function for reduced density ~ [f,n,,].
Thus ¢~ is simply related to

an)=(1+2n)%/(1-n)*,

where q(7) is the PY hard sphere inverse compressibil-
ity. ¥ In fact

(1I1. 106)

4 =q(~0yny) . (I1I. 107)
We further define

x = fioBoo(0) , (IT1. 108a)

Y =T, (I11. 108b)

2= 20y (I11. 108c)

We now can compactly present the explicit forms of
the matrices appearing in Eq. (I11. 98). These are

Voo™ — 24050 , (111. 109a)
floWoo= = (x859+y6%0) , (I11. 109b)
fioXoo= - 6(x>050+ 24y 830+ %") , (I1l. 109c¢)
V1= x025+9q" , (1IL. 110a)
MX10= — H(¥050 - 20%) , (I11. 110b)
MY 10= = 2(xy 559+ y20% — x20% ~ y24*) , (IIL. 110c)
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MVo1=—y — 24[NoCho(0)y + TH{;(0)85,

+ ,H 11(0)8%+ 1271C14(0)2] | (IIL. 111a)
1Xo1=—1X10, (IIL. 111b)
MY u=-TYy, (IIL 111c)

)

MWyi= —y6?0+zq" s (I11. 112a
711X 11 = 6[71,H 1(0)(zq* — v 3%) — TIH{,(0)(y 630 2 6%))
- y(x0%+vg")+71,C14(0)2] , (I1L. 112b)

1 Z11= 527" + 392050 — vz 8% . (III. 112¢)

Several comments are necessary. First elements of
V, W, X, Y, and Z which vanish are not listed in Egs.
(II1. 109)—(I11. 112). Also because of Eq. (III. 78), the
quantities Vy;, X, and ¥y, are, respectively, the nega-
tives of Vi, Xy, and Y3, For Xy and Yy, this sym-
metry is obvious from the explicit forms yielded by the
calculation. This provides a useful check of the calcu-
lation. The explicit forms we have obtained for - V,
and V,, are not obviously equal. The requirement that
Vio=—Vpy, in fact, leads us to a relation which will
prove useful below.

Finally to obtain Egs. (II1. 109)-(III. 112) we have re-
peatedly used the local electroneutrality condition Eq.
(IT1. 91) and the charge—dipole Debye shielding condition
Eq. (III. 92). Since we arrived at these relationships,
as well as Eq. (III. 83), by physical arguments and since
they are essential to our method of solution it is worth-
while to derive them from our model. This is done in
Appendix C.

One problem remains. Eq. (III. 112b) is in an incon-
venient form since it contains the quantities H,,(0) and
Hg,(0). We thus require two relationships involving
these quantities in order to eliminate them from Eq.

(ITII. 112b). The first relation follows from the require-
ment Vy;= - V5. The second is obtained by expanding
the (1, 1) element of Eq. (IIL. 93) in a Laurent series
about S=0 and equating terms of order $°. We eventual-
ly obtain

'F]1X11: 6 {22771011(0) - 42277103)(0)
+y2[ 247C{5(0)] + [ 1+ 2471Co(0))]

- 2y(x6%,+vg")} . (IIL 112b’)

Equations (III. 109)-(IIL. 112) now contain two types of
unknown quantities. First we have quantities C“(0),
the Laplace transform C(S) and its derivatives evaluated
at S=0. These can be readily eliminated from our
equations as we will describe below. Second we have
the parameters x, y, and z. After we have eliminated
the €‘(0), we will obtain a set of three coupled nonlin-
ear algebraic equations for x, y, and z. The model is
completely solved when we have obtained the physical
roots of this set of equations.

The C(0) are eliminated in the following way. Con-
sider, for example,
g* =1+ 24%,C{,(0)

=1+ 24,3 W+ i X +32Z,,) . (II1. 113)

Using analogous expressions for C,;(0) and C)(0), we
eliminate these quantities from all terms in Eq. (III. 112)
which are nonvanishing in the polar fluid limit; i.e.,
when 83p=0. This leads to a set of coupled linear equa-
tions for Xy, Yy, and Z ;. Solving these gives

o 2(1+ 22)°
N W= [ +Dy , (I11. 114a)
2 1 2
" 2°(1+ 32)
7, Xy=—6 —(3—;)4—+Dx , (II1. 114b)
MZy= 320, Wi +4 Ay, (IIL. 114c)
where
o (14222 A - @13z)za,
24D,=(1-2z) det< X (IIL. 115)
-6z 2zA,+ A,
A,— E+3z2)z8, 62(1+32)
24D,= (1-2)*aet [~ ° NE
2z8,+ 4, 1-8z -2z
(IIL. 116)
with
Ay = - 24y06]; (IT1. 117)
A, =144 {yz[247C 3(0))]
- 2y (w85 + 9" )+ v 1+ 247,C4o(0)]} (111 118)
A= 24y (yo5, ~ 28%) . (II1. 119)

