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Molecular dipole moments in a dielectric medium are statistically correlated over large distances. In
this paper we derive an expression for the correlation function of two molecular dipoles at different
times and at different points in space in the limit of large separation. The result is obtained by
means of a purely macroscopic treatment. For the case of equal times our results agree with those
obtained by Nienhuis and Deutch from a microscopic theory of a fluid of rigid dipoles; in particular
we see the same dependence on the shape of the dielectric sample and on the nature of its
surroundings. The methods used in deriving the expression for the dipole correlation function may
also be used to calculate the fluctuations in the higher electric multipole moments of small spherical
regions in a dielectric sample. A number of results of this type are presented.

. INTRODUCTION AND SURVEY

As a consequence of the long range of electric dipole—
dipole forces, molecular dipole moments in a dielectric
sample are correlated over large distances. Moreover,
the precise form of the correlation function depends on
the shape of the sample and the nature of its surround-
ings. In a liquid of rigid permanent dipoles the corre-
lation function for molecular dipoles is closely related
to the distribution function for the molecular orienta-
tions. Nienhuis and Deutch! derived an expression for
the latter quantity for a general finite sample surrounded
by a medium of arbitrary dielectric constant. The re~
sults of the molecular theory of Nienhuis and Deutch
were obtained by diagrammatic techniques, and they are
restricted to equal time correlations in orientation of
different molecules.

In this paper we present a completely macroscopic
theory of the correlations between the electric polariza-
tion at different points in space and at different times in
an equilibrium fluid. Our results are obtained by an ap-
plication of the techniques of linear response theory.
The same method was used in an earlier paper? in a
discussion of the relation between the frequency de-
pendent dielectric constant of a material and the auto-
correlation function of the net dipole moment of a mac-
roscopic spherical region inside such a material.

In Sec. II we derive an expression for the equilibrium
time correlation function of the dipole moments of two
small spherical regions in a dielectric sample. The two
small spherical regions are large compared to intermo-
lecular distances. In Sec. Il we deduce from this mac-
roscopic time correlation function the asymptotic form
of the time correlation function of molecular dipole mo-
ments when the distance between the molecules becomes
large. The value of this correlation function for equal
times is shown to be consistent with the result obtained
by Nienhuis and Deutch on the basis of their molecular
theory for a fluid of rigid dipoles. The expressions ob-
tained in Secs. II and III contain a reaction field tensor,
which depends on sample shape and surroundings. This
tensor is evaluated in Sec. IV for the case of a spherical
sample. In the course of the derivation we use some
results about solutions of Maxwell’s equations in spheri-
cal coordinates, which are assembled in an Appendix.
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In Secs. V and VI we examine more closely some of
the assumptions made in the course of the derivation in
Sec. II. For example, we suppose in Sec. II that in-
homogeneities in the external electric field do not influ-
ence the relation between the external field and the di~
pole moment it induces in a small spherical region. In
Sec. V we show that, as long as the radius of the spheri-
cal region is small compared to the wavelength of the
electromagnetic radiation with frequency w, the space
derivatives of the field are not related to the induced di~
pole moment of a sphere, but only to its higher multi-
pole moments. By means of the usual arguments of lin-
ear response theory we obtain from this analysis ex-
pressions for the autocorrelation functions of higher
multipole moments of a single spherical region in an in-
finite dielectric continuum.

In Sec. VI we discuss the corrections to the relation
between the external field and the multipole moments in-
duced in a small spherical region, which arise due to the
finite size of the sample. The corrections depend on the
shape of the sample and on the position of the spherical
region in the sample. The general analysis justifies the
procedure in Sec. II, where we neglected those correc-
tions. Explicit expressions are only possible for some
special geometries; as an example we discuss the case
of a small spherical region at the center of a larger
spherical sample. In the limit in which the radius of the
larger sphere is small compared to the wavelength of
electromagnetic radiation with frequency o we obtain for
this system a rather complete picture of the possible
fluctuations in the electric multipole moments and their
correlations at different times. This is discussed in the
final section.

The intrinsic interest of the higher multipole moments
of small macroscopic regions is probably less than that
of their net dipole moments; e.g., the leading term in
the expression for the net quadrupole moment is not the
sum of the molecular quadrupoles, but a weighted sum
of molecular dipoles. Nevertheless, relations of the
type studied in Secs. VI and VII are sometimes useful;
as an example we note the analysis by Buckingham and
Graham?® of the birefringence of a polar fluid in an elec-
tric field gradient.
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Il. LINEAR RESPONSE RESULTS FOR CORRELATIONS

IN THE ELECTRIC POLARIZATION

We congider an arbitrary sample V of a dielectric
medium with dielectric constant €,(w). The sample is
embedded in an infinite dielectric medium with dielec-
tric constant €,(w). A spatially homogeneous external
field, oscillating with frequency w, acts on a spherical
region with radius ¢ with its center at r; the spherical
region is entirely within the sample V (see Fig. 1), This
space and time dependence of the external field Ey(R, 1)
may be expressed by means of the formula

E R, ) =E ()(R; ) =Eq exp(- iwHW(R; 1) ,

in which h(R; r) denotes the characteristic function of
the sphere with radius ¢ around r:

h(R; 1‘)=1
HR;r)=0

2.1)

for \R—r\Sa,
(2.2)
for [R-rl>qa.

As a consequence of the imposed field (2. 1) another
physical region in the sample V, of radius a with its
center at r’, will exhibit a net dipole moment (m(r/, Deys
which depends linearly on the components of E:

(m(r’, t))Eozx(r, r's w)eEyexp(—iwt) . (2.3)

In this equation the net dipole moment m(r’, #) of the
spherical region around r may be expressed formally as
m(t’, 0= [ R EoR-n(Ow R ), (2.9
v i
where the sum is over all the molecules in the sample
and r;({#), i;{) denote the position and dipole moment,
respectively, of the ithmolecule. Thetensor X (r’, r; w),
which is defined by the relation (2.3), is related to the
Laplace transform of the autocorrelation function of the
net dipole moments of the two spherical regions in the
absence of any external field. The relation follows im-
mediately from the basic formula of linear response
theory4:
(m(r, t)>z0: :—lf E (1 -¢ )—r<m(r 0)m(r’, ¢ )dt’.
kT Jy 2.5)
By comparing the expressions (2. 3) and (2.5) for
(m(z’, ))g, We obtain the relation

2

™~

FIG. 1. The system discussed in Sec. II: a sample V with
material coefficients €,(w) and i,(w) is embedded in an infinite
continuum with material coefficients €;(w) and py{w). We dis-
cuss in particular a sphere of radius @ around the point r.

