THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 59, NUMBER 4

15 AUGUST 1973

Hydrodynamic effect in diffusion-controlled reaction”

J. M. Deutch
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

B. U. Felderhof
Department of Physics, Queen Mary College, University of London, London, England
(Received 29 March 1973)

A calculation is presented for the effect of the hydrodynamic interaction on the diffusion-controlled
rate coefficient for particles that coalesce by diffusion under the influence of an interaction potential.
The hydrodynamic effect is found to make a substantial reduction in the rate compared to the Debye
model which includes only the effects of diffusion and the forces between the reacting particles. For the
case where the particles are hard spheres the reduction is 46%. For ionic species the reduction varies
between 25% and 60% depending on the extent of attraction or repulsion.

I. INTRODUCTION

The first theory of diffusion-controlled reaction
rates for coagulation of colloidal particles in elec~
trolytic solution is due to Smoluchowski. ! This
theory was generalized by Debye? who took into ac-
count the effect of potential forces between the par-
ticles and also applied the theory to reactions be-
tween ions and solute molecules. Some years ago,
Friedman® pointed out that there is a hydrodynamic
interaction between the reacting particles which on
the average hinders their mutual approach by dif-
fusional Brownian motion and hence tends to reduce
the reaction rate. Friedman estimated, on the
basis of an approximate theory, a reduction of the
rate constant by about 15%. Due to the uncertain-
ties in the theory this is not a very significant ef-
fect. In this article we treat the hydrodynamic in-
teraction from a somewhat different, and we be-
lieve more consistent, point of view. It is shown
that the hydrodynamic effect is much larger than
expected by Friedman, and that the reduction in
the rate constant can be of the order of 50% or
more. Hence the hydrodynamic effect contributes
a significant correction to the conventional
Smoluchowski-Debye theory.

I1. THE HYDRODYNAMIC THEORY

The hydrodynamic interaction between Brownian
particles immersed in a fluid comes about because
each particle in its mean motion creates a system-
atic flow pattern which tends to drag along the other
particles. The flow of the surrounding fluid for a
single spherical particle was first calculated by
Stokes. As is well known, the fluid exerts a fric-
tion force

F=-fu=-6mau , (2.1)

where £ is the friction constant, 7 the shear vis-
cosity of the fluid, “a” the radius of the particle,
and u the velocity of the particle with respect to the
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fluid. The flow of the fluid is given by

v(r)=A(r)-u (2.2)
with the Stokes tensor
A(r)=(4%) [<3+;’72> |+3<1 -i;;):—f] , (2.3)

where it is assumed that the particle is at the ori-
gin at the chosen time. At large distances this
can be approximated by

vir)=¢T(x)-u , (2.4)
where
1 rr
T(r) =—8_7m—7' l:l +7§] (2.5)

is the Oseen tensor which can be regarded as the
Green’s solution to the linearized time-indepen-
dent Navier-Stokes equation. When several par-
ticles, say n, are present the speed of a selected
particle must be measured with respect to the flow
caused by the other particles. For the frictional
force on the jth particle one finds, in the linear ap-
proximation,
n
F;=~2itn 4, , (2.6)
R=1
where {,, is the inverse of the 37X 3z matrix
£3105 1+ Ty and T = Tlrr) (1 - 5,,).

It has been shown by Zwanzig* that the net fric-
tional force in Eq. (2.6) leads to a Fokker-Planck
equation for the distribution P(r,, ..., r,, #) in
the 3n-dimensional coordinate space of » Brownian
particles. Zwanzig considers only the case of
identical particles, but his derivation is easily
generalized to a variety of species. One finds the
following Fokker~Planck equation

8P/8t=23V;+ Dy Y P(x" 1)
Ik

-2V, [P, D], (2.7
i
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where the diffusion tensor D, is given by
D p=kpT[E7'0,,1+ T, (2.8)

and the streaming term A, is related to the addi-
tional direct interaction and/or external forces g,
which may be present, by

Aj=(kBT)-IZ> Djk' gk . (2. 9)
k

Since on the average the Brownian particles are
far apart, the Fokker—Planck Eq. (2.7) can be
solved approximately by superposition of two-body
correlations. The reduced equation for a typical
pair can be written

3P(ry, ry,1)/0t={D,V, - [V, + B(V,U)] P
+ DV, [Vy+ B(V,U)|P
+RgTV, e Type [Vot BV, U) 1P
+hpTVy e Typ+ [Vi+ BV, D) P},
(2.10)

where B=(k57)™ and U(r,, r,) is the potential from
which the additional forces g, , are derived.

