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ABSTRACT

In this lecture a survey is presented of the present
status of theory and experiment on transport properties in
liquids, excluding the critical region and systems with
long-range forces. Emphasis is Placed on three topics
that presently appear to be of major interest: (1) The
existence of long-time tails in the time correlation func-
tions that are employed to compute hydrodynamic transport
coefficients; (2) The present application of laser light
scattering to the study of the liquid state; (3) The limi-
tations of studying molecular motions in liquids on the
microscopic time scale by NMR and other spectroscopic tech-
niques. The lecture concludes with a number of topics
that are candidates for intensive work in the future,

I. INTRODUCTION

My purpose in this lecture is to provide a summary of the pres-
ent status of theory and experiment on transport phenomena in liquids.
This summary will hopefully help guide discussion on this important
topic. In my judgement our discussions will be most interesting and
profitable if attention is focused on major outstanding problems of
transport in fluids. Accordingly, only brief attention will be de-
voted to a review of past accomplishments (such reviews are easily
accessible). Primary emphasis will be Placed on the discussion of
items that I believe should have an important place on our research
agenda. Additions or deletions of items on this research agenda
would be most welcome. It seems completely appropriate for the pro-
ceedings of this conference to provide for the reader, and most espe-
cially for advanced students, one group's view of a significant re-
search agenda for the field.

At the outset it must be admitted that our ability to describe
quantitatively transport phenomena in liquids or dense fluids is not
great. In a dilute gas our capability is much better primarily be-
cause a parameter of smallness has been found to exist, For a gas
composed of particles that interact by a pair potential wu(l1,2) the

parameter of smallness is (pad) where p is the number density, d,
the dimensionality, and 'a' is a measure of the range of the intermo-
lecular potential. The dimensionless parameter exists provided the

potential has a hard core and u(1,2) is of short-range, i.e. falls
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off with distance faster than Rig with n > d. If these require-

ments are met and the dimensionless ratio (pad) is much less than
unity an expansion parameter is available for the analysis of the
equilibrium and transport properties of the gas. A liquid, by defi-

nition, is a dense fluid where the dimensionless ratio (pa’) is not

small and therefore this ratio cannot serve as an expansion parameter.

At present a physically meaningful expansion parameter for simple
liquids has not yet been found. Perhaps this is because the field of
liquid theory has not yet been visited by a figure of the stature of
Boltzmann or perhaps it is because such an ordering parameter simply
is not present in nature. The few efforts! to examine the basic
structure of the dynamics of classical fluid systems have not yet met
with complete success.

Of course not all fluid systems are without an identifiable pa-
rameter of smallness. There are at least two cases where progress is
possible. The first is the well known case of Brownian motion where
one is interested in the dynamics of a single heavy particle in a
bath of light particles. Here the expansion parameter is the
square root of the (small) ratio of the mass of a bath particle to
the mass of the Brownian particle.2 The inverse case of a single
light particle in a fluid of heavy particles [Lorentz gas] can also
be studied.? The second case is that of a weakly interacting fluid"
where the expansion parameter is the ratio of the strength of the

short range potential to (kBT) = B . However, even in these two

favorable instances not all aspects are sufficiently well understood.
For example, in Brownian motion theory there is the celebrated prob-
lem® of demonstrating the equivalence between the molecular expres-
sion for the friction tensor, g, in terms of the equilibrium time
correlation function

C = 3%(-37 Jo dt <F(0)-F(t)> , .1

and the macroscopic expression for ¢ in terms of Stokes's Law:
L = 6mno . i (1.2)

Here F(t) is the force on the Brownian particle held fixed, ¢ is
the radius of the spherical Brownian particle, and n is the solvent
viscosity. While some progress has been made,® a definitive demon-
stration is not yet available.

Another class of interesting liquid problems consists of systems
where the particles do not interact by short-range forces but rather
by long-range forces. There are several cases where the study of the
nonequilibrium behavior is of interest. Perhaps the most important
are jonic solutions and dense plasmas where the charged particles in-
teract via a Coulomb potential. A great deal of work has been done
on obtaining kinetic equations for charged systems. Another case
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that has not received much attention, but should be of interest to the
theorist, is the nonequilibrium behavior of the van der Waals system
where the particles interact by weak long-range forces. There are
also the important cases, largely unexplored, of polar liquids where
the particles interact by the long-range, angle dependent, dipole-
dipole interaction and of polymer solutions where the macromolecules
interact by an effective long-range hydrodynamic interaction.

What questions do we seek to answer in studies of the liquid
state? There are at least two important general questions. First,
one may find empirically for a system that there are a set of obser-
vable dynamical variables a(t) which describe pertinent aspects of

the fluid's behavior on a particular spatial and/or temporal scale.
The macroscopic equations may be linear

da(t)
at

= ig-a(t) - Mea(t) , (1.3)

as in the case of the Bloch equations for the magnetization or they
may be nonlinear

da(t)
7 - “Hl2®)], (1.4

as in the case of the Navier-Stokes equations of hydrodynamics. One
also frequently encounters generalizations of the macroscopic equa-
tions that are nonlocal in time. For the linear case these equations
have the form

dg(t) t

T = ig-a(t) - J drg(t-t)+a(r) . (1.5)
~ o -~

The first question one seeks to answer is ''How are these macroscopic
transport equations obtained from the exact dynamical microscopic
equations of the system?"

The elements of the transport matrix M will involve transport
coefficients and other quantities characteristic of the fluid. The
second question one seeks to answer is ''How are these transport coef-
ficients related to the microscopic properties of the fluid and how
may they be computed?" For linear systems the answer to this ques-
tion is provided by Linear Response theory where the nonequilibrium
relaxation of a(t) is related to equilibrium fluctuations
<A(t) A(0)> in the set of dynamical variables A corresponding to
a. The transport coefficients are given by the Green-Kubo time cor-

relation function expressions.

The most popular technique for the analysis of linear systems is
the Projection Operator method of Mori? where one obtains exact equa-
tions for the evolution of the dynamical variables A(t) in the form
of a generalized Langevin equation
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dA t .
I = i8-A() - f dté(t-1)*A(r) + F'(t) | (1.6)
o]

where F+(t) is the fluctuating Langevin "force" and the relaxation

matrix ¢(t) is related to F (t) by a fluctuation—dissipation theo-
rem. The evolution of the random force F+(t) is determined from a

modified Liouville operator which involves the projection operator
P, defined by

PB = <BA>-<AA>Tep (1.7)

The difficult points in the Mori theory are (1) the absence of a
priori criteria for selecting the set of variables A; and (2) the

demonstration in particular applications of the properties of the
random force F (t) and hence the relaxation matrix $(t).