£ [—~ ;lj-t (m(r, 0)m(x’, ,)>J TR, s @) | 2.6)

The symbol £[/(f}] denotes the Laplace transform of 7(/)
with variable z=-iw. (The convention used for the sign
of w differs from that of Ref. 2.)

For certain values of the radius ¢ we can calculate the
tensor X(r, r',- w) by means of a purely macroscopic elec-
tromagnetic calculation, using the frequency dependent
dielectric constant €,(w). The conditions are (i) the
radius ¢« is large compared to the average distance be-
tween molecules; otherwise a description in terms of a
local dielectric constant is not justified; (ii) the radius
a is small compared to the wavelength of electromag-
netic radiation of frequency w; otherwise a spatially
homogeneous field that varies harmonically in time
does not even approximately obey Maxwell’s equations;
(iii) the radius « is small compared to the distance from
r to the boundary of the dielectric sample V.

We start our calculation of X(r, r'’; w) with the ob-
servation that the field E, in Eqs. (2. 3) and (2.5) is not
the ordinary Maxwell field, but the cavity field that
would be present if the sphere around r were removed
from the sample. In general, the relation between the
external field E; and the Maxwell field is rather com-
plicated; it depends upon the shape of the sample V and
the values of ¢, and €,. However, for the case in which
the sample V is infinite the relation between E; and E is
simple. In this section we shall make use of the rela-
tion between E; and E for the case of a spherical cavity
of radius ¢ in an infinite dielectric. A justification for
this step, which seems reasonable provided that the
radius of the cavity is small compared to the distance
from the center of the cavity to the boundary of the
sample V, is postponed until Sec. VI. In all other stages
of the calculation it is not justified to neglect the effects
of the finite size of the sample V.

Frohlich® has shown, for the case of a spherical cavity
an infinite dielectric, that the Maxwell field E(¢) inside
the sphere is given by

E()={[2€,5{w) +1]/3€,(w)} Eqd) .

According to the constitutive relations the resulting
average net dipole moment of the sphere surrounding r
is

2.m

(m(r, )y, ={lelw) ~1 /At (7a®E() .

Since this dipole moment is embedded in a dielectric,
the field arising outside of the sphere is that of an ap-
parent dipole moment m_(r, {) related to m(r, #) by the
expression

(2.8)

(m, (r, Mg, ={3€x(w)/ [2€5(w) + 1]} (mlr, 1)) . (2.9)
By combining Expressions (2.7)-(2.9) one obtains
(m(r, g, =3 [ex(w) = 1]a*Ey(8) . (2.10)

The relations (2.7)-(2.10) are valid for a spherical
region in an infinite dielectric continuum. In the re-
maining part of the calculation the finite sample size
must be taken into account explicitly. The apparent di-
pole (m, (r, 1))y, at T gives rise to an electric field
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E, (r',t)atr
E*(r,s = [iz(w)]-lD(r: I",- w)* <m* (I‘, t))EO

According to Eq. (2.8) this field gives rise to a net di-
pole moment in a small spherical region of radius a
about r’ given by

(m(r’, g, ={[exlw) - 1]/4n} (§7a°)E, (r', 1) .

By combining Eqs. (2.11) and (2.12) we obtain the rela-
tion

which may be denoted by
(2.11)

(2.12)

lw) -1
ge() a°D

The relation (2.12) is valid provided that the field E_ is
homogeneous over the sphere around r’. InSec.V we
shall see that inhomogeneities do not alter this result if
the radius g is much smaller than the wavelength of the
field in V.

Elimination of {m,(r, z‘)),,‘.O in Eq. (2.13) by use of Eq.
(2.10) leads to a relation between (m(r’, #))g, and E, of
the form

(m(r’, H)gy= (r, s ) (m (r, g, . (2.13)

1 [‘2(“’)_1(13]20(r,r';w)'Eo(l‘)= (2.14)

(m(r " t)>E0: €z(w) 3

Comparison of Egs. (2.3) and (2. 14) gives an expression
for the susceptibilityX (r, r; w); according to Eq. (2.6)
we obtain the desired expression for the equilibrium
time correlation of the net dipole moments of spherical
regions around r and r’ at times that are an amount ¢
apart. The result is
£ [— (%(m(r, 0)m(xr’, t))] = %{%as[ez(w) -1Ppr,rw) .
(2.15)
The result (2. 15) is valid under the condition that « is
large compared to intermolecular distances but small
compared to both the wavelength of electromagnetic
radiation of frequency w in the medium and the distance
from r to the boundary of the sample V. In the next
section we consider the consequences of this expression
for the orientational correlation function of molecular
dipoles in a substance in which the molecules may be
represented as rigid dipoles.

The tensor D(r,r’, w) defined by Eq. (2.11) is deter-
mined by a macroscopic calculation and depends upon
the shape of the sample V and the dielectric constant of
the external region ¢,(w). The tensor D(r,r’; w) may be
written as the sum of two terms:

D(r,r’;w)=D.(r,r’; w) +Ry(r, r' w) . (2.186)
The term D, represents the direct field, ®
rov_ (28 8, \exp(iklr-r’l)
D.(r,r';w)= (5?! ar k2|) T (2.17)

The symbol %, denotes the wavenumber of a wave with
frequency w in the medium with dielectric constant €,(w)
and magnetic permeability p,(w),

kgz [Q)/C][fz(w)lla(w)]l/z . (2. 18)
When |r —r’'| is simall compared to k, the expression
(2.10) reduces to

Chem. Phys.

