Analysis of conflicting theories of dielectric relaxation
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Two different forms have been proposed for the relation between the frequency-dependent dielectric
constant of a polar substance and the autocorrelation function for the net dipole moment of a small
spherical region inside the dielectric. We find that one of them is correct, while the other one
describes a spherical sample embedded in a medium with a frequency-independent dielectric constant
equal to the static dielectric constant of the sample. A number of recent papers dealing with this
question are analyzed. We discuss in particular the role played by fluctuations in the polarization of

the surrounding medium near the surface of the embedded sphere.

I. INTRODUCTION
A. History of the problem

A controversy has developed concerning the precise
relationship between the frequency-dependent dielectric
constant of a polar medium and the spontaneous fluctua-
tions of the dipole moment of a small spherical region
in that medium. Kirkwood! derived a relation between
the static dielectric constant of a polar substance and
the mean square fluctuation in the net dipole moment of
a spherical specimen, which is embedded in an infinite
dielectric continuum with the same dielectric constant.
Glarum? derived a similar expression for the frequency-
dependent dielectric constant by applying the general
formalism of linear response theory. The formalism
was used to derive a relation between the dielectric
constant and the autocorrelation function for the net di-
pole moment of a sphere in vacuum, The latter quantity
was then related to the autocorrelation function of the
net dipole moment of a sphere embedded in a medium
with the same dielectric constant. In this way, he ob-
tained the expression

do] . [elw)-1]-3¢
"B[_ dt] " e - 1][e(w)+2050]

In this expression ¢ is the normalized autocorrelation
function for the net dipole moment of an embedded
sphere, £ denotes a Laplace transform, and e(w) and
€, are the frequency-dependent and the static dielectric
constants of the medium. Glarum’s theory was gen-
eralized by Cole® for the case that induced as well as
permanent dipoles are present in the medium.

(1.1)

Glarum’s derivation was criticized by Fatuzzo and
Mason.* These authors arrived at a different relation

between ¢ and elw):

3[_ dol _ [elw) - 1][2elw) +1] g
dt] - (€0— 1).(2€0+ 1)€(0))

In the same paper Fatuzzo and Mason tentatively pro-
posed a derivation of Eq. (1.2) by a direct application

of the formulas of linear response theory to a sphere
embedded in a medium. This direct treatment was also
adopted by Klug, Kranbuehl, and Vaughan, ® by Nee and
Zwanzig, ® and by Hill.” In these three papers the theory
was generalized to include induced as well as permanent
dipoles. In the present paper we will not treat the com-
plications caused by induced dipoles; a clear exposition
is found in Hill’s paper. " Scaife treated aspects of the

(1.2
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problem by calculations using the fluétuation—dissipa-
tion theorem.?

The derivations of Eq. (1.2) were attacked in a recent
paper by Glarum.? In this paper he attributes the dif-
ference in the expressions (1. 1) and (1. 2) to differences
in the treatment of the interface between the spherical
sample and the surrounding dielectric continuum;
Equation (1.2) is said to result when the interface is
treated as a real physical surface rather than a
mathematical construct; the fluctuations in the surface
polarization that occur at a real surface are claimed
to be responsible for the difference in the two expres-
sions,

Two recent papers by Cole also concern the discre-
pancy between the two expressions (1.1) and (1.2). In
the first one'® he gives a molecular derivation of
Glarum’ s original expression (1.1). The second one'!
aims to settle the issue by means of explicit calcula-
tions for a specific model of a polar solid, introduced
by Zwanzig. 2 A straightforward calculation leads to an
expression for ¢(t) which disagrees with Glarum’ s pre-
diction. However, Cole considers various features of
this expression undesirable and proposes a modified
treatment of the model, in which those undesirable fea-
tures are absent; the modified treatment leads to
agreement with Glarum’ s expression (1.1).

B. Survey of the present paper

The purpose of the present paper is to review and
assess the arguments offered in favor of the rival ex-
pressions (1.1) and (1,2). In Sec. II we present the
direct application of the linear response theory to a
sphere embedded in an infinite dielectric medium. The
treatment is slightly more general than that of earlier
authors in that we allow for a difference in dielectric
constant between the sphere and the surroundings. When
the two dielectric constants are equal, the Fatuzzo—
Mason expression is obtained. However, when the sur-
rounding medium is given a frequency-independent di-
electric constant equal to the static dielectric constant
of the sphere, we obtain Glarum’ s relation.

Reservations have been expressed about the validity
of this direct application of linear response theory.
The cavity field, which enters as an external field in the
linear response derivation, does in fact include a con-
tribution due to the response of the surrounding medium
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The system discussed in Sec, II: a sphere with dielec-

FIG. 1.
tric contant €,(w) embedded in an infinite dielectric continuum
with dielectric constant €(w).

to the true external field. This objection does not hold
for the treatment in Sec. III. There we consider the
problem of a sphere placed inside of a spherical shell.
The response of this configuration to external fields is
evaluated and the correlation functions for the spon-
taneous fluctuations in the net dipole moments follow via
the fluctuation-dissipation theorem'® in a manner similar
to that employed by Scaife.® This fluctuation-dissipation
calculation may be considered the time-dependent
analogue of a free energy calculation carried out by
Glarum.® In particular Glarum’s prescriptions for the
treatment of the internal surface are followed. Never-
theless, the calculations lead to the Fatuzzo-Mason ex-
pression (1.2)., Glarum’s relation (1. 1) again results
when we take the dielectric constant of the surrounding
shell equal to the static dielectric constant of the sphere
for all frequencies.

In Sec. IV we consider Cole’ s calculation for Zwan-
zig’ s model of a lattice of permanent dipoles. TFirst
we point out a simple way to determine the results to be
expected on the basis of either Glarum’ s expression
or the one found by Fatuzzo and Mason. It turns out
that the result of the lattice calculation disagrees with
Eq. (1.1) but shows full agreement with the prediction
derived from Eq. (1.2). This latter comparison was
not made explicitly by Cole. '

In Sec. V we review Cole’ s derivation of Eq. (1.1)
and his modified treatment of Zwanzig’ s lattice model.
In both derivations there is a crucial step in which the
reaction field exerted by molecules in the surrounding
shell is replaced by an average reaction field. This
average is calculated using the instantaneous values of
the dipole moments of the molecules in the inner sphere.
This amounts to replacing the frequency-dependent
dielectric constant of the shell by the static one; it is
therefore not surprising that this approximation leads
to agreement with Glarum’ s result (1. 1),

In the final section we discuss the fluctuations in the
polarization near the inner surface of the external re-
gion, We show how to modify the treatment of Sec. III

1603

in such a way that these surface fluctuations are in-
cluded. This more detailed description does not however
lead to any modification of the results obtained in Sec.
III. In particular the relation between the dielectric
constant and the autocorrelation function of the net di-
pole moment of the inner sphere is not affected when
surface fluctuations are included in the description,

The more detailed description does however lead to a
more transparent picture of the relaxation of the net
dipole moments from initial nonequilibrium values, In
the final part of Sec. VI we make some observations on
the consequences for this relaxation behavior of choos-
ing any one of two familiar approximate expressions for
the frequency-dependent dielectric constant of a polar
material.