The Mori procedure focuses attention on obtaining transport
equations for the macroscopic variables. An important alternative
approach focuses attention on obtaining a kinetic equation for the
reduced distribution functions for the system. One may obtain an
equation for the distribution function in phase space y(r,t) so i
that the average value of the dynamical variables is given by |

a(t) = JA(T)‘P(T,t)dT s (1.8)

or one may obtain a Fokker-Planck equation for the probability densi-
ty of the variables themselves g(A,t) so that a(t) 1is given by

a(t) = JA g(A,t)dA . (1.9)

The former procedure is analogous to the derivation of the Boltzmann
equation for dilute gas systems; the latter procedure is closely re-
lated to the generalized Langevin equation approach as may be appre-
ciated by consideration of the connection between the Langevin and
Fokker-Planck equations in probability theory. Zwanzig has pioneered®
both procedures in this approach to obtaining kinetic equations for
reduced distribution functions by use of a projection operator method.
I have mentioned two important general questions about transport
in liquids. These are: how do transport equations arise and how are
transport coefficients to be computed. With the answer to these two
questions we are hopefully in a position to interpret the results of
experiments in a quantitative manner. The types of experiments cur-
rently undertaken that one may wish to interpret are manifold. These
include polarized and depolarized laser light scattering, neutron
scattering, dielectric relaxation, nuclear and electron spin relaxa-
tion, sound absorption, and a variety of lineshape measurements in-
cluding vibration-rotation, Raman and fluorescence spectroscopy. To
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these experiments it is important to add molecular computer dynamics
which have undoubtably yielded the most interesting experimental data
in recent years. It is computer experiments, not measurements on ac-
tual systems, that have caused the serious reexamination of our un-
derstanding of hydrodynamics.

It is not possible to discuss here the status of experiment and
theory in all these different areas. Instead we shall select three:
(1) The molecular theory of hydrodynamics; (2) Laser light scatter-
ing; (3) Nuclear magnetic relaxation. Each of these topics has been
chosen for a reason. My reason for selecting hydrodynamics is that
the recent discovery of long-time tails in the current correlation
functions which define the transport coefficients has led to a re-
evaluation of theories of hydrodynamics, This reevaluation may be
the most serious issue presently faced by those interested in liquid
transport phenomena. The reason for selecting laser light scattering
is that it presents an important new experimental technique that has
the potential of wide practical applications in a variety of fields.
Finally, I have chosen to discuss NMR because it is a field of spec-
troscopy (about which I know something) that illustrates certain
limitations in experimental studies of the liquid state.

II. MOLECULAR THEORIES OF HYDRODYNAMICS

Three years ago the reasoning used to explain the form of hydro-
dynamic equations and the time correlation function formulas for the
transport coefficients went as follows: The linearized macroscopic
hydrodynamic equations have the form

dak(t)
—ar— = k% alf(t) (z.1)

where ak(t) is the nonequilibrium average of the spatial Fourier
transform of a conserved dynamical variable, dAk(t)/dt = ik -jk(t).

(For simplicity I shall only discuss a prototype one-variable tﬂeoryq
According to linear response theory’ the nonequilibrium response of
the variable ak(t) is related to the equilibrium time correlation

function <Ak(t5 A_k(0)> by

a, (t) = <Ak(t) A'B(O)> <A5(0) A_lf(());1 ak(O) . (2.2)

By use of a projection operator identity the correlation function of
the conserved variable may be expressed in terms of a particular cur-
rent correlation function—in terms of Laplace transforms

Jodt e A (DA, (0)> = [z+k2x(ls,z)]‘1<A,§(0)A_,S(0)> (2.3)
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where

Ak,2) = J dt e % <, (1) (057 . (2.4)

o

The dagger on the correlation function denotes that the time evolu-
tion is governed by the modified Liouville operator (1-P)iL where P
is a projection on to the conserved variables according to Eq. (1.7).

If necessary the fluxes are constructed to be orthogonal to the con-

served variables ék’

<G (®) AL 0> =0, (2.5)

Use of Eqs. (2.1), (2.2) and (2.3) leads to an expression for the
phenomenological transport coefficient A in the small k (long
wavelength), low z (long time) limit: -

Ao = lim A(k,z) . (2.6)
ko ~
20

From Eq. (2.3) it follows that one is interested in the frequencies
of order k2. In the old days one asswmed that the flux correlation
function decayed on a time scale roughly independent of k, i.e.

much more rapidly than the conserved variables, and that A(k,z) was
well behaved for small k and z. Arguments are available that pur-
port to show that the k=0 limit of Ak,z) 1is

A(k=0,2) = %J' dat e 2t <J(t)-J00)> 2.7)
k . J(t)+J
where
J(t) = I dr j(r,t) . (2.8)
Vv

The essential assumption of the old reasoning was that the correla-
tion function <J(t)-J(0)> decayed rapidly on a molecular time
scale, permitting one to take the limit z - 0 in the expression
for A(k=0,z) and so incurring a negligible error for the frequen-
cies of interest.

In the linear theory according to Eqs. (2.2) and (2.3) one has
the more general transport equation

A = 2] a0 (2.9)




TRANSPORT PHENOMENA IN LIQUIDS

or in time language

day () t
= K2 jo v (6, -0 (D) (2.10)
with
A(k,2) = J dt e % o (k,t) . (2.11)

o}

In 1970, Alder and Wainwright9 showed from their molecular dy-
namics data that the velocity autocorrelation function for hard
spheres (three dimensions) and hard disks (two dimensions) had long
time tails of the form t” where d 1is the dimensionality of the
system. Wainwright, Alder and Gassl? later showed that the kinetic
part of the flux for the thermal conductivity and the shear viscosity
had a similar time dependence. A hydrodynamic argument was provi-
ded?>10 to explain this observed behavior. The molecular dynamics
results were catastrophic for the reasoning just described because
(1) in two dimensions the t-1 tail meant that the conventional time
correlation function did not exist and (2) the separation of time
scales between the current correlation function and the conserved
variable correlation function which was presumed to be present appar-
ently was not. Furthermore the observed long time dependence of the
current correlation function could be found from hydrodynamics. There
jmmediately followed an enormous number of theories explaining the
molecular dynamics results. Any remaining doubts in the community
about the utility of computeTr molecular dynamics for producing new
results also abruptly vanished.