HmD(r, r’50)=-— = (2.19)

w=0 ar

which is identical to the usual expression for the dipole-
dipole tensor T(r, r')

limD_(r, r’; w)=T(r,r')=

3 "2
w0 ir-r'| lr~-r'|

1 [3(r—r')(r—r') I]
(2.20)
The contribution D _(r, r'; w) is the only term present in
the limit of an infinite sample. For a finite sample V
there is an additional term Ry(r, r'; ), which depends
on the size and shape of the sample V and on the con-
stants e(w) and u(w) of both the sample and the sur-
roundings. In general it is not possible to find a closed
expression for the tensor Ry(r, r'; w); however, an ex-
plicit expression for the case of a spherical sample V
will be presented in Sec. IV. The physical interpreta-
tion of the term Ry is that of a “reaction field”; a unit
dipole p oscillating with frequency w at point r will give
rise to polarization near the boundary of the sample V,
which in turn produces a field [€,(w)]™ Ry p at the point

r.

111, ORIENTATIONAL CORRELATIONS FOR
INDIVIDUAL DIPOLES IN A POLAR MEDIUM

The average net dipole moment of a spherical region
is just the sum of the average dipole moments of the in-
dividual molecules. In the same way the correlation
function of two spherical regions, which was calculated
in the preceding section, is the sum of correlation func-
tions of the dipole moments of individual molecules.
When the two regions are so far apart that the field ten-
sor D(r, r'; w) does not vary appreciably over a distance
a, we may assume that those molecular correlation
functions are all essentially equal, and we obtain their
value by dividing the expression (2.15) by the square of
the average number of molecules in each sphere, §—1rpa3:

€ ((.U) -1 2 ’
[ —{u(r, 0)ulr’, t)>] o) [—3———] D(r, 1’5 w) .
)l 4m (3.1)
In this formula u(r, ¢) is the dipole moment at time ¢ of
a molecule which is at the position r. The expression
(3.1) is valid for distances large compared to intermo-
lecular distances (and the range of short range forces)
and for a medium which can be characterized by a local
frequency dependent dielectric constant €,{w) and mag-
netic permeability u,(w).

The equal time correlation function {u(r, 0)u(r’, 0))
may be obtained from Eq. (3.1) by taking the limit w~ 0.
The result is

(3.2)

{ulr, 0)plr’, 0)>- 0 [52%7)-“] D(r,r’;0) .

By using Egs. (2.16) and (2. 20) we may express the ten-
sor D(r, r'; 0) in the form

D(r,r';0)= T(r,r")+Ry(r, r’; 0) . (3.3)
This expression for the equal time correlation function,
which has been obtained completely from macroscopic

considerations, can be compared to the results of the
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microscopic theory of Nienhuis and Deutch.! The mi-
croscopic expression of the static correlation function
Eq. (3.1) is

(ulr, 0u(r’, 00 = [ [dwdw’ ww)G(r, ws ', Y ulw)p?,
{(3.4)
where wlw'| refers to the Euler angles specifying the
orientation of the dipole at position r[r'] and G(r, w; r’,
w') is the reduced two particle correlation function for
positions and orientations. The factor p™2 is included
since we are assuming the molecules are at specified
positions. From their microscopic theory Nienhuis and
Deutch provided an explicit expression for the long-
range part of G. This quantity, denoted by GV, was
determined from a graphical analysis! to be

1

e (x, w; r', W)= =

! ’
€, (0)Q%: T Hot (W) DT, 07) ¢ ppe ()

(3.5)
where the “effective” dipole moment u ., is related to
the dielectric constant by

€:(0) —1=(4mp/3L Tl * togs

and = [dw is the phase space volume associated with
the molecular orientations., The tensor D obtained by
Nienhuis and Deutch was calculated only for the case in
which the sample V is surrounded by vacuum (e, =1).
Their result was expressed as

(3.6)

D(r,r')=T(r,r') +R%(r, r’; &) . (3.7

In this formula R} denotes the reaction field tensor cal-
culated for the “inverse geometry”: the space occupied
by the sample V is empty, while the space outside V is
filled with 2 medium of dielectric constant [€,(0)]™.
Thus R¥(r, r’; €;') » p has the physical interpretation of
the field established at point r’ by a dipole p at point #
when the sample volume V is empty and the surrounding
is filled by a dielectric continuum of dielectric constant
€;1(0). One may show that the reaction field tensor Ry
of Eq. (3.3), for the special case ¢(0)=1, is equal to
the reaction field tensor R¥ for the “inverse geometry.”
The expressions for the tensors D appearing in Eqs.
(3.3) and (3.7) are identical. This point is discussed
more fully in the next section.

When the expression for the long-range part of the
correlation function G, Eq. (3.5), is substituted into
Eq. {3.4), and use is made of Eq. (3.7) and the relation

Q'l_fdw u(w)ueff(w): HITD et s (3.8)

one obtains exactly the macroscopic expression Eq.
(3.2). Accordingly we have demonstrated that, for
separations large compared to molecular distances, the
results of the macroscopic theory presented here and the
microscopic Nienhuis-Deutch theory lead to exactly the
same expression for {(u(r)u(r’)). The expression {(3.2)
agrees with a calculation of Ben-Naim and Stillinger” for
the special case of an infinite system, where D=T and
Ry =0, if we substitute the appropriate expression for
Kirkwood’s g factor in a fluid of rigid dipoles:

(4mp/9kT) 1t =[€5(0) ~ 1] [2€,5(0) + 1]/3€,(0) .

An earlier calculation by Kuni® differs by a factor of
3[2e,(0)+ 1771,

(3.9)

The important result of this section is the new expres-
sion for the equilibrium space-time correlation function
presented in Eq. {3.2). This expression, which is valid
for separations of the dipoies large compared to the
range of short-range forces, contains a reaction field
contribution that depends on the sample shape and the
nature of the surroundings. For the special case of
equal time correlations we have demonstrated that the
result is consistent with the microscopic theory. In the
next section we explicitly evaluate the dipole space~-
time correlation function for the special case of a spher-
ical sample V embedded in a dielectric continuum of di-
electric constant ¢,(w).