The conclusion from our considerations is that the
expression (1, 2) of Fatuzzo and Mason is correct for
the case of a sphere embedded in a medium with the
same frequency-dependent dielectric constant. Glarum’s
expression (1. 1) on the other hand correctly describes
the fluctuations of a sphere embedded in a medium with
a frequency-independent dielectric constant €, The
former-is perhaps a more convenient starting point for
undertaking microscopic model calculations.

Il. SIMPLE LINEAR RESPONSE THEORY

Consider an isotropic molecular sample in a spherical
volume of radius @, consisting of amaterial characterized
by a frequency-dependent dielectric constant e,(w).

This molecular sample is embedded in an infinite me-
dium, which by assumption consists of a macroscopic
dielectric continuum characterized by a dielectric con-
stant ¢,(w). See Fig. 1. We further suppose than an
electric field is present in the medium and that it ap-
proaches the constant value E™(¢) at large distances
from the enclosure. The familiar algorithm of linear
response theory®* ! permits one to express the expec-
tation value {m,(t))z= of the net dipole moment of the
sphere in the presence of a field in terms of the auto-
correlation function of the net dipole moment in the
absence of a field:

—k—T_l Jo ch(t - t’) d—ir <m.(0)ml(t,)> dt, ¢

(2.1)
In the linear response formalism the field E;S is the
'field in the macroscopic cavity of radius g, which would
be present when the molecular sample were removed
from the surrounding medium. For the special case in
which E*(¢)=zE “(t) = E “z¢'“* we can express Ef in
terms of E ™ by means of a simple electrostatic boun-
dary value calculation'®; the result.is

(ml (t»Eeo = —

ES® =136,(w)/ [2e,()+ 1]V E=() . 2.2)

Of course this treatment is valid only when the spatial
variation of the field is negligible, i.e., the wavelength
associated with the frequency w is large compared with
the radius of the cavity. This condition is easily met
for most polar substances, where the dielectric relaxa-
tion takes place at frequencies corresponding to those
of radio waves., Dielectric relaxation in most nonpolar
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FIG. 2. Three special cases
of the situation described in
Fig. 1: (a) the surrounding
continuum is replaced by
vacuum; (b) the surrounding
continuum has the same fre-
quency-dependent dielectric
constant as the embedded
sphere; (c) the surrounding
continuum has a frequency-
independent dielectric con-
stant equal to the static dielec~
tric constant of the embedded
sphere.

substances takes place at much higher frequencies and
the simple theories presented in this paper cannot be
applied without modification.

For uniform polarization geometries such as the one
discussed here the net dipole moment per unit volume
resulting from an external field with frequency w is re-
lated to the frequency-dependent dielectric constant of
the molecular medium €,(w) and the macroscopic electric
field inside the spherical sample E,(¢) by

(m (1) go={ [€2(w) — 1]/47} - 5 1a°E,(¢) .

The quantity E,(t) may be expressed in terms of E “(¢)
by a macroscopic calculation'®:

E () ={3¢,(w)/ [2e;(w)+ 2()]} E=() . 2.4)

By equating the expressions (2.1) and (2. 3) and substitu-
ing Eq. (2.2) and (2. 4) we obtain the relation

(2.3)

1 ("

[efw) = 1][2¢(w)+1] 5
T 3 [2¢;(w) + e5(w)] a.-

An analogous linear response calculation for a static field
leads to the expression

[€,(0) - 1][2¢€,(0) +1]
3 [2E1(0)+;2(0)] kT . (2.6)

where €;(0) [€,(0)] is the static dielectric constant of
the outer [inner] region., When we define the normalized
correlation function

o () = m (0)m, )/ (m (0)m, (0)) 2.7

and use the notation £[ f(#)] to denote the Laplace trans-
form of f with Laplace transform variable z =iw, we
readily derive the relation

et E‘;‘i'— m ()m,(¢")) dt’

(2.5)

(im0, (0)) =

_d _ [ealw) - 1][2¢;(w) + 1][2¢,(0) + €,(0)]
.,e[ dt ‘W)] " Tex(0) = 1][2511(0)+1][261(Lw)+ e:(w)] 2.8
2.8

In Eq. (2.7) the bracket denotes an equilibrium average
in the absence of any imposed field of the net dipole
moment autocorrelation function. The average is per-
formed over an equilibrium canonical ensemble. The
classical Hamiltonian that occurs in the Boltzmann
weighting factor includes both the direct interactions
between the molecules in the spherical sample and the

interactions between those molecules mediated by the
surrounding polarizable medium. The same is true for
the Liouville operator that governs the time dependence
of m,(t). The result Eq. (2.8) clearly illustrates the
dependence of the equilibrium time correlation function
¢ (#) upon the nature of the external continuum region,
even in the absence of fields and irrespective of the size
of the molecular sample, This situation is well known
in the case of the static fluctuations, !® e.g., Eq. (2.6).
In polar systems both equilibrium-~ and time-dependent
fluctuations in the net dipole moment depend upon the
shape of the sample and the nature of external region,

The controversy concerning the various relationships
between the correlation function ¢(¢) and e,(w) may be
clarified by considering several special cases of Eq.
(2.8); see Fig. 2. Firstwe set ¢,{w)=1, which cor-
responds to eliminating the external region; see Fig.
(22). In this case we recover the well-known result for
the normalized autocorrelation function®? of the net di-
pole moment of a sphere in vacuum, The function ¢(¢)
for this special case is denoted by &(¢), and it obeys

da _ [elw) =~ 1](eq+2)
£[- dt (}(t)] h [e(w)+2](€00— 1)

In this expression we omitted the index 2 in €,{w) and
wrote ¢, for €;(0).

(2.9)

As a second special case we set ¢;(w) = €;(w) = e(w).
This corresponds to the physical situation of a molec-
ular sample embedded in an infinite macroscopic me-
dium characterized by the same dielectric constant;
see Fig, 2b. For this case, which was considered by
Fatuzzo and Mason, * we recover their result

d _ [elw) = 1][2e(w) +1]¢,
£[— dt ¢“‘(t)] " {eg—1)(2¢p+ Delw) s

we have denoted ¢(¢) for this special case by ¢ py(2).
Fatuzzo and Mason in Sec. 4 of Ref. 4 express some
reservations concerning the validity of this treatment,
in view of the fact that the cavity field used in Eq. (2, 1)
is not a truly external field of the type required for
Kubo’ s linear response treatment. We do not think the
objection is a very grave one. However, the treatment
in the next section, which leads to the same results,

is not subject to this réservation.