The different theories that have been put forth to explain these
long-time tails may be classified into four groups: (1) Ad hoc use
of hydrodynamics, (2) Kinetic theory analysis of moderately dense
fluids, (3) Nonlinear stochastic dynamics of collective modes, and
(4) A variety of Mode-Mode coupling theories. Workers who have em-
ployed hydrodynamics to compute these long-time tails jnclude Alder
and co-workers,?»10 Ernst, Hauge, and van Leeuwen,ll and Pomeau.

The group which has approached the problem from the point of view of
kinetic theory includes Pomeaul3 and Dorfman and Cohen.l"* Zwanzig
has approached the problem starting from a nonlinear Langevin equa-
tion for the collective modes in the liquid.15 Finally, the fourth
group which has employed Mode-Mode coupling theory!® includes
Kawasaki,!? Mazenko,!® and more recently Keyes and oppenheim.!9 The
results of all these different theories are quite similar (although
not identical) and strict correspondence between the approaches has
not yet been demonstrated. There are, however, considerable dif-
ferences, between authors, in the justification provided for the
various assumptions employed. For example, Ernst, Hauge and van
Leeuwen point out that in the hydrodynamic approach there is an ap-
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parent self-contradiction in assuming that transport coefficients
exist in order to demonstrate that the correlation function expres-
sions for these transport coefficients do not exist.

The essential results of the various calculations can, however,
be obtained by ad hoc use of hydrodynamics. Here I shall present a
completely phenomenological calculation!?® similar in spirit to the
simple decoupled mode theory used in critical phenomena2? that re-
produces the central results. This calculation begins by assuming
the possibility that the flux jk(t) may contain a slowly varying

component proportional to the square of the conserved variable (the
flux initially is constructed to be orthogonal to the conserved vari-
able itself). In terms of spatial Fourier transforms one assumes

v(k,q)

-~ o~

MORSHOR g T Merg A () > (2.12)

where v is a coupling constant x(k,q) = <Ak+q A_q A—k-q Aq> and
jﬁ is a "microscopic flux" that has the propérties previously attri-
buted to the total flux jk. Substitution of this expression for the

flux into Eq. (2.4) gives ~

| MGt U R
Ak,z)-2, = qgl XTGDX(K, ) fo dt e .
1.
'<Ak+q(t)A—g(t)A-5-g'CO)Ag'(°)> . (2.13)

We now make the following (unjustified approximation} in order to
evaluate the r.h.s. of this equation:

(1) The projected four-point correlation function may be replaced by
the product of unprojected two-point correlation functions and only
terms with q = q' contribute;

A q (DA (A A, (0

-k-q

* fgqr Prag(Mpq (07 g (D)0 - (2.14)

(2) The decay of the correlation functions may be computed according
to linearized hydrodynamics with the bare transport coefficient Ao»

<Ak(t)A_E(0)> = <AEA_E> exp[-A _k’t] . (2.15)
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(3) The resulting k and q dependent amplitude factor

vk, v(k,-q)
x(k,q)x(-k,-q)

<A, A > <A A > 2.16
ea (2.16)

in the region of interest of low k and q may be replaced by a
constant a/v. ~
With these assumptions the expression for A(k,z) becomes

A(K,z)-A_ = —= J dq J dt exp[-A_|k+q|2]exp[-A qzt]e-Zt ,  (2.17)
~ o (zﬂ)d e oll 2 o

where we have replaced the sum over q by an integral according to
the usual prescription. The integral may now be evaluated in two

or three dimensions. Interest focuses on the case d = 2 for which
one obtains

k

o m
Ak, 2)-Ag = 7% Io dt [0 daqq exp[-(z+2x°q2+k2)t]1°(2x°qkt) (2.18)

where Io(z) is the modified Bessel function of zeroth order and km

is the small wavelength cut-off. The subsequent integration over t
yields

k
A(K,2)-A = = " dqq[4r2q*+4r _zq?+(z+) 1<2)2]‘1/2 (2.19)
~? o 27 o qal*49 0%l (o) )

which leads to the final result (for small k)

242\ k2
onm

o
n

Ak,z) = A+ [ s ]zn 2 (2.20)
- o 81!)\0 2+ ()‘Okz/z)

This result contains the qualitative features of many of the more
refined theories. For example, the k -~ 0 limit yields

z+2\ k2
A(z) = A, + (a/87) )tn Z° n (2.21)

which is the result obtained by Zwanzig by the nonlinear Langevin
equation approach.15 At small =z, A(z) does not exist; the inverse
Laplace transform of A(k=0,z) [see Eq. (2.11)] is
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$(k=0,t) = 2A_8(t) * (u/81r>‘°)[l-exp(—Z)\okIZnt)]t-l (2.22)

which displays the characteristic t-l long time decay of many of
the two-dimensional calculations,%-19

The finite k and z expression for Ai(k,t) Eq. (2.20) is
quite similar to the form obtained by Keyes and Oppenheim19 from
their theory. The Keyes-Oppenheim theory does not assume hydrodynam-
ics, and particular care is given to justifying approximations. The
basic approach of this theory is to employ the Mori Formalism in the
expanded space of linear Ak and bilinear variable Ak—qu in the

manner followed by Kawasakil® for dynamic critical phenomena. The
most important difference between the expression obtained by Keyes
and Oppenheim for A(k,z) and Eq. (2.20) is that the "bare' trans-
port coefficients in the argument of the logarithm is not the same as
A and this new coefficient does not enter into ordinary hydrodynam-

ics. The inverse Laplace transform of A(k,t) is given by
- 1, 2.9, - 2 -1
o (k,t) = 2A°6(t)+(u/8nxo)[exp(- 5 Aok t)-exp( ZAOkmt)]t . (2.23)

The z - 0 1limit of A(k,z) is

2k
A(K) = A+ [4‘;A ]zn[—Eﬂ] (2.24)
(o]

which indicates a nonanalytic k dependence of the transport equa-
tions.!® Finally, we note that higher-order terms can be included in
the expansion of flux, Eq. (2.12) and their contribution to the flux
correlation function computed in a similar phenomenological way. In
the two-dimensional case the trilinear terms!! have an asymptotic

time dependence of t'2 so it appears that keeping all terms would
not substantially affect the t = dependence found from the bilinear
contribution.

A great deal of further work can be anticipated in this area.
In addition to understanding the physical basis and relationships
between the existing theories a number of interesting extensions are
possible. These extensions are suitable topics for our discussion.