IV. EXPLICIT EXPRESSIONS FOR ORIENTATIONAL
CORRELATIONS iIN A SPHERICAL SAMPLE

In the present section we determine the reaction field
tensor Ry{r, r’; w), defined in Eq. (2.186), for the case of
a spherical sample V of radius R, characterized by a
dielectric constant €,{w) and a magnetic permeability
tslw). The sample is embedded in a mediumn character-
ized by €,(w) and ,(w). See Fig. 2. For the purpose
of our calculation it is convenient to start by considering
the electric Hertz vector® associated with a dipole of
strength m,_ at r,

1 explikylr-x'l)
€s(w) lr—r'|

mo(r") m_ exp(-iwl) . (4.1)

From this expression the electric and magnetic fields
are obtained by means of the formulas

cw) o 20"

NV=9xVxIr’);
E(')=vxVxI(r’) p; 5/

H(r')= (4.2)
The expressions (4.1) and (4. 2) do not satisfy the cor-
rect boundary conditions at the surface of the sphere;
for that purpose we must add a reaction field which is
regular at r=r". As a first step towards the determi-
nation of this reaction field we expand the expression
(4.1) in terms of a set of vector solutions of Helmholtz’'s
equation, which are singular at the origin (chosen at the
center of the spherical sample under consideration).

FIG. 2. A special case of the situation in Fig., 1: The sample
V is taken to be a sphere with radius R. Two spherical regions
with radius ¢ around r and r’ are discussed in particular.
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et ; g 3
The specific form of those solutions, L', M, aund
N®, is given in the Appendix [Eq. (A2) with ;=3]. The
basic expansion theorem was given by Hansen!; in our
notation it is

xpliklr —t'1) 4nik
SERE 5 A L )

M () Mg () + N (e )V ]
(4.3)
The electric field of a dipole m, at r at points r’ with
lr’|>|r| can be determined by means of Egs. (4. 1)—
(4. 3) and the relations

r , 47TZI€ 1 m) ’
ET(r)= ;?(—wflz 1) B (€ b €0y ) Mg (8 Moy

the coefficients R{™ and R{® are given in Eq. (A11).
field tensor R, for a sphere is given by

1

RO(I‘, r,’_ w):47ri1322 (l ) [

(r) + Ry @ (€g; Has €y, ul)Nkzzm( )N%)z; (r>J +m, exp(" iwit);

(1)*(r) + R;e

(€23 Hes €4, :ul)M}eZ;m (rl)Mkzlm

gx L =0, M = VN = eME L (404

kim

= PN

Application of these relations gives for the electric licid
in Eq. (4.2)

nAmikd B Y ey Yy
E(r )_g—(w) 2 l(l +1) nglm(r )lelm\r)
# N, (N3 ()] - my exp(=iwr) (4.5)

The reaction field corresponding to this field is found by
comparing this expression with the standard solutions of
the Maxwell equations with boundary conditions, given

by Eq. (A10) in the Appendix; the resulting expression is

(4.6)

A comparison with Egs. (2.8) and (2. 5) shows that the reaction

(1)%

eg g €15 ul)N;;;m(r,)Nkzlm(r)] . (4.7)

For the case %R << 1 we find by substitution of the asymptotic expressions that the terms containing M(r YM*(r) dis-

appear, while the other terms may be expressed in the gradients of the scalar potentials ¢ (r', !
By also substituting the asymptotic expression (A12b) for R“” we obtain

of ¢* (r,1)].

kolm

Refr, r's w) =

Tor’ 8r1m2l+1 Ry l€2+(l+l)

The factor (k¥/k,)'™! approaches unity for low % when
Im[e(w)] is linear at w=0; the difference is of order £*
and should, therefore, be neglected in this approxima-
tion. Furthermore the summation over m may be car-
ried out (this is just the addition theorem for spherical
harmonics!!) and we obtain

(I+1)(es—€;) ()
Z; (z 1)

— P,(cosy),
21+1 1
ar’ ar 7 le,+(I+1)e, R (4.9)

in which y is the angle between the vectors r and r’.

Re(r,r';w)

The limiting expression no longer depends on ¢, and
€, separately, but only on their ratio. This implies that
the reaction field tensor Rg for the case ¢,(w)=1 has the
same low frequency limit as that for the “inverse geom-
etry” ex(w)=1, €1{w)=[es(w)]?. This result is a special
case of one stated, without proof, in the course of our
demonstration of the consistency of our result (3,2) with
the result obtained by Nienhuis and Deutch from a mi-
croscopic theory. For that purpose we needed the
equality of the reaction tensors in “inverse geometries”
for arbitrary shape of the sample V.

It is easy to see that the reaction field tensors for the
actual and the inverse geometry are the same, irrespec-
tive of the shape of the sample. The reaction field is
determined by constructing a solution of the free field
equations, which obeys the boundary conditions at the
surface of the sample and exhibits a singularity at r=r’
corresponding to a dipole of unit strength. In the zero
frequercy case this is also a solution for the inverse
geometry: the free field equation is just Poisson’s equa-
tion, which does not contain the dielectric constant as a
parameter, while the boundary conditions involve only
the ratio of the dielectric constants of the two regions.

% \7-1 - LAY
EIE: » 47 <k) {I+1)(e;~€) # R(;;Z

f) in Eq. (A8a) [and

klm

Y. (8", 0V Y6, ¢) . (4.8)

r
i

This completes our proof of the consistency of our re-
sults with those of Nienhuis and Deutch. It is perhaps
worthwhile to point out that the equality of the reaction
field tensor to that of the inverse geometry does not hold
for nonzero frequencies; then the free field equation is
Helm‘loltz’s equation, which contains the parameter

b2= w2 % (w) ulw), and the equivalence with the inverse
geometry is destroyed.