Since C{§(0) and C{y(0) can be expressed in terms of
x, ¥, 2, and ¢*, we only need these latter quantities in
order to obtain W,,, X;,, and Z,;. There appears to be
one problem. By Eq. (IIL. 113) ¢* depends on Wy, X,
and Z;. But, as we have just mentioned, W,,, X,;, and
Z,, depend on ¢*. Thus our solution for W,;, X,,, and
Zy, is apparently implicit. This is not actually the case,
however, since ¢* can be eliminated in favor of g~ using
Eq. (III. 104) and, because of Egs. (III. 106)-(II1. 108),

g =(1-2)%/(1+32)* (111 120)

is a function only of z. Thus if we know x, y, and z we
can compute W,,, X,;, and Z,,. In fact we can deter-
mine all of the elements of V, W, X, Y, and Z in terms
of x, v, andz. Thus to completely solve our model we
now only require the values of x, y, and z.

We now determine three equations for x, y, and z.
Combining

Cyp(0)== (Vyo+ 5X 10+ Y 1) (1L 121)

with Eqgs. (III. 103) and (III. 110) we obtain the first equa-
tion. It is

24[ (x5 + yq" )(1+ 32)
- 1_12(3’ 530 - 25120) - 3lxy 5§0+y25§0)]
- 5?0 . (I11. 122)

A second equation relating the unknowns follows from

the continuity of kgy(w) - coow) at w= 1. ¢
o Xoo-+ 6[,C S (L)]2+ [7IC o(1)]2=0 . (111 123)

Using Egs. (IIL. 109)—(III. 10) in Eq. (III. 123) gives the
explicit relationship.

A third relation follows from Egs. (III. 104), (IIL. 112a),
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Eq. (III. 114) and Eq. (I1I. 120). It is

52 _[(1+22)Z (1-2)2]
R KL T )
Again, as in the case of Eq. (III. 123), Eq. (IIL. 124)
can be rewritten as an explicit but complicated relation
between x, y, z, and g°.

Equations (III. 122)-(III. 124) along with Eqs. (III. 104)
and (III. 120), which allow us to express ¢* in terms of
z, provide a closed but very complicated system of equa-
tions for x, vy, and z. For arbitrary values of 8y, and
6,,, these equations must be solved numerically. For
small dy, they can be treated analytically by perturbation
theory.

2 [Dy+y0%] . (1L 124)

IV. PERTURBATION SOLUTION FOR LOW IONIC
STRENGTH

We now solve the coupled system, Egs. (IIL. 122),
(IT1. 124) for small 8y, that is for the limit of small
ionic strength. Show that to low order in 64 the model
gives results similar to those obtained in the usual con-
tinuum dielectric theories of ionic solutions.

The important unknown parameters of our model are
x, v, 2, and ¢*. We assume these have the following
expansions in gy, -

%=X, 000+ X050+ X300+ * * * (Iv. 1)
Y= 1800+ Y2050+ Y3000+ * (Iv. 2)
2=20+2,0%+24505 (Iv. 3)
q* =+ q5050+ 4353 - (IV. 4)

We will also require the expansion of ¢~ which we assume

to be
4" =qp+ 305+ 4300 - (1v.5)

Note that z,, g5, and g; refer to the polar fluid solvent

3943

characterized by an effective density p; and an effective
dipole moment y,. We know from previous work®* or
from equations presented here that
qb=(1+22¢)%/ (1-2z9)* (IV. 6)
g5= (1-20)%/(1+ 320)" av.m7
with z, determined from the relation [cf. Eq. (III. 104)]
5% =a5-as . (IV. 8)

Also note that we have assumed in Egs. (IV. 3)—-(IV. 5)
that z,, 45, 4;=0. This follows from the fact that D,,
and y 0%, are of order 6%, for small ionic strength. Thus
from Egs. (IIL. 112a) and (III. 114a) we see

. [1+2(29+ 2,800 2
- [1- (z0+21600)]4 +0(850)
or
(1+ %Zo)

1= 89 T 1 22 @ (Iv. 9)

Similarily from Eq. (III. 120) we see
(1- 420)
zo)(1+ 320)

Finally because of Eq. (III. 104) we

91=- 44y 1< (Iv. 10)

9,=qy forn=>1. (Iv.11)
Comparing Egs. (IV. 9)-(IV. 11) shows that gj=2,=¢7=0.