(2.10)

Finally we consider the special case (to our knowledge
not explicitly considered heretofore) in which ey(w)
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= e(w) while ¢,{w)= ¢, for all frequencies. This cor-
responds to the physical situation of a molecular medium
characterized by a dielectric constant e(w) embedded

in an infinite macroscopic medium that responds in-
stantaneously to fields of all frequencies as a static
dielectric; see Fig. 2c. The resulting expression is

da _ [elw)-1]-3¢
£ [— dt ¢G(t)]— (2¢o+ e(w)](eo—ol) '

This formula corresponds precisely to the expression
for ¢(¢) given by Glarum.? Accordingly we denote ¢(¢)
for this case by ¢,{t).

(2.11)

Confusion between the second case where ¢,(w)
= €{w) = €(w) and the third case where ¢,{w)= €,(0)= ¢,
is responsible for part of the controversy on dielectric
relaxation. Both equations, (2,10) and (2.11), are cor-
rect. One must recognize however that they correspond
to entirely different physical situations: ¢py(t) cor-

responds to the fluctuating moment of a spherical molec-

ular sample embedded in a medium of its own fre-
quency-dependent dielectric constant, while ¢ (#) cor-
responds to the fluctuating moment of a spherical molec-
ular sample embedded in a medium that is character-
ized by a frequency-independent dielectric constant
equal to the static dielectric constant of the sphere, An
exact calculation that takes into account this difference,
if carried to completion for both ¢p,(¢) and ¢4(t), is ex-
pected on physical grounds to lead to identical results
for e(w). For model calculations it is likely that the
second case, involving ¢ py{t), will prove more useful,
It is however definitely incorrect to identify ¢4 (¢) with
the physical situation of a spherical molecular sample
embedded in its own medium, characterized by e(w).
The only microscopic correlation function ¢>(t) which
corresponds to this case is the Fatuzzo—-Mason result

o rult).

The remainder of this article is devoted to establish-
ing the correctness of Eqs. (2.10) and (2.11) for the
two physical situations of interest by another method
and to pointing out where previous analyses of the prob-
lem have gone astray.

ill. APPLICATION OF THE FLUCTUATION-
DISSIPATION THEOREM TO A SPHERE
EMBEDDED IN A SPHERICAL SHELL

In this section we replace the infinite medium sur-
rounding the small sphere by a spherical shell consist-
ing of a molecular medium with dielectric constant
€;{w) with external radius R and internal radius a. We
will assume that both a and R are large on an atomic
scale but small compared to any electromagnetic wave-
length associated with a relevant frequency w; see Fig.
3. The net dipole moments of the spherical shell and
the embedded sphere will be designated by », and m,,
respectively, The autocorrelation functions of m, and
mg are related by means of the Wiener—Khinchin the-
orem to the spectral density of their fluctuations. The
latter quantity is related to the energy dissipation in a
periodic external field by means of the fluctuation-dis-
sipation theorem. In this section we shall apply the
fluctuation-dissipation theorem to the problem of dielec-

1506

tric relaxation., The calculation is very close in spirit
to the linear response treatment of the preceding sec-
tion. The main difference with the linear response dis-
cussion concerns the treatment of the exterior region
and the presence of more than a single auxiliary exter-
nal field.

For the purpose of our calculation we have to deter-
mine the energy dissipation for the case in which the
spherical shell and the embedded sphere are subject
to two distinct external fields E,(¢) and E,(¢). This leads
to a rate of energy dissipation equal to'’

Q=-m, - (dE,/dl) - m,- (dBz/dt) . (3.1)
Again we will assume that both E; and E; are in the z
direction, and we will consider only z components of the
various net dipole moments. Since no confusion can
arise we will omit the subscript z in the remainder of
this paper. The occurrence of quadratic quantities
makes it mandatory to work with real fields; we there-
fore assume a time dependence for each field of the form
E, ()= 3[E;(we'“t + EXw)e ]2, i=1,2. (3.2)

The response of the net dipole moments »n; will ex-
hibit the same oscillatory time dependence and their
expectation values may be expressed in terms of E,(w)
by means of a set of linear relations:

ﬁ{(w): Z x”(w)E,(w) . (3.3)
i=1,2

Substitution of Eq. (3.2) and (3.3) in Eq. (3.1) and

averaging over a period of oscillation leads to the ex-

pression

Q@=- (w/2) 2 EF(w)Im[x;,(w)]E;(w) . (3.4)
i'j
The fluctuation-dissipation theorem'® enables us to de-
termine from the relation (3. 4) the spectral density of
the fluctuations in the quantities m, and m, (valid pro-

FIG. 3. The system discussed in Sec, III: a sphere with di-
electric constant €,(w) embedded in a spherical shell with di-
electric constant €(w).
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vided T > fiw)
(mym;),= - &T/7w) Im[x;;(w)], (3.5)

where following Landau and Lifshitz'® we introduced the
notation

(mymy)y=(=1/21) [ (m,(Om, () e***ar . (3.6)

The average is again a canonical one taken in the ab-
sence of any external fields, However, the Hamiltonian
in the Boltzmann weighting factor and the Liouville op-
erator governing the evolution of () now contain the
direct interactions between molecules in both the inner
sphere and the surrounding shell, The agreement we
will find with the results of section II may be considered
as a partial justification for the linear response proce-
dure followed there. The equal time correlation of m;
and m; in the absence of external fields follows imme-
diately from Egs, (3.5) and (3.6):

(m; (0)m, (0)) = - f_j (mym,), dw

== kT/m) [*°

-0

wlIm[y, (W]do . 3.7)

Since the real and imaginary part of x”(w) obey the
Kramers—Kronig!® relations this is equal to

(m; (0)m,(0)) = e T Re[x;,(0)] = £ T, (0) . (3.8)

The Laplace transform of the derivative of the correla-
tion function ¢n,(0)m;(t)) is also expressible in terms
of the spectral density of the fluctuations:

L[{d/dt)m; (O)m,; ()]
=(-ikT/7) fo'w e"“"alz‘f_:e et Im[x;;(w')]do’ .
(3.9)
-Using the identity
ST et A=’ - W)t 4 melo’ - w) (3.10)

(in which P indicates that the principal value must be
taken in the integration over ') and once more using
the Kramers—Kronig relations we obtain

L{a/dt)m (0)m,; ()]
= - kT{Re[y;;(w)] +iIm[y;, ()]} = - kTx,(w) . (3.11)

For the normalized correlation function

B3 (#) = (my (O, (8)) / (m; (0, (0)) (3.12)
we find the result
£[— (d/dt)(i)“(t)]zX(I((U)[X”(o)]-l, (3. 13)

where we have made use of Eq. (3.8).

We will now proceed to calculate y;,(w) by means of
a macroscopic calculation., First we consider a
spherical shell subjected to an external field E, and the
field of a dipole m, placed in the center. All quantities
vary harmonically in time with a factor ¢'“*, and the
coefficients in all subsequent formulae will be functions
of w; this dependence will often not be indicated ex-
plicitly.