II. SOLUTION TO THE TWO PARTICLE PROBLEM

We consider the case Ulry,r,)=U(|r;-r, ) and
restrict attention to solutions of Eq. (2.10) that
depend only onthe relative coordinates r=r, - r,.
For such solutions Eq. (2.10) may be written in
the form

8P(r,t)/0t=~V«j(r,t) , 3.1
where the flux j(r, #) is defined by
i, ) == [(Dy+ D)1 = 2k TT(x)]+ [VP(r, t)
+B(VUP(r,1)]. (3.2)

We seek the steady-state rate at which particles
coalesce and make the usual assumption that reac-
tion occurs as soon as the particles touch. For
stationary solutions P(r,?)=P(r), Eq. (3.1) be-
comes V. j(r)=0 with

j(r) = = [(Dy + D) 1 = 2R TT(r)] » [VP(r)

+B(VDIP(r)] .  (3.3)

These equations must be solved subject to the
boundary condition P=0 when | r | ={a, +a,) where
a; and a, are the radii of the two particles, and the
boundary condition that P(r) tends to nn,exp

[ - BU(r)] as # - = where #, and n, are the mean
number densities of the two species.

With the assumption of spherical symmetry one
easily integrates V . j(r) =0 and finds for the radial
current density j,,

Je= =1/ @m®)] . (3.4)
Since P(r)=P(r) it follows from Eqgs. (3.3) and

(3.4) that
dP/dy + BdU /dr)P=J/[4n(D,+ D,) Jvr(r -1} ,  (3.5)
where

1=3aa,/(a, +a,) . (3.86)

In obtaining Eq. (3.5) use has been made of the
fact that D; equals (k3T/¢y) or [kT/(6mna,)] ac-
cording to Stokes’ law; an analogous expression
holds for the second particle.

Integration of Eq. (3.5) leads to the solution for
P{)

exp[BU)] P{r) =nyn, - [J/47(Dy + D,)]

xfwexp[BU(s)][s(s -DTds . (3.7

r

An explicit expression for the flux J follows from
use of the boundary condition P(a,+a;)=0,

J =[nyny 4n(Dy+ Dy)/K ()] , (3.8)
where
K()= f(zlwz) exp[BU(s)] [s(s = 1) ds . (3.9)

If Eq. (3.8) is employed to eliminate the flux in
Eq. (3.7) one obtains the following expression for
P():

P(r)=exp[- BU()]nyn, [K(r)/ K(=)].

The principal result of our analysis is the exact
expression for the flux J presented in Eq. (3. 8) for
the model of particles coagulating by diffusion under
the joint influence of the potential U(») and the hy-
drodynamic interaction. The flux one finds cor-
responds to a rate coefficient

(3.10)

k=[(47) (D 1+D5)/K(=)] . (3.11)
This can be put in the form

k=4m(D,+D,) (a,+a,)/F(a), (3.12)
where

F(a)= (@ +az)K ()= [ exp{BU[(a,+a,)/y]}

X(1-ay)ldy (3.13)

with

a=1/{a+ay)=3a,a,/(a,+a,) . (3.14)

In the next section we compare this result for the
rate coefficient of diffusion-controlled reactions to
previous theories.

IV. DISCUSSION OF THE RESULT

The limit U=0 and /=0 in Egs. (3.8), (3.9) cor-
responds to Smoluchowski’s model of rigid sphere
diffusion so that

ky=4n(Dy+D;)(a +ay) . 4.1)
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DIFFUSION-CONTROLLED REACTIONS

If we set U=0 in our result we find the effect of the
hydrodynamic interaction on the rate coefficient to
be

ky=-ao[ln(1- a)] 'k, (4.2)

The dimensionless parameter o« takes its maximum
value (}) for particles of equal size a,=a; in which
case ky=0,54k,.