III. LIGHT SCATTERING FROM FLUID SYSTEMS

The second topic I now discuss concerns recent developments in
light scattering from liquid systems. I shall not cite applications
of light scattering to systems in the critical region since this
topic is more appropriately included in connection with Professor
Sengers's lecture. It is now widely accepted that laser light scat-
tering has great potential for the study of dynamical processes in
fluid systems. Rather than discuss any single application in detail
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1 would like to survey some of the applications that have recently
been completed or proposed.

To obtain an expression for the light scattering spectrum in the
hydrodynamic regime one may begin with the Einstein formula for the
intensity of light scattered at an angle 6, I(k). This intensity is
proportional to the equilibrium dielectric fluctuations of wave vec-

tor k, 6e(k)

I(k) = <6e(k)8E(-k)> (3.1)

where

n

|k| = 2k sin(8/2) (3.2)

and k_ is the incident wave vector (which depends on the refractive

index~of the medium). The total intensity is equal to the integral
over all frequencies (relative to the incident frequency) w of the
spectrum I(k,w)

o0

1(k) = J 1(k,0)do . (3.3)

-0

An expression for I(k,w) is most simply obtained by formally in-
serting a delta function in Eq. (3.1):

+o

1(k) = J dt s(t) <8t (k,t)8e(-k)> , (3.4)
0 +00
1(k) = J dw %;-[ at e 19t <sé(k,t)8e(-k)> - (3.5)

identification with Eq. (3.3) leads to the following expression for
the spectrum
+o

I(k,w) = %—Re J dat e vt <5€(g,t)sé(-k)> (3.6)
(¢]

where use has been made of the fact that the dielectric fluctuation
time correlation is even in time. A variety of alternative fluctua-
tion-theory approaches are available2! to derive this formula which
serves as the basis for interpreting a variety of light scattering

experiments.
However, this derivation based on fluctuation theory 1S not a
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molecular derivation for many reasons including, for example, the
absence of a molecular expression for the local dielectric constant.
The simplest molecular theories?2 do not take into account local
field effects and the difference between the molecular polarizability
and the actual density and temperature dependent effective local po-
larizability. These simple theories lead to an expression for the
polarized spectrum from a one-component system proportional to the
density-density correlation function:

I(k,u) = Re J dat e 1ut <6 (k,t) 80 (-K)> . 3.7)
(o]

For a one-component system the difference between Eq. (3.6) and (3.7)
arises from temperature fluctuations since the local dielectric con~
stant contains both the effects of density and temperature fluctua-
tions:

o o
se(r,t) = {55]T Sp(r,t) + [%%J 8T(r,t) . (3.8)
p

More sophisticated molecular theories?3 that attempt to take into ac-
count so-called multiple scattering to correct for local field ef-
fects always lead to correction terms which involve higher order den-
sity correlation functions. To my knowledge there has been no satis-
factory demonstration that when these effects are properly included
one exactly recovers the result of macroscopic fluctuation theory.
Such a demonstration would be most welcome. The difference between
Eqs. (3.6) and (3.7) is not important for most polarized light scat-
tering experiments since the equilibrium thermodynamic derivative
(ae/aT)p is small if the dielectric constant is evaluated at the op-

tical frequency of the incident radiation. On the other hand, these

local field effects are crucial for explaining the observed collision
induced depolarized light scattering from atomic or simple spherical-
ly symmetric molecular gases and liquids.2*

In the hydrodynamic regime the procedure employed to evaluate
the spectrum is quite simple. First, one expands the dielectric con-
stant in terms of the appropriate set of local thermodynamic vari-
ables {gi} = éa

se(k,t) = Bl +83(K,T) (3.9)

where B. = (9¢/3a,)a, (some of the B.'s may be zero). One next
computes the time decay of the local thermodynamic variables in terms
of linearized hydrodynamic equations which may be expressed in the
form of Eq. (1.3). Accordingly the spectrum I1(k,w), Eq. (3.6) is
given by the formal expression
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I(k,u) = = Re BT+ [ilu-i (17 csa(ea-k)> B (3.10)

o

(k)+

=

(in general, the matrix M could depend on frequency also). The
spectrum may be displayed by expanding respectively the vectors B
and <6a(k) 8a(-k)>+B in terms of the left (row) and right (column)
eigenvectors of the matrix [i@ + M]. (The calculation need not be

accurate beyond terms linear in the transport coefficients.) Such a
program is easily carried out for a number of experimentally inter-
estin% cases: (a) one-component fluids?3; (b) two-comgonent sys-
tems2®; (c) systems with internal degrees of freedom,2’ i.e. frequen-
cy dependent transport coefficients or an additional internal thermo-
dynamic variable; and (d) chemically reacting systems.28 These con-
ventional applications hold the promise of developing into practical
techniques for determining equilibrium and transport properties of
fluids.

There have been, of course, investigations into situations where
this simple hydrodynamic-fluctuation theory picture of light scatter-
ing breaks down. One case deserves specific mention at this sympo-
sium. When the mean free path, &, becomes large compared to the
wavelength k~ it is no longer appropriate to employ hydrodynamics
to compute density fluctuations or the light scattering spectrum—one
must employ the Boltzmann equation?? or generalized hydrodynamics.
Experimental light scattering results on this transition from the
kinetic to hydrodynamic regime are available for one3l- and two-compo-
nent3? systems and these results are in excellent agreement with
theory. A second interesting case where the normal hydrodynamic-
fluctuation theory breaks down is when the scattering volume contains
only a small number of particles and the amplitude of the scattered
field can no longer be considered a Gaussian random process.33 In
these circumstances the conventional experiments must be interpreted
quite differently.

So far my discussion has been limited to polarized light scat-
tering. Depolarized light scattering from liquids composed of aniso-
tropic molecules has been an unusually active field in recent years.
The depolarized VH spectrum consists of a broad background on which
a sharp Rayleigh peak is superimposed. There is a k dependent dip
in the center of this Rayleigh component which gives rise to a close-
ly spaced doublet.3* A considerable number of theories have been put
forward to explain the structure of the spectrum. 3% A particularly
useful account of the differences and similarities between these the-
ories has been given by Keyes and Kivelson.3® The central problem is
the evaluation of the lineshape expression

Iif(k’m) = Re IO dt e-iu’t<[§f°éﬂf»t)'ei] [Ef’g('lf)qjll> (3.11)

where n. and ng are the polarization vectors of the incident and




84 J. M. DEUTCH

and outgoing fields. In order to accomplish this evaluation one must
arrive at a pertinent set of slow variables that are coupled to the
polarizability density a(k,t) and determine an appropriate set of
hydrodynamic equations for the descrigtion of the time dependence.
The theories which have been proposed 5 giffer in the selection of
primary variables that have been chosen to be coupled to the polariz-
ability density and in the hydrodynamic equations that describe their
time dependence.