The second order terms in Egs. (IV. 3)-(IV. 5) do not
vanish. Instead we find [cf. Eq. (IV. 10)]

4q5(1~ 420)
(1 20)(1+ 320) °

This relation will prove useful below.

G;=0q3= (IV. 12)

We now turn to the problem of computing the low or-
der contributions to x and y. Inserting our expansions
Eqgs. (IV. 1)-(IV. 4) into Eq. (IIL. 122), using 83;= 564000,
and equating like powers of §;, on both sides of the re-
sulting relation, gives the following three equations:

1
1 6, 1+22z,
mo L TR0 .13
yl 24 qo 1+ 220 (IV 1 )
%1811 +9245=0, ‘ (Iv. 14)
X011+ Y305 = “2%1(1'* %Zo)-1[243’1q§(1+ 320)+ 129,205 — 123’§511+ 22,0, 2y,1] . (IV. 15)

We similarily combine Eqgs. (III. 109)~(IIL 110} and (IIL. 123) with the expansions (IV. 1)-(IV. 4).

We equate like or-

ders in 5y, on both sides of the resulting relation and consider the three lowest order equations which arise.

The first two equations reproduce Egs. (IV. 13)-(IV. 14).
1t involves the unknown quantities x,, x,, vy, Vs, V3, 22, and g5.

gives new information.

This provides a valuable check. The third equation

Fortunately, the higher

order quantities x, and y; occur in the combination x,5,, + y;4% and therefore can be eliminated using Eq. (IV. 15).

The quantities y, and y, are then eliminated using Eqs. (IV. 13) and (IV. 14).
After a very lengthy simplification this equation finally becomes

ing only x,, 2z,, and q¢}.

This leaves us with an equation involv-

_Q(24 )2 1-2 6%1_*_ 6?1 + T (IV 16)
M ab a5 ’
where
62,12 9 (1+22 )2 1 (1- z) 0% (1+2z¢)° 52 (1+22g)
T=[—¥][ 1+ o & (1+2 O, gy—8-U 20, ] IV. 17
s 16 (1% 20 6 (15 TzoR z"’*[ ] (1= Z2o? 12~ 8% T 2n)(i+ S2) (av.17)
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Fortunately, as we will show below by explicit calcu-

lation of z, and ¢}, the quantity T vanishes. Thus
3{3(24;(1)2: ( *%%f
or using Eq. (IV. 8)
24x,=+(1/€, )%, (1v. 18)
where
€,=90/45 (1v.19)

is Wertheim’s formula for the dielectric constant of the
effective polar fluid solvent. The sign ambiguity in Eq.
(IV. 18) is settled by examining the small ionic strength
limit of Waisman and Lebowitz’s® solution of the MSM
primitive electrolyte problem. We find

24x,=~ (1/€,)"2 . (Iv. 20)

The simplicity of Eq. (IV.20) may appear remarkable
in view of the complexity of the proceeding calculation.
Actually, x; must be of the form of Eq. (IV.20) in order
that the model give results in agreement with the con-
tinuum dielectric picture for low ionic strength.

To see this we recall the definition of x, Eq. (III. 108a),

and of Byy(0), Eq. (II1. 89). Then using Eq. (II1.101)
gives Eq. (IV.20) in the form

24 lim [ " whoolw)dw = - x,d , @Iv.21)
Bgg 0
where
K, = Ko/ Ve (IV. 22)

is the Debye inverse length in a medium with dielectric
constant €.