V. TIME CORRELATION FUNCTIONS FOR HIGHER
MULTIPOLE MOMENTS OF A SPHERE

In this section we discuss the response of a small
spherical region in a dielectric to an inhomogeneous ex-
ternal electric field. Via the algorithm of linear re-
sponse theory this leads to expressions for the autocor-
relation function of the net electric multipole moments
of that region in the absence of any external field, We
will consider fields that vary with frequency « and as-
sume that the radius ¢ is small compared to the wave-
length of electromagnetic waves with frequency w. This
means that the electric field may be described in very
good approximation as minus the gradient of a scalar
potential [cf. the discussion in the Appendix preceding
Eq. (A8)]. The most general form for such a potential
is

/2
d)(r) = [E (ﬁ->1 Ylm(ea d))[-' 7‘1Elm Y

5711 "y, Jexp(—iwt) .

5.1)

with arbitrary coefficients E,,, and m,,. The singular
terms between the square brackets are the potentials of
an electric 2! pole at the origin, The normalization is
chosen in such a way that the energy of this collection of
multipole moments in a regular inhomogeneous electric

J. Chem. Phys., Vol. 60, No. 7, 1 April 1974 . . .
Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2708 U. M. Titulaer and J. M. Deutch: Polarization fluctuations in dielectric media

field is precisely equzai to

Ha= ) By o - (5.2)

t,m
By means of the standard procedure of matching solu-
tions at the boundary we can calculate the multipole mo-
ments that are induced in a sphere of radius ¢ with di-
electric constant €,(w), surrounded by vacuum, when it
is placed in an inhomogeneous field derived from the
potential

1/2
¢(r)=—l}j< ul > P EQL Y0, d)exp(~ iwi) . (5.3)

21+1

See Fig. 3(a). The induced multipole moments turn out
to be

My = [Ueg=1)/(leg+ 1+ 1)]a®1ED | (5.4)
Evidently the moment s, depends only on the compo-
nent of the field with the angular symmetry denoted by
the same indices / and m.

When the sphere with radius a is embedded in an in-
finite medium with dielectric constant ¢,(w) it feels a
reaction field proportional to its own multipole mo-
ments, in addition to the external field (5.3). See Fig.
3(b). This reaction field is again easily calculated by
standard boundary value matching techniques, and we
find

I+ 1)(e; 1)

) _ _
Elm [(l+1)€1+l]a21+1 Mym «

(5.5)

Now we can replace Eip) in Eq. (5.4) by E{Y + E{") and
solve the resulting linear equation. The result is

U= D[+ ey +1a®t o

Mim = I v )1+ e, + leg]  Tim (5.6)

For the case g, =1 this, of course, reduces to Eq. (5.4).

From Egq. (5.6) we can obtain an expression for the
correlation functions of the multipole moments of a
spherical region of dielectric constant €, embedded in a
medium of dielectric constant €,:

a b

FIG. 3. A small sphere of dielectric constant €(w) placed
either in vacuum (a) or inside an infinite dielectric continuum
with dielectric constant €(w) {b). The autocorrelation functions
of the electric multipole moments of the sphere in both cases
are discussed in Sec. V.

L [—- C%(m,m(O)m,,m, (l)>:|

1. +\Tr7 90 11
_ L\tz"“A[L\b+1j€1 oy

@I+ D[+ )¢, + ey

a®* BT84 By e (5.7)
This formula is the analog of Eq. (2.3); it is derived
by taking the expression (5. 2) as the perturbation Ham-
iltonian in the standard linear response argument. For
the important case ¢; = €,= ¢ this expression becomes

2 [- %w,,ﬂ(mm,.,,,.(z»]

UHe=-D[(I+De+1]
N (21+1)%

@ RT0,,00p e (5.8)
The important result of this section is presented in Eq.
(5.7); this expression relates the fluctuations in the
electric moments of a spherical sample embedded in an
infinite dielectric medium to the dielectric constants of
the sample [€,{w)] and the surroundings [¢;(w)]. The
expression is valid for low frequencies for which the
associated wavelength is large compared to the sample
radius, and it represents a generalization to higher mo-~
ments of the analysis presented in Ref. 2.

In principle one could now proceed from Eq. (5.86) to
calculate the field around the position r’ due to an elec-
tric 2° pole of type m,,, at the position r. This would
lead to expressions for £[— (d/dt)(m,,,(r, 0)m,.,.(x", I)].
The result would contain generalized reaction field ten-
sors, dependent on sample shape and surroundings,
which give the value of the coefficient E,.,. in the Taylor
series (5.3) around the point r’ of the electrostatic po-
tential due to an electric 2’ pole of type m,, at site r.
(As argued in the Appendix, we can always represent the
electric field locally as minus the gradient of an appro-
priately chosen scalar potential.) In general one would
obtain nonvanishing correlations even for 7#/  and
m#-m’'. Since there is no obvious application for for-
mal expressions of this type, we do not present them

‘explicitly,

In our derivation of the expressions (5.6) and (5.7) we
used an expression for the reaction field that is correct
only for an infinite medium. In the next section we con-
sider the corrections that occur when we consider a
region inside a finite sample. Since we are mainly in-
terested in an order of magnitude estimate we will carry
out the calculation only for an especially convenient
geometry, namely, a sphere of radius a located at the
center of a larger spherical sample of radius R.

VI. CORRECTIONS ASSOCIATED WITH FINITE
SAMPLE SIZE

In various calculations in Secs. Il and V we approxi-
mated the multipole moments induced in a small spheri-
cal region inside a finite dielectric sample by those in-
duced in a small spherical region inside an infinite di-
electric medium; see, e.g., Egs. (2.7) and (5.5). In
order to estimate the errors made by this procedure we
will now carry out the calculation without this approxi-
mation. but only for an especially favorable geometry,
namely, & spherical region of radius ¢ embedded in a
spherical shell with external radius R. As always be-
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fore we will assume that a (but not necessarily R) is
small compared to the wavelength of an electromagnetic
wave of frequency w. The calculation is a generalization
of that in our earlier paper for kAR 1 and I=1. At the
end of this section we shall argue that the corrections
for arbitrary sample shape are of the same order of
magnitude,