Many other light scattering applications have been proposed,
some of them most novel and interesting. These include light scat-
tering from fluid surfaces,3’ from turbulent fluids,3® from bacterial
suspensions39(in order to measure bacterial mobility and chemotactic
response), and from conformational changes in biological macromole-
cules.*0 Finally, our group at MIT*! has considered light scattering
from chemically reactive systems in a spatially homogeneous steady
state far from equilibrium. For this case at constant T and p
the concentrations of the chemical species obey the nonlinear equation

da(r,t)

T D-v2a(r,t) + Fla(z,t)] (3.12)

where D is the matrix of diffusion coefficients and F a source
term due to chemical reaction. Linearization of Eq. (3.12) about a
spatially homogeneous steady state go yields the equations

3da(r,t)

o = Q-vzsg(;,t) + Q-8a(x,t) (3.13)

where

g = (3F/93) - (3.14)
a

In contrast to the equilibrium case, the decay of the linear perturba-
tion about this steady state will occur with oscillations. If these
linearized equations are used to describe the equilibrium fluctua-
tions in this nonlinear system, one finds splittings in the central
Rayleigh peak proportional to a combination of chemical rate coeffi-
cients that appear in the reaction mechanism F. Such chemically
reacting systems may have points of marginal stability where the real
part of one of the eigenvalues of the matrix of fluctuations ap-
proaches zero. This approach to a point of marginal stability will
be manifest in the light scattering spectrum by the appearance of
sharp and intense lines—a feature which may serve as a practical
diagnostic for marginal stability with respect to spatially homoge-
peous or inhomogeneous perturbations.

Finally, an important and active area of research (both theore-
tical and experimental) has been concerned with light scattering from
polymer solutions. In the simplest case"? of spherical macromole-
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cules in an optically inert solvent when kR << 1 [R is the charac-
teristic mean end-to-end distance of a polymer molecule] the light
scattering spectrum is given by Eq. (3.7) where ép (k,t) is the den-
sity of polymer molecules

p(k,t) = ] explik-r (©)] - (3.15)
n

The spectrum is computed on the basis of the diffusion equation

3p (k,t)

e DK% b
= D_k2 5 (k,t) (3.16)

where D, is the translational diffusion constant for a single parti-
cle at infinite dilution and one obtains a Lorentzian 1ine of width
D k2. One might be concerned that at finite concentrations Eq. (3.16)
is inappropriate since there will be the manifestation in the diffu-
sion equation of the long-range hydrodynamic interactions between the
polymer molecules. In fact, one may show*3 that the spectrum predic-
ted by the correct N-particle diffusion equation®

p(,t) .
e T Dy P (3.17)
n,m -n ~m

is identical with the spectrum predicted on the basis of Eq. (3.16)
so that one need not be concerned with concentration effects arising
from hydrodynamic jnteractions. In Eq. (3.17) the diffusion tensor
is

Dy = Podyy * (1-sij)(kBT)1ij (3.18)

where Iij is Oseen's tensor.

1 Ti5%45
Iij W [ + lr.'lz ] . (3.19)
-i)

1t

Perhaps the more interesting application of light scattering to
the study of polymers arises in the case kR >> 1 when the wave-
length of light is small compared to the polymer length. In this
case one has the possibility of using light scattering to study the
internal dynamics of a polymer—an important subject about which not
much is known and where little progress has been made since the late
fifties. The basic theory for this case of large macromolecules was
worked out by Dubois-Violette and de Gennes,*> who consider an infi-
nitely dilute system. The spectrum is given by Eq. (3.7) with
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Gﬁ(g,t) in the form of Eq. (3.15) with the sum over the monomer

units of the polymer. Each monomer unit is assumed to be an indepen-
dent isotropic scatterer. The result for the width of the spectrum
is of the form"®

Aw = (constant) k\)+2 (3.20)

where v 1is a parameter that characterizes the variance of the as-
sumed Gaussian distribution of the relative position of two monomer
units

<@y T, = 020pl” (3.21)

The result is valid for 0 < v < 2; with 0 < v < 1 corresponding to
negative excluded volume, v = 1 corresponding to a random coil, and

v=2 to a rigid rod. The important case of v =6?é5 leads to an an-

gle dependence of the width proportional to kl .

IV. MAGNETIC RELAXATION

I wish briefly to discuss magnetic relaxation in order to illus-
trate a limitation I perceive on spectroscopic line shape studies of
the liquid state. It is well known that a variety of radiation ab- -
sorption measurements can be employed to study molecular motion in
dense fluids. A particularly lucid survey has been presented by
Gordon.“*” In the linear regime the line shape I(w) is proportional
to an equilibrium time correlation function of an appropriate dynami-
cal variable of the system. In the case of nuclear magnetic or elec-
tron spin resonance the correlation function expression for the line
shape is given by

I(w) = Re J dt et <s_(t)s_(0)> , (4.1)
(o]

where in the simple case of intramolecular relaxation S, are the
raising and lowering operators for the spin on a representative mole-
cule. In many cases the nonequilibrium magnetization satisfies the
Bloch equation

= iw_ SO - 11—,2—s+(t) (4.2)

where W, is the Larmor frequency and T2 is the transverse spin

relaxation time. This nonequilibrium equation may be employed to ob-
tain an expression for I(w)
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;!
1) = T3 (4.3)
(w'wo) +(T2 )
which is a Lorentzian with a width given by T'l. The molecular ex-

pression for the relaxation time may be found by standard techniques

including the projection operator method4® discussed briefly in Sec- o n

tion I. The expression for T; is P

-1 -1 .
T2 = <§.5 > " Re J dt exp[lwot]<h+(t)h_(0)> , 4.4)

o]

where h(t) is the local '"random' magnetic field acting on the spin,
The total Hamiltonian of this system is taken to be the sum of a
zeroth order Hamiltonian Ho which includes the lattice motion and
the Zeeman interaction and a spin-lattice coupling term V. In

Eq. (4.4) the 'random" magnetic field is given by

h(0) = (i/h)[V,8] (4.5)

and the time dependence is computed by using the unperturbed Hamilton-
jan since the spin-lattice coupling is assumed to be weak, i.e. T2>> T
where T is a characteristic time of the lattice motion.