We rewrite Eq. (IV.21) in terms of the unreduced ra-
dial distance r=wd as
dnpo Um [, vhoolw/d)dr = -k, (Iv. 23)
860~ 0
Now we take the limit d— 0 in Eq. (IV.23). [Note that
the right hand side of Eq. (IV.23) is independent of d. ]

If our model is consistent with the continuum dielectric
picture, then we should have

2 =Ky T
s Y K ew
lim hoo(‘) =2 ¥ - —
600" 0 d TPy 7
a0

the Debye-Hiickel result. We can easily verify that Eq.
(Iv.23) is consistent with the continuum dielectric ap-
proximation,

The above argument is essentially a calculation of the
dielectric constant by the test charge method. ! It is in-
teresting that we obtained Wertheim’s result, He used
a fluctuation formula and it is well known that in an ap-
proximate theory like the MSM, different routes to ob-
servables may give different results.

We now show that T defined in Eq. (IV. 17) vanishes.
To do this we must determine explicit forms for ¢; and
z,. We already have one relation between these quanti-
ties, Eq. (IV.12) and we will use Eq. (III, 112a) in the

Mean spherical model for electrolytes

form [see Eq. (III.114a)]

. (L+22)

q ‘H—~*—)r+z D, +y8%] (1V. 24)

to obtain a second relation.

Expanding Eq. (IV.24) to order 53, gives after a
lengthy calculation

- 8g5 (1 +2zg) +_1_ (l—zQ)3
2T M=z, (1+22,) 22748 T +L1z,)0

X(13+19z5 +428)(1 +22,)% . (Iv. 25)
Using Eq. (IV.12) to eliminate z, gives

q+:5_ﬂ (1 —2)° 13+192)+ 42}
2748 (1+32,7 (1+2z)°

D, (Iv.26)
where

p-[s

Finally we use Eqgs. (IV.12) and (IV.26) to eliminate

q; and z, from Eq. (IV.17). After rearrangement we
establish that T=0.

120 ——-(-1350—)——]-1 av. 27)

g5 (1 =320 +22¢)

In order to solve our model to order 55, we also re-
quire ¢} and z;, These can be obtained by a calculation
similar to that sketched above for ¢; and z,. The results
are given in Egs. (IV. 36) and (IV. 37).

The following equations summarize the results of this
section

5= (1+22)%/(1 - zp)* (Iv.28)
go=(1=20)%/ (L +32,)* (Iv. 29)
with z, determined from
5% =qo—qo - (Iv. 30)
Also
x ==/ )", (1v.31)
1 64 1+22
R o .32
N g Tz (Iv. 32)
1 62, 13+19z,+42%

e e s e U ) V. 33
9= 92" 35 28 0 = 2,)(1 + 220 ( )
Yz = (511/116)961 ’ (Iv. 34)

1 8%, 13+19z,+42%

:_._.___1.1:__._.____0__0_ 1V. 35
%2~ " 192 abap (1 = 120)(1 +320) ( )

. 8x,82 1+iz
D21711 2 .38
BB Trez)( -3z v 36)

2 1, \2
gg=-20n _ Urazd av. 37)

gogo (1+22)(1 = 320)

From the above equations we can compute the low
ionic strength limits of the direct correlation function
c(X,, X;) [Eq. (IL. 4)], the pair correlation function H(X|,
X,) [Eq. (IL. 4)] and the thermodynamic properties of our
model., The direct correlation function is of little in-
terest so we omit the detailed formulas here. The pair
correlation function is of considerable interest.!® From
it we can, for example, obtain the potential of mean
force at infinite dilution, a key quantity in the MacMil-

J. Chem. Phys., Vol. 60, No. 10, 15 May 1974

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



S. A. Adelman and J. M. Deutch: Mean spherical model for electrolytes

lan-Mayer theory of solutions. Unfortunately calcula-
tion of this quantity requires substantial additional labor.
We will examine it in a subsequent paper.

The thermodynamic properties of our model, however,
can be easily obtained from the results given in this
paper. We consider these properties in the next section,

V. THERMODYNAMICS

The excess thermodynamic properties of this model
can be expressed in terms of x, y, z, 63, and 5% ; the
parameters of the effective two component fluid.