We will carry out the calculations for the sphere for
the slightly more general case in which the embedded
sphere and the surrounding spherical shell can have dif-
ferent dielectric constants, €,(w) and ¢;{w), respective-
ly. See Fig. 4. The region outside R is vacuum. Since
ka<< 1, the electric field in the immediate neighborhood
of the origin may be described by means of a scalar po-
tential. In order to find an expression for the reaction
tield coefficients E{7 that generalizes Eq. (5.5) we con-
sider the situation in which the sphere with radius «
contains no medium, but an electric multipole of type
m,,, is placed at the origin. For that case, the scalar
potential is given by

4 /2
o(r)= <21 1) Y:,(6, &) ¥ tmy ~ ¥ E, )

xexp(-iwt); r<a, (6.1a)
12 .
d)(r):(z%i) Y8, )7 iy, ~ v Bl
xexp(-iwt); r=a (6.1b)

The parameters 7, and E,, are connected by means of
the boundary conditions at »=R. The field derived from
the potential (6. 1b) must be the small r approximation
of a solution of type (A10b). By substituting the asymp-
totic expressions (A8) we find the relation

Epp=[= i+ DRE /121 - NI+ DN R (€4, 1y 31, D)0y

(6.2)
where R{® is defined by Eqs. (A10) and (A11). For the
limiting case 2R << 1 we find by means of the asymptotic
relation (A12b) for R{® (e,, 3 1, 1) that

Ep ~{(1+1)(e; = 1)/[(1+ )¢y + 1JR*} 1y, (6.3)

After substitution of Eqs. (6.2) or (6.3) into Eq. (6. 1b)
we can determine the relation between E{7) and m,,,;
when we abbreviate Eq. (6.2) or (6.3) to

Elm = aza-m-lﬁ”tm (6.4)
the required relation replacing Eq. (5.5) becomes
B - U g =) +ay[ley +1+1] my,, (6. 5)

{1+ +1]+a,lle; -1) aa“l ’

The corrections obtained compared to Eq. (5.5) are of
the order «,. In the limit kR« 1 we see from Eq. (6. 3)
that

~(a/R)¥" . (6.6)

In the opposite limit, 2R>1, the coefficient R{*’ be-
comes closely related to the reflection coefficient for an
electromagnetic wave at the surface between two dielec-
trics, and it is at most of order unity. Consequently it
follows from Eq. (6. 2) that

a;~ (k, a®t (6.7)

FIG. 4. A sphere with dielectric constant €(w) embedded in

a spherical shell of dielectric constant €(w). The correlations
between various electric multipole moments in this system

are discussed in Sec. VII in the long wavelength limit.

This means that the error we make in neglecting the
terms in the reaction field proportional to @, is certainly
smaller than the error inherent in the description of the
local electric field by means of a scalar potential. The
use of Eq. (6.5) instead of Eq. (5.5) is meaningful only
in the long wavelength limit. Such a calculation will be
carried out in the last section. We conclude this section
with two remarks concerning the results just obtained.

First of all, the estimates (6.6) and (6.7) are expected
to be correct irrespective of the particular geometry
considered; %! and R are the only parameters of dimen-
sion length which are available to make «, dimensionless
in spite of the presence of the factor ¢?'*!. Equations
(6.6) and (6.7) state that o, is of the order of the small-
est available dimensionless parameter in the problem.
For more general geometries one expects that the role
of R will be taken over by the distance from the center
of the small sphere to the boundary of the sample.

The observation made above completes the justifica-
tion of the procedure used in Sec. II to calculate the cor-
relation function for the electric polarization. The as-
sumptions made in the beginning of that section, namely
that ¢ is small compared to both the wavelength £ and
the distance to the boundary of the sample, are suffi-
cient to justify neglecting the finiteness of the sample in
the derivation of Eqgs. (2.4), (2.5), and (2.7).

Vil. CORRELATIONS OF MULTIPOLE MOMENTS
FOR A SPHERE IN A SPHERICAL SHELL: LONG
WAVELENGTH LIMIT

In this section we will complete the calculation for the
autocorrelation functions of the electric multipoles of a
sphere embedded in a spherical shell, in the limit in
which the radii of both the sphere and the spherical shell
are small compared to the wavelength of radiation with
frequency . The autocorrelation function of any multi-
pole moment follows immediately when we repeat the
derivation of Eq. (5.7) using the expression (6. 5) for
the reaction field instead of Eq. (5.5). The result is
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W+ 1)(e, — 1201

CI+1)[(1+1)e, + ley]Uey + [+ D)RF 41T + 1)y - 1)(ez - €) ya?H 1L “

As expected, this reduces to Eq. (5.7) in the limit R > a.

In the limit 2R <«<1 we may consider a more general
problem, in which not only the fluctuations in the em-
bedded sphere, but also those in the surrounding shell
are considered. The results obtained in this way, and
the method used to obtain them, are direct generaliza-
tions of those in Sec. VI of Ref. 2. We first consider the
spherical shell separately, in a situation in which it is
subjected to several fictitious external electric fields in

21+l . (7.1)

r

addition to the multipole fields caused by the fluctuating
multipole moments of the embedded sphere, which are
now denoted by {Z. The fictitious external fields are
of two types: fields regular in the origin, which will be
denoted by means of the parameters E(“, and fields as-
sociated with fictitious multipoles u,,, at the origin. The
latter will be described by means of the parameters
E® =p,,a?! Theresulting expression for the scalar
potential may be written as

-t
4r \V2 a - a 2 3
0)= 2 (5275) ¥inlo, 0= B+ 0l -2 - FER)] cexplc o) for 7> R
47 1/2 ) - \
o(r)= 17_}" <2 " 1) Yy (8, OMe () =74, + 7 Mgy, ] Xexp(~iwt) for Rzr>a; (7.2)
4r V2 ! “1m1(, (2 2 (8]
¢(r)= 51+1 Y, (6, &)= 7' By + 7 o ED)] xexp(—iwt) forazr.
I,m
[
The parameters mL, Myims> Am, and By, are deter- way we obtain
mined by applying the standard boundary conditions of 3
electrostatics. In order to reach agreement with the Z E m‘“E‘” (7.5)

definition of m, in Sec. II we included a factor €;' in the
expression for ¢ inside the shell; apart from this mod-
ification Eq. (7.2) is an immediate generalization of Eq.
(3.14) of Ref. 2. The parameters m}! and B;, have a
direct physical significance: L is the multipole mo-
ment of the shell and B,, describes the reaction field in

the cavity with radius a.