_The Debye model of spheres diffusing under the
influence of the potential U but in the absence of a
hydrodynamic interaction is recovered by putting
a=0in Eq. (3.13),

kp=4n(D,+D,) (a,+ay)/F(0). (4.3)

Hence we find that our result is related to Debye’s
result by

k=[F(0)/F(a)lky. (4.4)

Here one sees immediately that in the limit of
strong attraction k2 ~%, whereas in the limit of
strong repulsion k= (1- a) k,. In the latter limit,
for equal size particles, k= (3)kp.

In order to compare our result with that of Fried-
man we expand K (o) to linear terms in I;

kp=4nD,+D,){ [~ exp[pU(s)]s2[1+(1/s)]ds}?
(4. 5)
which is identical in form to Friedman’s approxi-
mate result except that he obtains (I/2) in place of
! in Eq. (4.5). The difference between the linear
approximation Eq. (4. 5) and the exact result will
be nonnegligible for values of the parameters of
interest. For example for equal size particles
when U= 0 one obtains [ %2 ,/k,]= 0. 54 while the
linear approximation Eq. (4.5) yields [#,/k,]

= 0,.73. The difference between the appearance of
a factor of I instead of (I/2) in the linear approxi-
mation Eq. (4. 5) is also significant. For equal
size particles when U= 0 one obtains, with the
factor (I/2) the result [k, /k,]= 0. 84 instead of 0. 73.

(eqy+ap)

For ionic systems the appropriate form of the
potential is U(r)=[g,q,/7€]. For this potential our
result may be expressed as

k/kg=[ [, expley) (1- ay)lay]™,

where x = [q,4,8/€{a,;+a,)] with € the dielectric con-
stant of the solution. The Debye result is [kp/%,]
=x(e*- 1)"! and the linear approximation result?® is

By/kg=x{le®- 1)+ afe*(1 - x™ Y +x" 1)L, 4.7

(4.6)

In Fig. 1 the result of our theory is plotted as
[#/k] versus x for the case of a Coulomb potential,
Eq. (4.6), and equal size particles, a=(3). For
purposes of comparison the curve of [k;/k,] has been
added. Friedman found® that the effect of the hy-
drodynamic interaction was to reduce the rate co-
efficient from the Debye value by about 15% over
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FIG. 1. Effect of Coulomb interaction on the rate
coefficient for diffusion controlled reactions. The or-
dinate is the ratio of rate coefficient to the Smoluchow-
ski result kg, Eq. (4.1). The abscissa is x = [g1958/
€la;+ay]; x=1 is a typical value for two sodium atoms
at a separation of 7 A. The upper curve is the Debye
model and the lower curve is the result of the work re-
ported here including the effects of the hydrodynamic in~
teraction according to Eq. (4.6) with a =(3/4).

the entire range of x covered in Fig. 1. He con-
cluded that the possibility of finding experimental
evidence for the hydrodynamic effect was remote.
Our results indicate a much larger reduction in the
rate coefficient and a greater variation of this re-
duction over the relevant range of x. For example
when the attraction is greatest, x=- 3.0, the re-
duction is 25% and when the repulsion is greatest,
x=3.0, the reduction is 60%. For neutral species,
where U(r)=0, the reduction is 46%. Thus our
calculation indicates that the hydrodynamic effect
may be experimentally important. However one
word of caution must be added. This and similar
hydrodynamic models are based on the use of
Oseen’s tensor which is only an accurate descrip-
tion for incompressible fluids within the linear the-
ory when the solute particles are widely separated
[cf. Egs. (2.3) and (2.4)]. For repulsive interac-
tions U(7) there is substantial contribution to the
integral F(a), Eq. (3.13), from small values of the
interparticle distance, but for attractive interac-
tion the main contribution is from large values of
the distance.
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