The scalar potential for the hollow shell has the gen-
eral form

¢=2[-B+myr®] a>7r e=1

@=z[—A+mar ] R>v>a;, e=¢ (3.14)

@=z[- Ey+ my+ma)¥%  7>R; e=1.

The average values of A, B, mx, and m, are related
to E, and the average value of m, by means of the stan-
dard boundary conditions. After some algebra we ob-
tain the relation
[ (€ + 1€, + 2)R® — 2(¢, - 1)%4%]

=(e; - V(2¢, + VR¥R3 - ¢®)E, - 2(e; - 1)2(R® - a®)im, .

(3.15)
We will also need the expression for the average cavity

" field B,

a*B=R’E, - [(,+2)/(e, - D], . (3.16)

Next we consider the inner sphere. In addition to the
external field E, it feels the field B~ E, due to the sur-
rounding shell. A calculation like the one leading to
Eq. (2.3) gives

= [(eg— 1)/ (€ + 2)|{Eza® + E,(R* - &®)
—[(e;+2)/ (e~ Dz} . (3.17)
Equations (3.14) and (3. 16) may be combined to give
expressions for the coefficients y,;,(w) in Eq. (3.3):
m4[3(2¢€, + €2)(e; + 2)R® + 6(e5 - €,)(ey - 1)a’]
= (e, - 1)[3(2¢; + €,)R® + 2(; - 1)(e; - 1)a®)(R® - a°)E,

- 2(ey - 1)(e; ~ 1)a3(R® - 0®)Ey; (3.18a)
ma[3(2€; + €3)(€, + 2)R® + 6(ey ~ €;)(€; — 1)a?]
= (ez— D[(2e€, + (e + 2)R® - 2(¢; - 1%6°1°E,
- 2(e, - 12(e; - 1) (R? -‘a3)E1 . (3.18b)

The limit R > g corresponds to the physical situation
considered in Sec. II. In this limit the expressions for
x11(w) and y,,(w) reduce to

Xn(w) = [(E]_ - 1)/(61 + 2)]R3,
Xez(w) = [(e2— D2, +1)/32¢; + &) |’

These expressions in conjunction with Eq. (3.,13) may
be employed to obtain explicit expressions for the
Laplace transform of the correlation functions of the
net dipole moment. Thus Eq., (3.13) for y;;(w) in the
limit R > a corresponds to the case of a sphere in vacu-
um and one obtains exactly the linear response result
Eq. (2.9). Inthe limit R> q Eq. (3.13) for xs(w) with
€, (w) = ez{w) = e(w) corresponds to the case of a sphere
embedded in an infinite medium characterized by the
same dielectric constant and one obtains exactly the
Fatuzzo-Mason result Eq. (1.2). In the limit R>»>a
Eq. (3.12) for xz(w) with €,(w)= €,(0) = €5 and e,{(w)

= e(w) corresponds to the case of a sphere embedded in
aninfinite medium characterized for all frequencies by
a dielectric constant equal to the static dielectric con-
stant of the inner sphere. The result is identical to
Eq. (1.1). Accordingly we have demonstrated that the
fluctuation-dissipation calculation leads to identical re-
sults for the various physical situations of interest as
the linear response calculation. The two methods lead
to the same relationship of e(w) to the microscopic cor-

(3.19)
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relation functions ¢(¢).
In the limit R > o the cross terms y;,{w) take the form
Xiz2{w) = x21 (@) = = [2(€; = 1)%(e3 - 1)/3(2¢; + €5){€; + 2)]d.

(3.20)
This quantlty is needed in order to calculate the decay
of the polarization induced by the inner sphere in the
surrounding shell, Fatuzzo and Mason! define the cor-
relation function ,(t) by the relation

(m2(0)m, (£)
2(eg- 1) de,t-¢t)
m f (mg 0) z(t )) ——l—r—— dt .

(3.21)

Using Eq. (3.11) and the convolution property of the
Laplace transform we find

£ [_ da] X12{w)x22(0)
dl ] xea(wxs2(0)
o 2(e - 1P (ep+2)2ep+1)
B (€1+21)(2€1+ 1) 02(60_ 10)2 ,  (3.22)

which is exactly the result derived by Fatuzzo and Mason
by a slightly different method. When the dielectric con-
stant of the surrounding shell is frequency-independent,
the function @, is equal to unity, as should be expected
for a medium that responds instantaneously to any ap-
plied field.

Glarum® has presented a calculation of the equal time
fluctuations of the net moment (m,(0)m,(0)) by examining
the free energy of the configuration of a sphere inside
a spherical shell, acted upon by two static homogeneous

external fields. According to Landau and Lifshitz!”
this free energy may be written as

(3.23)

in which m,, m,, E;, and E, are now time-independent
quantities. The expectation value of this expression
may be written as

F =1 [m,Ey+muE;] ,

§=% 2. E;xy; (0)E; (3.24a)
4

or alternatively, in terms of the average dipole mo-
ments,

—

= 5 ?j ;n-‘[x(o)];jlﬁj . (3.24b)
The expression (3, 24b) may be evaluated by means of
Eq. (3.18) and a matrix inversion, This leads to the

expression

1) —2 (€10+2)(2€g9+ 1)R® - 2(ey0- 1)%0°
2 (e10- 1)2¢;0+ DR}R® - &%)

+ 2y ————3—2(6“’—1)
172 (2€,,+ 1)R

§=

(3.25)

+ﬁ2 3(2510+ €20)R3+2(€10—' 1)((20‘ 1)03
g (520— 1)(2510+ 1)R3a3

where €4 and €;, refer to the static dielectric constants
in the two regions. When we put €,y= €;¢= €, and retain
only terms of highest order in R%/a®, this expression

reduces to one derived by Glarum in Ref, 9. Since the

1607

free energy associated with spontaneous fluctuations of
m, and m, has the same form as Eq. (3.24), Glarum
proceeds to calculate the correlations {m,(0)m,(0)). The
results obtained from (m,(0)m,(0)) by Glarum’s method
or from Eq. (3.7) are identical. Accordingly for the
equilibrium quantities (m,;(0}m,(0)) there is no discre-
pency between the fluctuation-dissipation method and the
approach through the free energy.

1t is worthwile to point out that the expression (3. 25)
for the free energy and the Fatuzzo—Mason expression
for the autocorrelation function are derived from the
same physical picture, Glarum’s assertion that the
Fatuzzo-Mason expression somehow results from the
introduction of artificial surface effects at the boundary
of the inner sphere appears therefore questionable, We
return to this point in See. VI,

IV. AN EXPLICIT MICROSCOPIC LATTICE MODEL
CALCULATION

The calculations in the two preceding sections have
been macroscopic in the sense that the only specific
property of the medium that was used was a macroscopic
one, the dielectric constant. In this section we will re-
view a calculation on a specific microscopic model,
which was undertaken by Cole!! with the aim of resolv-
ing the controversy discussed in this paper. In this
section we shall show how Cole’ s calculation supports
the Fatuzzo-—Mason result,

The model consists of a rigid cubic lattice with lattice
constant p /8, its sites occupied by rigid dipoles of
strength . Each dipole separately undergoes rotational
Brownian motion and in addition the dipoles interact
with the familiar dipole—dipole forces. Zwanzig'® was
able to give a high-temperature expansion for the fre-
quency-dependent susceptibility of a spherical sample

with radius a formed out of such a material. His result
may be written in the form

elw)~1

m =x(w)a'3
-4 [ @ 33 w7
ST Tviwr %P (H{l Yot | (+iwn@+iw?)