The part of the field inside the medium proportional
to my,, gives rise to a polarization density in the shell
concentrated near the inner surface. In order to find
convenient parameters to describe the “surface multi-
pole moments” we consider the energy of the shell in the
external fields described by E\Y and E{¥. According to
Landau and Lifshitz!? this energy may be described by
- [P(r)+E_,(r)dr, in which P(r) denotes the polarization
density, E_,, denotes the sum of all external fields, and
the integral extends over the volume of the spherical

shell. It turns out that this quantity may be written in
the form
Hapers = E[ “’E“Zm+m‘3’E‘3’ ] (7.3)
,m
when we define the parameter mi> by
777;?,.) - l+ L [51(‘-9) - 1](R2“1 - a2h1 771*tm . (7 4)

T2l+1 € (w)R®!

The total energy of the configuration in Fig. 4 is ob-
tained by adding a term -2, E{%m{®,,, which gives the
energy of the embedded sphere due to the presence of an

external field described by the parameters E2. In this

We recall that m{! denotes the multipole moment of the
shell and .2 that of the embedded sphere. The multi-

pole m{¥ arises in the shell near the boundary with the
embedded sphere; accordingly it may be interpreted as

a “surface fluctuation.”

1t is important to note that the definitions of nt) do
not involve the frequency w. The reduction of the energy
to an expression of the type (7.5) makes it possible to
derive expressions for the correlations of the moments
. (0) and {7} (1) once we know the linear relations ex-
pressing the expectation values of ;%) )

in terms of E;};
from the relation

WY;:H) EXZ ij w Elm B (7-6)
it follows that
L[~ (@/dD)m 2 (0)mi UN]= kTx1,:{w)011:0m, me -
(7.7)

The matrix y,,;; may be fourd from the relations be-
tween the parameters of the general expression (7.2)
for the potential, obtained by applying the standard
boundary conditions, and from the relation (5. 4) for
m2, in which the parameter EjJ) is replaced by the
sum of the parameter E2, describing the imposed ex-
ternal field acting on the sphere, and the parameter B,,,
describing the reaction field. The resulting matrix is
given here only for the case ¢; =€,=¢. In this case we
have
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SN St T
X ()= (21+1)%RE1
lL(_z‘[+ I)ZERZI» + l(l + 1)(€ - 1)2(121'1}(122“1 . a21+1>

le+!+1
2 Z+1)(€—1)2(R2M—(1

21*1)({2!&1

1+ e+ 1(le + 1+ DRY = 1{1 + 1) (e = 1% }a¥ !

o (
le+1+1

[(l+ 1)(€ _ 1)(R21+1 _ 021*1%121‘1

=1+ 1){e = 1)(R**! - ¢

le+1+1

12“1)(12’”

(1+1)(le + 1+ 1)(REY — g%+1) 3001

(7.8)

The matrix elements not indicated in this scheme follow from the symmetry of the matrix. The dependence of ¢ on

w is understood.

In the same way as in the earlier paper? we can derive expressions for the free energy associated
with equal time fluctuations in all variables m|? by inverting the matrix y,(0).

In this way we obtain

1 leg+1+1 v
523 D (e stamr =gy i
leg+1+1 — [(1+1)egg+ [|R¥!
9 m 7}2( ) + 3 EESEUEITSY
l(Eo" 1)(R21+1 2!+1) im 7ty -m (l+1)(€0— 1)(R 1+1 _ a I+ )a +
Xmgrsn)ingalm RZHI 21+1 7/’71(1171)771;31"1+ 21-1-1 n7;?rt)m;32m> . (7'9)
[

The free energy associated with fluctuations in ;L) and
mﬁ,z,,’ may be obtained by inverting the 2 %2 submatrix of
q. (7.8) associated with those two variables. In the

limit R > q the result is

-1 _legtl+l —ym, 20+ 1){g-1)
72 Z‘ {Z(EO DRI 7w M, om T T ey + 1]RPT

TR (2“1)2% 2
im M1y -m+ l(EO— 1)[(l+1)€0+ l] EIT5Y 1711m My m

Xm

(7.10)
Apart from a factor of [ in the last term this expression
is identical to one derived earlier by Glarum.!®

The time-dependent behavior of the fluctuating quan-
tities m!) becomes more transparent when the matrix
x:(w) of Eq. (7.8) is brought into diagonal form. This
may be done by introducing the new fluctuating moments

Mim = Mo + Mig 5
21+1 21+1
~(2 __ —d w_ o _ LR (3)
Blym = Letet 2T WMy + My = Do+l _ 21+1 Mim $
R — I+1 R (7.11)
21+1 21+1
3 -d M@ R %
im “Rzm pran) Mym + My + R - T LOTE

In terms of these new variables, and the external fields
(” obtained by applying the inverse transformation,
the matrix y; is diagonal with matrix elements

- _ Z(i - 1)R22+1
Xo11= "7 741

. B Z(E —_ 1)R21+1a21+1
X227 (1+ 1) (REFT - 2y

. (( - 1)R21+1a21+1
X1,337 €(RZT. _—a—ZH_l) .

b

(7.12)

As always before the matrix elements and the dielectric
constant ¢ are frequency dependent.

The principal relaxation times of the system under
consideration correspond to the poles of the matrix ele-
ments x;,;;(w). In this connection it should be pointed
out that the poles of ¥;,;;(w) are at the point where ¢(w)
=—(I+1)/1, and therefore dependent on . The poles in

the other two diagonal matrix elements, ¥;,,, and ¥;,s3,
coincide with the poles and the zeros of €{w) respective-
ly; these obviously do not depend on the value of . In
the limit R> q the matrix element x,;,;, from Eq. (7.12)
reduces to the coefficient appearing in the expression
(5.8) for the autocorrelation function of the moments of
a sphere embedded in its own medium; the only relaxa-
tion times occurring are those connected with the zeros
and poles of e(w). The expression is probably more
directly related to relaxation processes on a molecular
level than the analogous quantity for a sphere in vacuum;
accordingly it seems more suited as a starting point

for an ab initio calculation of the frequency-dependent
dielectric constant.