We begin with the expression for the excess internal
energy per unit volume which is

m
VIAE=[2V@an P 23 pip; f Vi (X, X5) Gy (X, X)X dX,, .

if=1 (V- 1)
Here G;;=(H;; +1) is the pair distribution function for
species 7 and j, and the sum is over all m components
of the true mixture, After a straightforward calcula-
tion, '" Eq. (V.1) can be reduced to the following simple
form

VIAE=[3/8rd%] [x62 + 2954051, — 26%] . (v.2)

This expression has a very simple interpretation, Re-
call that we have reduced the solution of our model to
the problem of solving an effective binary fluid mixture
problem [see Eq. (ITI.73)]. This mixture contains an
effective charged component with charge & and density
Py and an effective polar component with dipole moment
4 and density Py The effective mixture, of course, does
not correspond to any physical ionic solution; for exam-
ple it contains charges of only one sign, It is simply a
convenient mathematical device for solving the MSM
and for discussing the thermodynamic properties of the
true mixture, For example in Eq. (V.2) the term [x5Z))
can be attributed to the mutual interaction of charges

¢ in the effective mixture while [9545,,] describes the
interaction of the effective charges with the effective di-
poles. Similarly the term [- 262 ] is the effective di-
polar interaction term.

The Helmholtz free energy of the mixture may be ob-
tained by application of conventional thermodynamic per-
turbation theory of which the Gibbs~Helmholtz equation
is a special case. In this approach a portion of the pair
potential energy of interaction, for simplicity denoted
4y, is scaled by a parameter X so that u;;~Au;;. The
excess free energy 4A(x=1) in the system of interest
when the potential u;; is completely “turned on,” i.e.,

A =1 is related to the excess free energy AA(\=0) in a
reference system when the potential u;; is completely
absent i.e., A=0 by

AA(A=1)-AA(=0)

! .

N [2(4‘”)231-12,9#75'{ aryuy, (X1X2)Gu (X, Xy )t)XmdXZ ,

H 0 (v.3)

where the prime superscript on the sum denotes that the
sum runs over the species (i, j) for which the potential
#;; has been scaled. In Eq. (V.3) G;,(X;, X;; 2) is the two
particle distribution function in the system of interest
when the potential u;; is replaced by Ay,
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This procedure can be applied to the model we are
studying in a number of interesting ways according to
what part of the potential we select to scale, First we
may choose to scale every charge and every dipole in
the true mixture by e, ~2'/%e; and p,~\'2y,. This
choice corresponds to turning on dipole and charge in-
teractions from a reference hard sphere fluid. In terms
of the effective two component system we find for our
model the result

AA(x=1) - AA(hs)
= v[3/Brd? fo a2 ()68 + 290600041 — 200851, (V. 4)

where AA(hs) is the configurational free energy of the
reference PY hard sphere fluid. In Eq. (V. 4) the ex~
plicit dependence of the parameters (x, y, z) on X has
been denoted, e.g., since in the system of interest
x=x(Bgg, D11), We have written x(3)=x(x}/2549, \}%5,,).

Second we may choose to scale every dipole in the
true mixture by u, ~ Aélaui and maintain every charge in
the system at its physical value. This choice corre~
sponds to “turning on” dipole~dipole and charge-—dipole
interaction in a MSM ionic system. Here the reference
system consists of the MSM charged-hard sphere fluid
studied by Waisman and Lebowitz.® For this scaling one
finds the result

AAD,=1)-2A(L, W)

= V[3/377d3]f01 A2 y(0g)8 00011 — 2(0,)65,], (V. 5)

where AA(L, W) denotes exactly the excess free energy
for a charged hard sphere mixture in the MSM approxi-
mation as determined by Waisman and Lebowitz, In
Eq. (V.5)

3(0g) = 9(800 A37%611)

V.6
Z(Ad):z(ém, A;/zéu) . ( )

Finally we may choose to scale every charge in the
true mixture by e; ~2?¢; and maintain every dipole in
the system at its physical value. This choice corre-
sponds to “turning on” charge—charge and charge—dipole
interactions in a MSM dipolar system. Here the refer-
ence system consists of the MSM dipolar mixture., For
this scaling one finds the result

AAQ, =1) - AA(W)

= V(3/pnd®) J dh[x(0)o% + 250 )6001s] ,  (V.7)

where AA(W) denotes exactly the excess free energy for
a dipolar hard sphere mixture in the MSM approximation
as determined by us* from Wertheim’s® elegant solution
of the one component dipolar hard sphere system. In
Eq. (V.7)

(A, = x(K:/ZGOO: 811)
¥y = (03 %800, 611)

We note that, of course, a second scaling may be used
to relate either AA(L, W) or AA(W) to AA(hs). For ex-
ample in the case of the pure MSM dipolar hard sphere
system, Nienhuis and Deutch'® explicitly show how

(v.8)
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AA(W) is related to AA(hs). We also remark that the
reference system free energies AA(hs), AA(L, W) and
AA(W) depend upon the densities (and compositions) of
the charged species although they bear no charge in the
reference system. Accordingly these reference free
energies are not at 'infinite dilution, '

In an exact treatment of an ionic—dipole mixture the
true excess free energy AA could be obtained by any one
of these three scaling procedures and one could conclude

AA=AAN=1)=2A0,=1)=4A(,=1). (v.9)

Accordingly one can infer nontrivial relations between
the exact formal expressions for AA(x), AA(),), and
AA(Q\,) which might be employed as convenient starting
points for practical thermodynamic perturbation theory
calculations. We investigate this matter further ina
forthcoming publication.