5 .
2WT 4.4
T riwrP@x in)}+ 0la’p )]
In this expression 7 is the molecular relaxation time

associated with the rotational Brownian motion, « de-
notes p2/3k7T, and ® is the lattice sum

= (1/3p2)Tr[Z Tom* T,,,,,] ,

m#n

4.1)

4. 2)

in which T,, is the dipole—dipole interaction tensor for
the sites m and n:

= (1/r?rm)[(3rnmrmn/rirt) - l] .

The expression (4. 1) gives an explicit result for e(w).
According to Eq. (2. 8) we may obtain an explicit ex-
pression for £[ - (d/dt)®(¢}] for this microscopic model.
Furthermore, since on physical grounds we expect

e(w) to be a property of the material independent of
sample shape or surroundings, we can substitute the

4.3)
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1508 U. M. Titulaer and J. M. Deutch: Theories of dielectric relaxation

result (4,1) for e(w) into Eq. (2.9) and Eq. (2,10) to
obtain explicit expressions for £ - (d/dt)¢ py(t)] and

£[~ (d/dt)ps(t)]. We next proceed to obtain expressions
for £{pry(t)] and £[¢4(#)]. These two expressions may
then be compared with Cole’ s direct calculation!! of

the high-temperature result for £[¢(#)] in the case of a
lattice of spherical shape embedded in a larger spherical
region of the same material,

First we express the Laplace transform of ¢,() and
¢rult) in terms of the quantity y(w) in Eq. (4.1) and its
static analogue x(0). In view of the fact that y(w) is
only determined up to third order in ap it is not neces-
sary to keep the full expressions; for example the ex-
pression derived from Glarum’s relation (1. 1),

x(0) — x(w) a® +x(0)

£oc]= iwox©@) [+ x(0) - 2a"x(0)x(w)] °’ (4.4)
may be replaced by
Lloe]= %&) [1+2a%(0)x(w)+0(a®®)] . (4.5)

Similarly we obtain from the Fatuzzo-Mason expression
(1.2)

x(0) - y(w)

fox) [1+20xOx(w) + 2w)} + 0la%™)] .

Llprul=

(4.6)
When we substitute the result of Eq. (4. 1) and retain
only terms up to order pzoz.2 the results are

Llgel= azpa(ﬂ[ ’

1 +iwT (1 +iwr)d+iwT)

($ mpa)2r
(1 +iwT)?

'2- T
(1 +iwT)*(4 +zw7)]+ * O(a3p3)

and

2 2 T
TP 6)‘[(1 T iwT)(@ + iwT)

It

L(¢rul

1+iwT

‘z' T
"MW +i0r)@ +iwr

)]+27(§—ﬂpa)z

1 1
><l:(l +iwn? T +iw7)3] +0(aY) . (4.8)

The corresponding expression for a sphere in vacuum is?

_ _ 2.2 T
£le]= 1+iwT ap(ﬁ[(1+iw7)(4+iw7)

Er - ]+O(a3p3). 4.9)

"W+ iwTP@+ior)

The direct calculation of £[¢] by Cole gives exactly ex-
pression (4. 8), and thereby supports the Fatuzzo-Mason
relation. This fact was not noticed by Cole, who com-
pared his result only with Glarum’s expression, After
noticing the discrepancy with that expression he pro-
posed a different treatment of the model to which we

will return in the next section. The results just pres-
ented clearly indicate however that Cole’ s microsopic

model lattice calculation supports the Fatuzzo- Mason
relation and not the Glarum relation (1, 1),

In the remaining part of this section we will comment
on the way in which the crucial term, that makes the
difference between (4.7) and (4. 8), arises in the course
of Cole’ s calculation. For full details the reader is
referred to Cole’ s paper.!! The basic molecular ex-
pression for the correlation function (m,(0hn,(t)) is

_Ziilde..
[déy--

In this expression g; is a unit vector in the direction of
the ith dipole in the lattice, dé,. indicates an integration
over the direction of the vector ¢;, and the primed sum-
mation is over all lattice points inside of a sphere with
radius a (unprimed summations run over both the sphere
and the surrounding spherical shell). The symbol
U{e,}) represents the dipole—dipole interaction energy:

- ) i~
L[ dsy, o-BU¢ {e,} 126, - oLt e,

'fdeNe-BU({e’l}) (4. 10)

ve )= (u2/2) 222 &+ T+ 65 4.11)
i J#
in which T,; is defined according to Eq. (4.3). Itis as-

sumed in Zwanzig’ s lattice model that inertial effects
can be neglected and that the Brownian motion is de-
scribed by a Smoluchowski equation. Consequently the
momenta conjugate to ¢; do not appear in Eq. (4.10),
The quantity LinEq. (4.10)denotes the diffusion operator
of the system. We will not write it out fully but merely re-
mark that it may be written as the sum of two terms

Z LY+ 2 LY. (4.12)

i j#

L=L9+L%

The operator L,° describes the free rotatmnal Brownian
motion of the dipole at site i, while L, gives the effect
on the time evolution of the dipole-dipole interaction
between the dipoles at sites Z and j. In order to get the
series expansion of Eq. (4.1) we must disentangle the
evolution operator:

JRITIR) (°)t+f et RS RECURIAUN

+f dt, ‘1 dtye't VUt W gL O ey @ L Ve, L
(4.13)

and expand the exponentials exp[ - 8U{e,})]. The order

of a term in the variable ap turns out to be equal to the
number of times that either a factor LY or a factor U
appears in the expression. The terms in (4. 8) that con-
tain the rapidly converging lattice sum ® of Eq. {4.2)
as a factor arise from the interaction of a molecule
with the first few shells of neighbors. The terms con-
taining a factor (§- mpa)? represent contributions from
interactions with the surrounding shell, This is also
clear from a comparison of Eq. (4.8) and (4. 9).

The term that gives rise to the difference between Eq.
(4. 8) and (4. 7) may be identified as a term which is of
zeroth order in U and of second order in L “, its spe-
cific form is

477)‘22'[§‘ Z]fde,fde,,fo dtlj dt,

- (0 () @, ~
2 $L;Y et ) 41 VG g0y (D o
Xpte;~e* " VL etfrn Mt ot Xy 2, . (4.14)
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[the factors 47 result from integrations over angles in
the denominator of Eq. (4.10)]. The physical picture
corresponding to Eq. (4.14) is the following: a dipole
in the inner sphere interacts with a dipole in the sur-
rounding shell at time £;,. The outer dipole executes
rotational Brownian motion for a while and acts back on
the original inner dipole at a later time t;. On the other
hand, the common quantity in the last term of Eqgs.