The spin-lattice coupling is usually of the form

V= S F 4.6
gqq, (4.6)

where F are irreducible tensor components of lattice variables
appropriate to the mechanism under consideration. Substitution of
Eq. (4.5) into Eq. (4.4) shows that the measured relaxation time is
proportional to the Fourier transform of lattice correlation func-
tions of the type

<Fq(t)F_q(0)> . (4.7)

The hypothesis of those interested in using magnetic relaxation to
study the liquid state is that measurements of these lattice correla-
tion functions (obtained through relaxation or lineshape experiments)
may be used effectively to distinguish between relevant models of
molecular motion in liquids. I would like to argue that in fact the
information obtained is quite limited and that the actual discrimina-
tion between possible models of molecular motion is not great. A
simple example of this absence of discrimination is provided by the
recent work of Cukier and Lalkat;os-L;‘mdenberg.L‘9 In many cases the
lattice correlation function of interest involves the spherical har-

monic Ylm of the solid angle § that the axis of the molecule

o SEE I
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makes with the external magnetic field direction:
*
Ck(t) = <Y£m(t)Ylm(O)> . (4.8)

These authors show that if one adopts a generalized Debye rotational
diffusion equation of the form

—__3"(;’{” = j da'A(R,9')P(a',t) , (4.9)

there is a large class of transition kernels A that lead to single
exponential behavior of the correlation function C,(t). Thus, even

under the favorable circumstances when a single exponential behavior
of a correlation function is observed it is not possible to distin-
guish between different models, Of course, there is a

much larger class of transition kernels that do not lead to single
exponential relaxation for Cz(t). In this case the problems are

even more severe. First, there are many functions Cz(t) that, over

the frequency range effectively probed in the experiment, will give
rise to similar Fourier transforms. Second, there will be many
transition kernels that give rise to the same Cz(t) for a particu-
lar value of 1.

It is not true that in all interesting cases the relaxation of
the spin occurs by a single relaxation time T,. There may be sev-

eral relaxation times involved as in the case®? of quadrupolar relax-
ation for a spin with S > 3/2. Furthermore, in the general case the

lattice motion and the spin relaxation occur on the same time scale,

and it is then important to compute the line shape I(w) over the en-
tire motional range from slow tumbling to rapid motional narrowing.

A particularly pertinent case, because of its practical application,

arises in ESR when a spin S = 1/2 is fixed to a large molecule that
undergoes isotropic rotational diffusion. The prototype Hamiltonian

for the system (in the interaction representation) is

H(t) = wOSz + aSsz[cos 8(t)] , (4.9)

where nonsecular terms have not been included. The time dependence
of the orientation between the molecular fixed axis 6 and the ex-
ternal field is assumed to be given by the Debye rotational diffusion
equation

)
5% = DV2P(Q,t) . (4.10)

One may compute I(w) for this and similar, more general, cases by a
variety of techniques including stochastic lineshape theory, cumu-
lant expansions and projection operator methods.5! Reliable results
may be obtained for I(w) over the entire range from the rigid lat-
tice limit of slow diffusional motion (a/D) >> 1 to the fast diffu-
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sional limit of (a/D) << 1 where I(w) has the form of Eq. (4.3)
with T;l « (aZ/D). In fact, the simple rotational diffusion model

gives quite remarkable agreement with experiment over the entire
range (a/D). The substantial derivations one expects from the rota-
tional diffusion model at high frequencies (short times) or for small
molecules do not appear prominently in the measured spectrum. Pre-
sumably this is due to the fact that correlation functions of the
type of Eq. (4.8) are simply not sufficiently sensitive to the de-
tails of the rotational motion which go beyond the simple ideas be-
hind the rotational diffusion equation. Perhaps even more remarkable
is the fact that the Stokes-Einstein expression for the rotational
diffusion constant,

D = (kBT/Snna) s (4.11)

seems to work quite well even for small molecules although extensions
of this relationship have been developed.

V. SOME OUTSTANDING PROBLEMS

In the preceding review of selected topics of transport in
liquids I have attempted to stress the status of present developments
and those points where our understanding is unsatisfactory. In this
section I would like to mention several other topics which I believe
deserve substantial attention in the future.

(1) Fluctuations in nonlinear systems. The problem of treating
fluctuations in nonlinear systems arises at least in three important
areas: critical phenomena, long-time tails of hydrodynamic correla-
tion functions, and unstable chemical reactions. At present, the
usual treatments begin from a phenomenological nonlinear Langevin
equation. But this approach is open to objection®? and a more funda-
mental, molecular justification is required.

(2) Our attention has been very strongly directed toward ob-
taining molecular derivations of hydrodynamic equations for fluids.
Solutions of these macroscopic equations are, of course, determined
by the accompanying boundary conditions. However, essentially no
work5? has been done on developing a molecular theory for theseboun-
dary conditions. This is particularly unfortunate since the subject
of boundary layers is of practical importance and undoubtably in-
volves new physics.

(3) The field of turbulence is extremely important and active
but we do not have available any molecular theories for the justifi-
cation of the starting equations and stochastic assumptions that are
employed in the conventional developments.>"

(4) For the physical chemist, the ultimate prize might well be
considered to be the development of a molecular theory for rate coef-
ficients in solution. Unfortunately, we do not have an understanding
of why classical transition rate theory works so well. The formal
time correlation function expressions for the rate coefficient®® have
not proven useful for practical application. It is my own belief
that molecular dynamics has substantial promise in this area if a
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clever way can be found to put together trajectory calculations on
potential surfaces and liquid state simulation computations.

(5) There has been very little progress in the field of polymer
dynamics in recent years;3% particularly absent are new insights into
the underlying physics of entangled polymer motions. In my judgement
this is a most fascinating and important area where advances should
be possible.

In conclusion, I should like to reiterate my hope that our dis-
cussions will center on important problems for future research. This
discussion need not be limited to the topics I have raised although
I would be most pleased to have any comments on the views I have
expressed.

%
|
|
|
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DISCUSSION. Tuesday a.m.