The MSM, however, is an approximation to the true
mixture and accordingly the relation displayed in Eq.
(V. 9) may not hold for the model under investigation
here. The point is that the MSM is an approximate the-
ory which need not preserve thermodynamic identities.
For example the compressibility obtained from Egs.
(V.4), (v.5), or (V.7) will not agree with that obtained
from the compressibility theorem, The failure of two
procedures to lead to equivalent results is a frequent
failing of approximate models of the liquid state.

While we have not proven the relation displayed in Eq.
(v.9) for the MSM ionic—dipolar mixture we conjecture
that it holds in general for this model. If this is true
Egs. (V.4), (V.5), and (V.7) may be used advantageous-
ly to compute coefficients in the expansions of x, v, z in
parameters 5y and 5.

Since explicit results for x, y, and z for arbitrary
value of 84, and 6;; cannot be obtained without numerical
solution of the coupled system of Eqs. (III. 122), (I11.123),
and (ITI. 124) we cannot explicitly evaluate the integrals
appearing in Eqgs. (V. 4), (V.5), and (V.7). However we
can obtain explicit results in the limit of low ionic
strength, i.e., &y small, employing the results of Sec.
IV. This is a most important step since it permits com~
parison with Debye~Hiickel theory. The MSM model in-
vestigated here is the first model which attributes a mo-
lecular character to the solvent in an ionic system and
it is most important to verify agreement with conven-
tional Debye—-Hiickel treatment where the solvent is
treated completely as a dielectric continuum.,

For low ionic strength clearly Eq. (V.7) is the
convenient choice for computing AA., The evaluation of
AA is accomplished by employing the expansions ob-
tained from Eqs. (IV.1), (IV.2):

x(0;) = %22 2600 + O(55,) (V.10)
¥0) = 9082800+ ¥a2o 65 -

When these expansions are substituted into Eq. (V.7) we
obtain the result for the excess free energy:

V-1g[aA - AA(W)]

= [2/7d°|{(x, + 92611)800 + ¥1560511} - (v.11)

x
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The terms on the right hand side of this equation can be
given a physical interpretation in terms of Debye—
Hiickel theory. Employing Eqs. (IV.19), (IV.30), (IV.31),
and (IV. 34) we may express the factor [x; +y,6,,] in first
term as

%1+ 9200 = [0/ €] = "z%(éw)-s/z . (v.12)

Notice what has happened. The quantity (x;55,) is (within
factors) the vacuum Coulomb potential energy averaged
over the medium charge—charge pair distribution func-
tion and accordingly varies as ¢;!2. Addition of the
charge—dipole term [ y,5,,55] has the effect of dividing
the vacuum Coulomb potential energy by €,,; that is the
charge—dipole interaction, in this low order, has the ef-
fect of “renormalizing” the vacuum Coulomb potential to
a Coulomb potential appropriate in a dielectric medium
with dielectric constant ¢,. If we substitute Eq. (V.12)
into the first term on the rhs of Eq. (V. 11) and employ
Eq. (I11. 101) we obtain for this contribution

VIBAA(DH) = - (1/127)[k,/€/%]?, (v.13)

where K, = (47p,8°8)'/2. We have denoted this contribu-
tion as AA(DH) because it is exactly the classical
Debye~Hiickel theory result with an inverse Debye
shielding length «,, = (k,/€./?) appropriate for a medium
with dielectric constant €.