(4.7) and (4. 8) is the Laplace transform of

(arre 2 [kZ#—g‘] f de, f s, f dt,

XptBe, s Ty ey 't Oty ‘LiYe 0 ’lé‘ . (4.15)

In this case the outer dipole “acts back” on the inner
dipole via the electrostatic correlation without any time
lag. The picture emerging here is in agreement with
our finding in Sec, II, that Glarum’s expression applies
to a sphere surrounded by a medium with a frequency-
independent dielectric constant equal to the static di-
electric constant of the enclosed sphere. The reaction
field originated by such a shell will always correspond
to the instantaneous value of the dipole moment of the
enclosed sphere and will not exhibit any delay. In the
next section we will come back to the role which this
“lag of the reaction field” plays in various descriptions
of dielectric relaxation. As far as the result of the
present calculation is concerned, there is again no way
in which the agreement with the relation of Fatuzzo and
Mason can be ascribed to some artificial surface effects
smuggled into the model. In this model lattice calcula-
tion all dipoles are treated in exactly the same way,
both dynamically and statistically. The distinction be-
tween the inner sphere and the surrounding shell is

only made at the end of the calculation when the summa-
tions over the dipoles are carried out.

V. MICROSCOPIC ARGUMENTS FAVORING
GLARUM'S RELATION

In this section we review two recent calculations by
Cole!®! presented in support of Glarum’ s relation be-
tween the dielectric constant and the autocorrelation
function of the net dipole moment of an embedded
sphere. One of them'® is a derivation from the molec-
ular equations of motion of Glarum’s relation between
the moment autocorrelation functions of a sphere in
vacuum and 2 sphere embedded in its own medium. The
second one!! is a modified treatment of the lattice model
discussed in the previous section; the modification,
based on use of Kirkwood’ s diffusion equation, !® leads
to agreement with Glarum’s formula.

In the course of the molecular derivation of Glarum’s
relation!! Cole introduces an expression for the
Liouville operator in which the n particles in the inner
sphere of radius ¢ and the particles in the surrounding
shell play a completely different role [see Eqs. (11)
and (13) of Ref. 11]:

_ 2(€o
L=L,+ —~—f(2€ a i gy — ap‘ , (5.1)

where g, is the formal charge, called ¢; by Cole. In
this equation L, is the Liouville operator for the » di-
poles in the inner sphere, m, is the instantaneous net
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dipole moment of the » dipoles in the inner sphere, and
€p is the static dielectric constant of the material. The
coordinates and momenta p, of the particles of the inner
sphere are treated in the usual way as dynamical vari-
ables. However, the coordinates and momenta of the
particles in the surrounding shell do not enter at all
into the description. The influence of the surrounding
shell is represented by an average reaction field, pro-
portional to the instantaneous value of the dipole mo-
ment of the inner sphere. The proportionality constant
in Cole’s expression, Eq. (5.1), contains only the static
dielectric constant ¢, of the surrounding shell, Clearly,
Cole’ s Liouville operator does not describe the situa-
tion of a sphere embedded in its own medium, but in-
stead that of a sphere embedded in a medium with an in-
stantaneous dielectric response described by a fre-
quency-independent dielectric constant equal to the static
dielectric constant ¢,. The fact that this calculation
leads to Glarum’s relation is therefore entirely consis-
tent with the physical picture developed in Secs. II and
II1,

Cole’ s modified treatment of Zwanzig’ s model of a
polar lattice is subject to similar criticism, In Sec. 3
of Ref, 11 the equations of motion of the many-body sys-
tem are replaced by two coupled equations of motion
for the one- and two-particle orientational correlation
functions according to the molecular diffusion theory
of Kirkwood. !® The forces exerted by all the other par-
ticles on the one or two particles occurring in the cor-
relation functions under consideration are replaced by
an average reaction force, determined by the instan-
taneous orientation of those one or two particles. Since
the correlation functions are only integrated over the
inner sphere, the particles in the surrounding shell can
only enter into the picture via instantaneous reaction
forces. This explains the fact that Glarum’ s relation
rather than that of Fatuzzo and Mason is obeyed by the
resulting expressions. In addition the introduction of
averages in intermediate steps of the calculation leads
to important modifications of the dipole-moment cor-
relation function, even for a sphere in vacuum. For ex-
ample comparison of the results of the direct high-tem-
perature calculation and the high-temperature expan-
sion of Cole’ s Kirkwood diffusion model indicates'! that
the shorter relaxation time 7/4, present in the former,
is completely absent in the latter, Both the occurrence
of relaxation times which are a fraction of the basic re-
laxation time and their vulnerability to approximate
treatments.are well known phenomena in the theory of
fluctuations in nonlinear systems. They appear, e.g.,
in van Kampen’ s discussion of Alkemade’s diode model. 20

The nonlinearity that causes the appearance of shorter
relaxation times in this instance is in the relation be-
tween the electric field exerted by one dipole on a neigh-
bor and the resulting change in the orientation of the
dipole moment of that neighbor., Although the average
value of this field is small, due to orientational disorder

- at high temperatures, the actual value in a polar sub-

stance is by no means small; nonlinear terms cannot
be neglected, at least not for dipoles close to one an-
other. The fact that he effect discussed results from
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interactions between relatively close neighbors is re-
flected in the appearance of the factor ® in front of the
terms in Eqs. (4.1), (4.8), and (4.9) containing the
shorter relaxation time. The quantity & is a rapidly
converging lattice sum, which depends on the lattice
structure, but not on the sample shape or the nature of
the surroundings (cf. the calculations by Rosenberg and
Lax®),

The replacement of the full Liouville equation by the *
two coupled equations for one- and two-particle cor-
relation functions is only justified by an analogy to Kirk-
wood’ s theory of transport processes in liquids.!® How-
ever, that theory is based on the observation that in a
liquid a molecule is virtually trapped in a cage formed
by its neighbors. Consequently the position of the mole-
cule hardly changes during the period of time needed
for a complete randomization of its velocity.

When one writes downa Smoluchowski equation for
the rotational Brownian motion of the dipoles, one sim-
ilarly assumes that the autocorrelation function of the
torque responsible for the rotational Brownian motion
decays much faster than the autocorrelation function of
the orientation of the dipoles. The autocorrelation of
the dipolar forces, however, decays on the same time
scale as the autocorrelation function of the orientation
of the dipoles. Consequently, when dipolar forces are
important it is no longer correct to describe the evolu-
tion of the system in the framework of Kirkwood’ s dif-
fusion equations; at least the dipolar part of the inter-
action must be treated on a different level. This is
done explicitly in the lattice calculations'? described
in the previous section, but not in Cole’ s modified
treatment based on the Kirkwood diffusion equation.