The discussion first centered on the question as to the theo-
retical and experimental consequences of the long time-tails in the
correlation functions. In response to a question by B. J. Alder,

I. Oppenheim said that he and T. Keyes have studied the wave number
and frequency-dependent self-diffusion coefficient, D(k,s). He quo-
ted the result at zero wave number D(k=0,s):

kBT L S
D (k=0,s) = Do - —_— kc -3 1/_n_ ,

2
m o
3 GRS

where D_ and n, are the 'bare" coefficients of self-diffusion and
of shear viscosity, k_ is a wavelength cutoff, and p is the den-

sity. R. Zwanzig pointed out that since the complete expression for
the transport coefficients should not contain a wavelength cutoff,
this cutoff must appear in the expressions for the bare coefficients.
Therefore a precise definition of the 'bare' part is needed. As re-
gards this cutoff, G. F. Mazenko mentioned that within the framework
of his kinetic theory calculations, the bare transport coefficients
are just the Enskog values, and that the cutoff is determined by the
dimensionless parameter kr_, where r_ is a hard sphere diameter.

The cutoff can be removed by using the properties of the spherical
Bessel functions which appear in his work. He also thought it was
interesting that all of the various approaches to the long-time tails
give the same results, at least at low density.

W. W. Wood asked if there were any explicit formulas for the k
and w dependent transport coefficients in terms of correlation
functions that might be studied on the computer. Oppenheim replied
that his work with Keyes might be of some interest in this connection
since it relates such transport coefficients to four-point correla-
tion functions. Alder pointed out that according to the mode
coupling theories, the Burnett coefficients are expected to diverge.
If so, he wondered if any experiments could be done on real (labora-
tory) systems which would exhibit the effects predicted by these
theories. For example, what are the predictions on the absorption
and dispersion of sound for a dense gas? According to J. R. Dorfman,
he and M. H. Ernst! and also Y. Pomeau? have obtained k terms in
the (k,w) dispersion relation for sound propagation as a conse-
quence of the same mechanism that produces these tails. However, the
contribution of these terms is too small to be detected at the
present time.

In reply to a question by G. E. Uhlenbeck as to whether sound
dispersion has been measured in liquids, J. S. Rowlinson mentioned
that this is precisely what is measured if one studies the displace-
ment of the Brillouin lines from the Rayleigh line in light scatter-
ing experiments. No dispersion of sound has been detected in simple,
dense fluids.
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R. G. Gordon discussed some work that was done by him and inde-
pendently by B. J. Berne3 on molecular rotations in liquids, One ex-
pects that a rotating molecule will set up a "vortex-like" pattern
which should slow down the Debye relaxation of the rotation. By con-
sidering a hydrodynamic model where the molecule is pictured as a
rotating cylinder, Gordon found that the relevant correlation func-
tions behave like t~ for long times, and a similar result was
found by Berne for a rotating sphere. However, in this case also,
the effects are too small to be detected.

J. M, Deutch commented that there were really two questions that
must be answered: (a) What is the proper form of the transport co-
efficients? and (b) Given a set of transport coefficients, what is
the result of solving the hydrodynamic equations? In his opinion
Gordon's work as well as the CIDNP work discussed on Monday answered
the second question, but that one is really looking for ways to an-
swer the first question. He also took the opportunity to mention the
work of R. Rubin on the behavior of a heavy particle in a lattice
which suggests that hydrodynamics is anomalous in two, but not in one
and three dimensions. Mazenko said that the same type of theory that
gives the long-time tail is used to obtain transport coefficients
near the critical point. Consequently the verification of the mode
coupling formulae near a critical point provides some justification
for the use of the formulae under other circumstances.

N. Corngold described some work that he and J. J. Duderstadt had
done on correlation functions similar to those discussed by Deutch."
They noted that in order to describe the action of the propagators
which project vectors out of the hydrodynamic subspace, one must con-
struct eigenvectors in the orthogonal subspace. As many others have
pointed out also, one can take direct products of vectors from the
hydrodynamic subspace. The procedure leads directly to a power law,
rather than an exponential decay, of the correlation function.

S. Yip mentioned some work of Verlet and co-workers® on molecu-
lar dynamics calculations of correlation functions and density fluc-
tuations near the triple point of a liquid system whose molecules in-
teract according to a Lennard-Jones potential. Their results indi-
cated that the decay of the correlations could be described by two
exponentials, one with very short relaxation time and another about
five times larger. However, their work did not extend to the region
where one might expect to see the long-time tail.

Uhlenbeck opened a long and very interesting discussion on tur-
bulence. He mentioned that some preliminary light scattering experi-
ments have been made on a fluid near a hydrodynamic instability to
see if the instability point behaves like a critical point. Further
studies of the onset of instabilities in, say, Poiseuille flow would
be especially interesting for clarifying what goes on during the on-
set of turbulence. According to the picture described in Landau and
Lifshitz,® the essential ingredients for the onset of turbulence are
the Navier-Stokes equations plus successive instabilities or bifurca-
tions. There are, in fact, successive instabilities which seem to
cause a kind of randomizing in the fluid. In particular, the veloci-
ty distribution functions in the fluid appear to be precisely Gaus-
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sian, and this must be produced by the random processes which are
associated with successive instabilities.

J. Kestin remarked that the picture of turbulence described by
Uhlenbeck is consistent with now generally accepted views, These are
the result of the work of Heisenberg and, in particular, of the
Tollmien-Schlichting stability theory of transition. Often, the view
is expressed that turbulence arises as a result of microscopic, mo-
lecular fluctuations. However, he said that there are some difficul-
ties with this view. No one, to the best of his knowledge, has ever
observed the onset of turbulence as a result of thermal fluctuations
alone. Instead, turbulence always starts in regions of high shear,
and even in a turbulent fluid, the flow in a sufficiently small,
though macroscopic,Tregion obeys the full Navier-Stokes equations.

The measurement of fluctuating velocity components with the aid of a
hot wire anemometer would otherwise be impossible. Furthermore,
there does not seem to be a critical Reynolds number for the onset of
turbulence; for example, in a pipe, this onset can be delayed up to
Reynolds numbers of the order of 10% by controlling the initial
disturbances in the flow.

Zwanzig described some work which was originated by S. F.
Edwards. One adds a fluctuating force to the nonlinear Navier-Stokes
equation and obtains an equation of the form

-
oV

% = \)Vz_\; - (\;'V)v + F .