The second term on the rhs of Eq. (V.11) depends
upon Gﬁo and accordingly is linear in the density of the
effective charges p,. Clearly this term cannot be asso-
ciated with charge—charge interactions. This term can
be interpreted as the contribution to the free energy of
the self charging of p, effective charges per unit volume
in a medium with dielectric constant ¢,. The classical
result for this quantity 5,5, is simply

BoS; = (pe2%/2d)[€;)} —1] . (V.14)
A calculation of the entire contribution of this second
term, denoted p,S on the rhs of Eq. (V.11) employing
Egs. (IV.19), (IV.30), and (IV. 32) yields the result

3
Ao_n L)
o= [t )

where z; is the leading term in Eq. (Iv.3). Thus we find
that the self-energy term §, unlike the Debye-Hiickel
term, does not reduce to the classical electrostatic val-
ue. The deviation of S from S, may be considerable. On
a molecular level it is not surprising that a deviation be-
tween S and S, exists since the local arrangement of the
solvent dipoles near a charge may differ greatly from
their arrangement in bulk solvent. Furthermore the
fact that the self-charging energy contribution, S, is a
single charged particle quantity should lead us to sus-
pect the MSM prediction Eq. (V.15). The deviation of

S from S, must arise from dipoles in the close vicinity
of asingle charge, Butitisprecisely atthese close sepa-
rations that approximations inherent in the MSM may
lead to unphysical results. We note that the term pyS

in the free energy will not contribute to the activity co-
efficient of the ionic species in the solution because the
term is linear in p, and S may be absorbed into the defi-
nition of the reference chemical potential of the ions.

(V.15)
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Note added in proof. A different treatment of this
model has been presented by Professor L. Blum.
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APPENDIX A

We wish to convert the following k-space products to
r-space convolutions,

N, (&)= @m)* 2 m, (), (%) , (A1)
N..(&)=Cm)* 2 m. (k) , (A2)
N.(B)=C2m)3 " m, (Bn.(k) . (A3)

In the above equations, m,{k) and »,(k) are even func-
tions of k while m_(k) and »n_(k) are odd in 2. Thus,
N,.(k) and N..(2) are even functions while N,_(%) is odd.

For an even function, E(%), the appropriate Fourier
transform is [cf. Eq. (IH.11)]
(1’) Z—)Q—f ksinky E(k)dE (A4)

while for O(k), an odd function, we use

Olr) = 42L’)g7— f kcoskr Ok)dk . (A5)

Using Eqs. (A4)-(A5) and their inverses we can ex-
press N,_(») (for example), the transform of N,_(%), in
terms of the transforms s,(») and 7_(»). We find

N,.(»)=87" fo  um, (u)du fom vii. W)dvIlr, u, v) 3 (A6)

where

I(r, u, v) = fow k' coskysinkucoskydk . (A7)

Expanding the integrand in Eq. (A7) as a sum of terms
of the form sink(r+u+ v) and using the following repre-
sentation of the unit step function

00r)=4+7" [ 7 K" sinkxdk
we rewrite Eq. (A7) as

I(r, u, 0)= 7/ [0(r +u+v) + 0(r +u —v)

~0r—u+v)=0(r—u-v)]. (A8)

We consider two cases:

(@) u>r.
For this case

Ky, u, 0)=(n/D[1 +0(r+u~v) - (a8"

Inserting Eq. (A9) in Eq. (A6) and using the fact that
#i.(—v)=~7#.(v), which follows from Eq. (A5), we can
show

8(r-u+v)].

N,.(r)= 27",-1f0°° uﬁa,,(u)duf::' vii.(v)dv . (A9)
(b) u<wr.

For this case

Ky u, v)=(n/8)[8(r +u—v) -

and we find that N,_(r) takes the same form as in Eq.
(A9). Thus, for all »

Blr ~u~-v)]

No.(¥) = 21rr'lf0w uﬁz,,(u)duf:y vi.(v)dv . (A9)

We can similarly establish

-H»( ) 2" lf um+ u)duf vn+ 'U)dv (AlO)

No.(#)==~ 2117'1[: urh_(u)duf::r w(v)dv . (a11)

Note that Eq. (A10) is the usual three-dimensional
Fourier convolution theorem expressed in bipolar co-
ordinates.

APPENDIX B

Consider the Laplace transforms

P(s)= fow e S*p(w)dw , (B1)

where

plw)= f UCqg u)duf vhol(v)dv (B2)

Note p(w) is the first of the two convolution integrals
in Eq. (III. 73b).