VI. POLARIZATION FLUCTUATIONS NEAR THE
INTERIOR SURFACE

1t has been suggested® that the difference between
Glarum’ s expression Eq. (1.1) and the expression (1.2)
derived by Fatuzzo and Mason is caused by a difference
in the treatment of polarization fluctuations near the
surface between the interior and exterior regions.
Glarum introduced in this context the distinction between
the “Kirkwood” model, in which fluctuations of this kind
are forbidden, and the “Onsager” model, in which they
are allowed. He derived expressions for the free energy
for each of the models and suggested that the two models
lead to two expressions for the relation between the
dielectric constant and the autocorrelation function of
the net dipole moment of an embedded sphere: the
“Kirkwood” model would lead to Glarum’s expression,
while the “Onsager” model would lead to the expression
of Fatuzzo and Mason.

In this section we will show that the two expressions
for the free energy do not correspond to two different
physical situations, but rather to a more detailed and a
less detailed description of the same physical situation.
Accordingly both expressions lead to the same result
for the correlation functions for the net dipole moments
of the internal and/or the external region. However,
when we consider the relaxation of the average net di-
pole moments for nonequilibrium initial values, the

‘calculation of Sec. III.

more detailed description leads to a clearer physical
picture,

We would like to start our discussion by pointing out
that no assumptions were made about surface fluctua-
tions in the derivation presented in Sec. III, We used
the boundary conditions at the interior surface only for
the purpose of relating the average values of the param-
eters occurring in the general expression (3. 14) to the
value of the applied external fields, In order to gain
information about the fluctuations of the surface polari-
zation from a calculation such as the one in Sec. III we
must introduce a third auxiliary external field which
couples to these surface fluctuations. For this we
choose the field of a dipole of strength u, located in the
center of the configuration, This auxiliary field acts
only on the outer shell. The field E,(r) caused by the
dipole is of course an inhomogeneous. one; it turns out
to be convenient to introduce the parameter E;= g~
as one of the parameters in an extended version of the
The fluctuating quantity conju-
gate to E; may be found by evaluating the quantity
-J P{r)-E,(r)dr, in which P(r) is the polarization

density and the integral extends over the shell. Using
the parametrization of Eq. (3. 14) we obtain
- [ P(r)-E,(r)dr .

=2E;0%(e; - 1)/4n]- % - 47(a~®* - R®Imx . (6.1)

The coordinate m; conjugate to E; is therefore given by
my=—-% (e, - D[(R*~ a®)/R¥|mx . (6.2)

We can now determine the average values of m,, ms,
and m; for given values of E,, E,, and E;. Equation

(8. 16) remains valid in the presence of the external
field E,(r), while Eq. (3.15) can be adapted by replacing
iy by ms+a°E;. The third equation we need is found
from direct application of the boundary conditions at

the outer surface:

Mk =~ [(61 - 1)/361]R3E1

+[(€1+2)/3€1](7h-1+7h-2—E303) ° (6. 3)
Via some straightforward algebra we now derive the
generalization of Eq. (3.18), which determines the ma-
trix x;;(w). For simplicity we give the result only for
the case ¢, = ¢; = €:

= (e-1)[ger®+2(e - 10 |(R* - &*)

e gele+2)R3 Ex
_ 2(e- 1a*(R% - &%) I 2(e - 1)%*(R® - &°) E
gele+2)R® & geR® 30
o 2(e - 1324 R? - 4%)
Me= gele+2)R? Byt 6. 4)
N (e~ 1)[(2e+1)e+2)R% - 2(e - 1)%4°1a° E
gele +2)R? 2
2(e - 14 (R3- 0%
- geR® Es s
_  2(e-1)**R*-4a%) £ 2(e-1%°(R* - 4°) B
mg= geR3 1~ geR3 2
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2(e - 1)Xe+2)a®(R® - &°)
+ 9€RT

E;;

of course all € in Eqs. (6.1) to (6.4) are frequency-
dependent.

‘We see from Eq. (6.4) that the expressions for y;,,
X12» and ¥,, and thus also those for (m,(0)m,(2)),
(m,(0)m,(t)y, and (m,(0)m,(t)) are the same as those
found from the less detailed description in Eq. (3.18),
As was noted in the introduction of this section, taking
into account the surface fluctuations does not alter the
results obtained for the fluctuations in the net dipole
moments and their relations to the dielectric constant,

From the relations (6. 4) we may derive expressions
for the free energy analogous to the ones obtained in
Eqs. (3.24). For example the analogue of Eq. (3.24b)
for the case €;9=€5= €4 i8S

€+ 2 —2 €@+2 _»

g-1
T2 |{eo- DE - " - Da® ™2

(2¢ 4+ 1)R? 2 2
+ 3 o3 3V M3 — 53 3
2(eg-1)a’(R°-4a®) "* R’°-4

— - 2 _ _
mims + ;‘3’ m2m3§ .
(6.5)
In order to make a comparison with Glarum’ s expres-
sion for the free energy of the “Onsager” model® we
must express this result in terms of the variables m,,

mg, and u, using the relation m; =3, x;;,(0)E;. In this
way we obtain:

1§(2e,+1)(eg+2)R* - 2(eo— 1)%4° _,
2\ Qe+ - DRR - ™

4{ey—1)

Qi

geR®+2(eo— 1%

t e+ DR 2 ot g VRSB - ) 72
2(eg- 1R -4
+'(—2"€—2“m‘3'_— }J.} . (6.6)

3

In the limit R > ¢ this is exactly Glarum’s expres-
sion for the “Onsager” model, Eq. (25) of Ref. 9 (m,,
7, and y correspond with Glarum’s M,m, and m* - m).

Next we make some observations about the relaxation
of the quantities , from initial nonequilibrium values.
7,{0). Let us suppose that these nonequilibrium values
are maintained at all negative times by applying ex-
ternal fields; the fields must be equal to

E,(8) =23 [x(0) ]}, (0)6(~ 1) . 6.7
E]

In this formula 8( - ¢) is the unit step function, which

is equal to unity for negative times and equal to zero

for positive times. The Fourier components of the

fields (6.7) are

Ew) =2 [x(0)} 7, (0)2mi(w+in]™ , (6. 8)
¥ .

in which 7 denotes an arbitrarily small positive number.
From Eq, (6.8) we find the value of m,(¢) for all times
by application of Eq. (3. 3) and Fourier transformation:

iy (8 =§ik Ay O[x(0) Fh7,0) 6.9)

with

151

A“(t)=f_:° X (wle“ [2milw +in)] tdw . (6.10)

The quantity 3, A,,{#)[x(0)]7} is the relaxation function
of the system. As a consequence of the causality prin-
ciple y;;(w) is analytic in the lower half plane and

Ay (t)=x,;(0) for 1<0. The behavior of 4,,(t) for >0
is determined by the singularities of y, ,(w) in the upper
half-plane.