APPENDIX

In this Appendix we list the explicit form and some of
the properties of a complete set of vector solutions of
Maxwell’s equations, that is appropriate for the discus-
sion of problems with spherical symmetry. Essentially
the same set is chosen in many textbooks'*; the normal-
izations that are chosen here are somewhat different.

It is convenient to start by giving a complete set of solu-
tions of Helmholtz’s equation for a vector field f(r),

v2i(r) + K2 (r) =0 . (A1)

A complete set of solutions of this equation is obtained
by taking the functions

L) (@) =1+ 1)V 28k Y, (6, D)1, (A2a)
M (x) =V % [r2{ (k1) Yy, (6, 0] , (A2b)
Ny () =9 x M (r) (A2¢)

for all nonnegative [, all w between ~7 and +/, and ¢
between 1 and 4. The symbol z{’(%¥) denotes the spher-
ical Bessel, Neumann, or Hankel functions,

2V Er) =4, (ky), 22 (ky) =0, (Ry),

A3
23 kr) = BV (), 28 (kv) = 1P (k7). (A3)
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The functions Y,,(8, ) are the spherical harmonics,
normalized to unity on a sphere. The sat (A2) with the
index { running from 1 to 4 is overcomplete. In order
to obtain a complete set one takes only two of the in-
dices, usually 1 and 2. In this paper we encounter the
solutions with /=1, which are regular at the origin, and

i

those with /=
waves.

The functions M and N are purely solenoidal in char-
acter; they are a natural basis for the description of
electric and magnetic fields. We give for {future use
their components in spherical coordinates:

3, which correspond to outgoing sphericut

Mimsr =0, Nigwer = 1+ 1)/ k7] Y,,,(6, 0)257 (k7)
M) o= (1/sin8)[8 Y, (6, $)/00 123 (kr) , Nybeo= 1/ k)07, (6, $)/00|5 (ky) , (A4)
Mo = = [0Y,,(6, 0)/96]2{" (r) Niprso = (1/ by sind)[0Y,,,(6, §)/012" (ky) .

In the expressions for N’ we have used the abbreviation
5 kry= U/ N/ dn [rziP (k)] . (A5)

We note that M‘"’ is a purely transversal field, while
N contains both a longitudinal and a transversal com-
ponent.

With the set (A2) of solutions of Helmholtz’s equations
we can construct a complete set of solutions of Max-
well’s equations as well. There are two types of solu-
tion:

solutions of magnetic type

E(r)= A" M) (r) exp(~ iwl) ;

, {A6a)
H(r) = A" (ke/iwp)NE (1) exp(—iwl) 5
solutions of electric type
E(r)=A"®N (r) exp(=iwl) ;
(A6b)

H(r) = A (be/io, u)MY) (x) exp(— iwl) .

The wave vector & is related to w by means of the rela-
tion

F=wcHem)? . (A7)

The symbols € and p always stand for the frequency-
dependent quantities e(w) and u{w). For the solutions
(A6a) the electric field is purely transversal; it is of
order k¥ relative to the magnetic field. For the solu-
tions (A6b) the situation is reversed; the magnetic
field is purely transversal and near the origin the elec-
tric field is larger than the magnetic field by a factor
(k»)'. Moreover, near the origin the electric field be-
comes asymptotically equal to minus the gradient of a
scalar potential ¢ #’(r) equal to

-1 1
D (r)=-A" (—l(;—ll—)k—)-— Y;.(8, ¢) exp{-iwt) (A8a)
or
fin(r)= =A@ azi-1)i Y,,.(8, ) exp(—iwt). (A8D)

kl+21,l+1

These expressions are obtained by substitution of the
asymptotic expressions for the spherical Bessel and
Bankel functions. The symbol (27+1)!! indicates the
product of all odd integers up to 27+1,

renn =11 (2s -1y - B UL (A9)

s=1

f
It is clear from Eq. (A8b) that the fields (A6b) for =3
approach those radiated by an electric 2! pole; similarly
the fields (ABa) are those of a magnetic 2! pole. The
fields with /=1 are the regular fields that are capable

of inducing magnetic or electric 2 poles in a small
spherical sample with its center at the origin (with a
radius small compared to '), as is demonstrated in
Sec. V.

For the calculation of reaction fields inside a sphere
we need solutions of Maxwell’s equations for which the
electric field has the form

E(r)= A(M)[Misém(r)*“R(m(Q; Has €1, ul)Mk;;m(r)]

Xexp(-iwt) for ¥<R (A10a)
E(r)=A™ Q" (€, Las €1, I‘Ll)Mkllm(r)

xexp(—iwt) for »=R
or
E(r):A(e)[N;zm(r)—%Rge)((z, Has €, #1)N%;m( )]

Xexp(—iwt) for v<R (A10b)
E(r)= A Q" (€5, o; €1, b)Ni 1 (T) €xp(=iwt)

for =R .

The magnetic fields are constructed by analogy to Eq.
(A6). By applying the standard boundary conditions at
the surface of the sphere with radius R we obtain the
values of the parameters @ and R. In particular

R €, thas €5, 1)

Bkt (g (kyy) — wy b “(k,r)}%‘l () (pq1a)
“z]z(sz)h(l)(kﬂ’) li1hz (k) 7y (Rgr)
R;e)(ez; Mas €15 M)
__ €2h§1)(k27’)i~i;1)(k17') - (]_h;l) (kl’}’)ilél)(kzy) (Allb)

E2jl (kzy)ﬁ?) (kl"') - €1h§1) (klr)j,(kzr)

In the limit 2R << 1 these expressions reduce to

;@@= Upp = py)
(koR)%H*1 g+ I+ 1)y’

(iz, Uas €15 M) =

(A12a)

(21+1)”(21-— ey —
(B.R)#1 Te,+ (I+1)g,
{A12b)
This asymptotic form is used in Secs. IV and VI.

R;e)(iz; Bos €1, My) =
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