Here ¥ is a random force. Zwanzig’ has examined the case where F
is thermal noise and is connected to v by the usual fluctuation-
dissipation theorem. If one treats the nonlinear term (Cg-v)v} as
a perturbation, one gets a nonlinear Langevin theory which leads to
the long-time tails. On the other hand, if ¥ describes "driven"
noise, one may get turbulence from an equation of this sort. It is
interesting to note that both the long-time tails and turbulence ap-
pear to come from the same equations, but for different random terms.
Deutch remarkedthat this was what he had in mind as a molecular theo-
ry of turbulence. That is, one would like to know if a molecular
theory can justify the adoption of certain assumptions about ?, as
well as about the k and w dependent transport coefficients that
might be required to explain turbulence. He also took the opportunity
to add nonlinear phenomena to the list of outstanding problems given
in his talk.

In reply to Zwanzig, Uhlenbeck said that the addition of noise
to the Navier-Stokes equations can only be strictly justified, if one
neglects the nonlinear terms. This was first discussed by Landau and
Lifshitz.® If, however, one adds the noise to the nonlinear equa-
tion, one can discuss what happens near a hydrodynamic instability.
In particular one can show that the velocity fluctuations get en-
hanced. Furthermore one should distinguish between "driven' turbu-
lence produced by a grid, and "spontaneous" turbulence which occurs
in the flow in a pipe. K. M. Case and S. C. Chiu® have considered
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spontaneous turbulence for the Burgers-Hopf model and have completely
confirmed the picture of Landau. They clearly demonstrated the onset
of successive instabilities. One would like very much to perform a
similar calculation for plane Poiseuille flow. Driven turbulence,
however, may be quite different.

Kestin responded by saying that even for flow in a pipe there is
a grid provided by the walls and by the upstream condition of the
flow. He repeated that turbulence is produced in a region of high
shear and that transition does not necessarily coincide with the
Reynolds number of the first instability.

Uhlenbeck replied that one must be very careful of the entrance
flow. The onset of turbulence may be delayed by the production of a
metastable flow, Nevertheless, one expects that there is a critical
Reynolds number which governs the onset of spontaneous turbulence
for flow in a pipe.

R. Kobayashi reported some results of Angus at Case Western
Reserve on the subject of boundary conditions that obtain during tur-
bulent flow. The essence of these findings is that zero. velocity at
the wall cannot be assumed in the turbulent region for bulk flow in,
say, a circular pipe. Measurements show that mass transfer rates
from the wall to the fluid are greater than would be expected if the
velocity at the wall were zero. This indicates that turbulence does
exist at the wall and that zero velocity at the wall is not a legiti-
mate boundary condition.

J. Ross mentioned that J. B. Lastovka is conducting light scat-
tering studies at the onset of the Bénard instability at Bell Labora-
tories. He also mentioned that Deutch, S. Hudson, P. J. Ortoleva and
he had performed some work on chemical instabilities.?

A major task of the theory, emphasized by Kestin, is to support
and describe the actual experimental observations. To the list of
outstanding problems in liquid state theory, mentioned earlier, he
would, therefore, add (a) A molecular derivation of the Navier-
Stokes equations [Such a derivation only exists on the basis of the
Boltzmann equation for dilute gases, but has not been given for the
conditions pertaining to the liquid state.]; (b) A description of the
transport properties as a function of density and temperature of liq-
uids. Alder remarked that molecular dynamics calculations can give
reasonable values for the transport properties of a fluid of mole-
cules with a given intermolecular potential, but acknowledged that
this procedure amounts to replacing one experiment by another, though
a more controlled one. The emphasis of current theoretical activity
on the long-time behavior of the correlation functions is due to the
conceptual problems associated with this behavior; its experimental
significance may be minor except possibly for the resulting enhance-
ment of the diffusion coefficient over the Enskog value as discussed
on Monday. The question was raised how firmly this enhancement of
the diffusion coefficient due to the long-time tail has been estab-
lished. Alder explained that about half of the effect is obtained
by integrating the autocorrelation function over the time interval
studied with the computer; the other half of the effect is then ob-
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tained if one extrapolates the asymptotic t~ behavior to infi-
nite times.

C. J. Pings reported experimental values of binary diffusion
coefficients as a function of concentration for some binary mixtures
{(nitromethane-benzene and methanol-benzene) and of the thermal diffu-
sivity for nine pure liquids and two binary liquids. These new values
were obtained by measuring the central component in the spectrum of
scattered light and they agree with available values obtained by more
conventional techniques. In order to interpret the scattered light,
one needs to separate the contributions from various effects such as
mass diffusion, thermal diffusion, thermal diffusivity and relaxation
of internal degrees of freedom. The work of Pings and his co-workers
illustrates the feasibility of this method for measuring transport
properties in liquids. The method offers distinct advantages over
the conventional techniques for measuring some of these properties.

Corngold raised the practical question of how one predicts
transport properties of dense fluids if one does not have the facili-
ties for conducting molecular dynamics experiments. H. J. M. Hanley
discussed a recent review article!? in which he investigated the pre-
dictive capability of current theories of transport properties. It
was concluded that a modified Enskog theory (MET) is still to be pre-
ferred over many other approaches, Using the MET he was also able to
predict the viscosity of liquid fluorine at the saturation boundary
which turned out to be in excellent agreement with subsequent experi-
ments. J. V. Sengers remarked that one should distinguish between a
systematic theory with well-defined approximations that tries to re-
late the transport properties to molecular properties and a semi-
empirical approach in which one follows an ad hoc prescription which
has turned out to be useful in representing available data. There-
fore, as emphasized by Rowlinson, it may not be fair procedure to
judge these two different approaches on the basis of the same
criteria.

Sengers said that engineers would like to predict dynamical
properties, such as transport coefficients, from equilibrium proper-
ties, such as the equation of state. The modified Enskog theory is
an example of such a procedure. Of course, as pointed out by Alder,
such a procedure neglects correlations in the velocities of the
molecules.

Kobayashi remarked that the use of corresponding states has also
been successful in predicting transport properties.

Pings noted that our current ability to predict the transport
properties of dense multi-component systems is limited by a severe
lack of knowledge of the mixing rules,

Gordon agreed with Deutch that magnetic resonance methods pro-
vide disappointingly little help in distinguishing between different
models of molecular rotation in liquids. One basic weakness of these
results lies in the fact that only a single number (Tl) is measured,

and this generally gives only the arez under the rotational correla-
tion function. More complete information about the time dependence
of rotational correlation functioms is available by Fourier transfor-
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mation of infrared and Raman spectra.!! This experimental informa-

on rotation of molecules in simple liquids, such as NZ’ CO and
is extremely helpful in checking the validity of molecular

dynamics simulation of molecular liquids.
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