We will now compare the relaxation equations (6. 9)
with the results obtained by applying the transport equa-
tions from Onsager’ s theory of nonequilibrium be-
havior.?? Since the elements of the matrix x(0) are
second derivatives of the free energy &, the transport
equations may be written in the form

(d/at)im, (t) = - :Lk 715 [x(O) 75, () . (6.11)
The relaxation equations (6.9) are compatible with Eq.
(6.11) only when the matrix A is equal to exp[ - 7t].
This imposes severe restrictions on the frequency de-
pendence of y;;(w), and ultimately on that of e(w). In
order to determine whether those conditions can be met
at all it would be convenient to have a set of basic quan-
tities in terms of which the matrix x(w)is diagonal for
all w. Such a set exists, and it is given by

Wiy =my +my
MWig=— m1[¢l3/(R3 - ﬂa)]+mz - %ms[Ra/(Rs - as)]

m~3 = - ml[da/(Ra - (13)] +Wl2+m3[R3/(R3 - a3)] .

(6.12)

With respect to those new variables the matrix x(w)
has the form

Xu=[(e-1)/(e+2)]R?, Xz2=[(e-1)a’R*/2(R*-4a®)],

, (6.13)
Xss=[(e- 1)a’R*/e(R®* - a®)], %;=0 when i+j,

The nonequilibrium relaxation of the new variables i,
will be a simple exponential whern the ¥;,(w) have a single
pole. The simple structure of these quantities makes

it possible to determine which expressions for e(w)
satisfy this condition.

Up to this point our considerations have established
relations between the nonequilibrium relaxation of the
polarization, the frequency-dependent susceptibility, the
frequency-dependent dielectric constant, and the behavior
of correlation functions of the net dipole moments. Fur-
ther progress cannot be realized without selection of a
specific model form for one or another of these quanti-
ties. Once such a selection is made the results of Secs.
O, OI, and VI may be employed to determine the conse-
quences for all the quantities of interest. We illustrate
this state of affairs by examining the consequences of two
celebrated choices for € (w). It must be emphasized how-
ever that one cannot conclude anything about the form of
€(w) for actual polar liguids from considerations of the
sort mentioned above and undertaken below. For ex-
ample the fact that the Fatuzzo-Mason result (1. 2) rather
than the Glarum result (1.1) is correct for the relation
betweene (w) and ¢n,(0)m ,(t))does not enable one todeter-
mine without further information the actual form of
€(w). Thefirst choice we examine for €(w) is the familiar
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Debye expression for the dielectric constant

[elw) - 1]/[elw) +2]= (o~ 1)/(eq+2)][1 +iwT] ™.
(6.14)
An alternative expression for the Debye form of e(w) is

[elw)-1]/[€o-1]=[1+iwT]™Y; T=[(e+2)/3]7.

: (6.14a)
For this choice of e(w) we see that ¥, has a pole at
w=47"1, X, has a pole at w=3T"1=3i7 ¢, +2]™ and X;;
has a pole at w=1¢e,T~'=3ie T [¢o+2]". When we sub-
stitute the corresponding expressions for y;; in Eq.
(6.9) it is seen easily that the result is compatible with
the linear description of nonequilibrium behavior dis-
played in Eq. (6.11). Of course this remains true
when we transform back to the original variables m;,
my, and mg.

The procedure we just outlined cannot be applied to
the “contracted” description in terms of the variables
m,; and m, only. For this case the required transforma-
tion of variables is

Wiy =my+my

my=—[a®/ (R} = a®)m+m, . (6.15)
The matrix X for the two-variable system on the basis
(6.15) is

-~

;(u =[(e~1)/(e+2)R? Xz2=[(e - 1)(2e + 1)a®R%/9€(R® - o°)]
{6.186)

When we substitute Debye’ s expression, Eq. (6.14),

we see that ;(zz has two poles corresponding to those of
;(32 and Y3, in the more detailed description. According-
ly a description by means of a set of equations of the
form (6. 11) is not possible with Debye’s expression for
the dielectric constant. The. situation is not improved
when we choose instead the Onsager—Cole® expression

[elw)-1][2e(w)+1] _ (eo— 1)(2€y+1)

elw) €[l +iwT]

X12= X21=0 .

. (6.17)

When we use this choice for e(w), the matrix element
X22{w) has only a single simple pole. However, the ex-
pression for €(w) exhibits two branchpoints at

w={i+ (£ 2V2)(eg- 1)(2€y+1)/9¢,]} 7. The matrix
element ¥, exhibits the same branchpoints in addition
to a pole at w=i{1+[2(eo— 1)(2¢o+1)/9¢,]} 7-2. Accord-
inlgy no description of the nonequilibrium relaxation of
the m, by a simple set of equations of the type (6. 11)
is possible with this choice for e(w) either. When we
go the the contracted description in terms of only two
variables it is no longer consistent to describe the ap-
proach to equilibrium of the quantities m, and m, by
means of linear differential equations with constant co-
efficients for any choice of e(w).

Of course considerations like the ones just given can-
not be considered conclusive reasons to prefer an ex-
pression like (6.14) over (6. 17) as an approximation to
the dielectric constant for real substances. We point
out for completeness’ sake that the expression for e(w)
obtained by Fatuzzo and Mason, 2* Scaife, % and Nee and
Zwanzig,

[elw) - 1][2e(w) +1]

elw)

_ (= 1)(2¢9+1) . (€o— D[elw) ~ €]t
=0T -0 27 € 0 [1+2w7— 60‘[)26((4))+1] 0 ] ’

(6.18)

gives rise to a single branch point in £;,(w), at

w=i€y T, and to a pole at i7 ey +2)?(9¢,)*. The func-
tion %ss(w) has pole at w=i7(ey+1)(2¢¢). In addition

there is a singularity of type afw - wo]™Y 2 at the begin-
ning of the branch cut (wy=iegr ™).

We wish to end this section with a cautionary remark
about the method outlined in the preceding paragraphs.
When one wants to use an expression like Eq. (6.9), it
is important to make the right choice of variables,
From Eq. (6.10) we see that it is necessary that all
x1;{w) go to zero for large values of w. In Eq. (3.18)
and (6. 4) this is indeed the case due to the presence of
at least one factor (¢, — 1) in each matrix element. For
the choice of variables in Eq. (6.6), m,, m,, and y, it
is not true however; when we construct the matrix x
associated with these variables we find for the diagonal
matrix element ¥ associated with the variable pu

x5 = Qe+ DR%P/2(e- )R- 4%, (6.19)
which approaches infinity for large w. The variable p
will therefore not obey a relaxation equation. This’
agrees with our earlier observation that u plays the
role of an external force rather than that of a response
of the system. The relevance of a calculation in Ref.

9, in which the quantity u is assumed to decay expon-
entially, is therefore rather questionable.
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