We break p(w) into two terms

p(w) = g(w) +r(w) , (B3)
where

g(w)= fow ucoo(u)dufw:w Vhoy (v)dv8(u - w) (B4)
and

r(w) = f ucoo(u)duf

We use the fact that hm(v) = = hg(—v) [see Eq. (I, 20))
to write Q(S), the Laplace transform of g(w) as

vhm (¥)dv . (B5)

Q(8) = —257'[1(S) - 1(0)] , (B6)
where
19)= [.” e S ucoolw)du f,* e vhoy(w)dv (B7)

Using Egs. (II1, 84b) and (ITI. 85) we rewrite this as
(”10 == ng)

I(8)= - nmfow & Shucl® (u)duj;u eSvdv
+j;°° e Sy cld (u)duf e5?vbg, (v)dv

- -yfou e's“dufou eSPuhg(v)dv .

The second double integral vanishes because of the
closure conditions (III. 86).

The third double integral also vanishes, This can be
seen by interchanging the integration order, explicitly
evaluating the inner integral, and then using the charge-—
dipole Debye shielding condition Eq. (II. 80). Thus we
find
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I(8) = S 205 [ Coo8) = Cyo(0)] (B8)

To determine I(0), it would appear sufficient to ex-
pand I(S) about S=0. This gives

I(0) = 124, Co(0)
Interestingly, this result is incorrect; certain of the in-
tegration interchanges used to obtain Eq. (B8) are in~-
valid for $§=0. Instead we find, working directly with
the $=0 limit of Eq. (B7),

1(0) = 1, Cop(0) — yHyy (0) (B9)
Combining Eqs. (B6), (B8)—(B9) we obtain

Q(S) = 216, 5% Cg(0) — Cyo(S)]

+ 2120, Cpo(0)S ™ = 2y Hy, (0)S™1 (B10)
Now consider R(s), the Laplace transform of »(w)., To
calculate it, we rewrite »(w) as
«° kW
r(w) == 7101f0 ucég)duflu_w1 dv

- 'yfow vhm(v)dvfl:i:l du

+ fow vbm(v)dvfl:::l uctd (w)du . (B11)

We rewrite the first double integral in Eq. (B11) as

7, (w) = - nmfow ucly (u)duf::u dv+ f:ucég) (u)dufl:;w dv

or

71(w) = 20,0 Cpy(0) + fow wPeSP (u)du ~ wfowuc((,g’ (u)du .

The Laplace transform of 7;(w) cannow be determined,
After a brief calculation we find

R(8) =2n4; S [ Cpy(S) = Cy(0)] .

An analogous calculation gives for the Laplace trans-
form of the second double integral in Eq. (B11)

R,(S) = 2yS™2Hy (S)
where we have used Eq. (III. 92).

(B12)

(B13)

The third double integral is of the type which appears
in the PY hard sphere problem. Its transform is easily
found to be

Ry(S) = = §7' By (9)[Co(S) = Co(= S)] - (B14)
Combining Eqs. (B10) and (B12)-(B14) finally gives

P(8) = 21168 ™% = 214 C(0)S ™!
— 2y Hyy (0)S™ +2yS™2Byy(S)

= 5By (S)[Coo(S) = Copl~9)] - (B15)

APPENDIX C

We show in this appendix that the local electroneutral-
ity constraint Eq. (II1.79) and the charge~dipole and
dipole~dipole shielding conditions Eqgs. (ITI. 80) and
(I11. 83) follow from our model, that is, they do not have
to be separately imposed as was done in Sec. III.

Since all three conditions are closely related, we only
discuss the dipole-dipole shielding condition in detail.

We begin with the relationship
¢ =[1-248, [ w*n{} (w)aw] ™ . (1)

This follows from the definition of ¢°, Eq. (III. 105), in
the standard manner, that is by evaluating the Fourier
transform of Eq. (IT. 68) at zero wave vector.

We can apply the matrix analogue of this procedure to
the Fourier transform of Eq,. (IIL. 73)., This gives four
relationships, one for each element of h;,(w)., From the
relationship for hy,(w) we find

g -5%=[1+ 24ﬁ1f0w wPhy(w)dw] ™t . (cz)

"To obtain Eq. (C2) we have used the fact that the Fourier

transform of the Coulomb potential has a double pole at
zero wave vector. Then combining Eqs. (C1)-(C2) with
Eq. (IT1. 104) gives the dipole~dipole screening condition
Eq. (T11. 83).

Using the relationships for hg,(w) and ,y(w) analogous
to Eq. (C2), we can similarly prove the local electro-
neutrality constraint and the charge~dipole screening
equation.
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