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The spectrum of light scattered from a system of coupled nonlinear chemical reactions is considered
for steady states far from equilibrium. Fluctuations from a steady state may exhibit oscillatory decay,
marginally stable chemical oscillations, or dissipative structures. Qualitatively new features appear in
the spectrum when compared to the light scattering spectrum from reacting systems at equilibrium. The
principal new features found are splittings in the chemical lines and dispersive (non-Lorentzian) contribu-
tions. Two model reaction mechanisms, the Volterra-Lotka model and the Prigogine-Lefever model, are

examined in detail.

I. INTRODUCTION

Far from equilibrium coupled nonlinear reaction
schemes may have steady state compositions which
are stable or marginally stable.l:? If the steady state
is stable then fluctuations in composition will regress
back to that state but may do so with oscillations.
If the steady state compositions are marginally stable
then composition fluctuations of a particular wave-
length will be undamped. In unstable systems fluc-
tuations grow with time, either in an oscillatory or
monotonic manner. Far from chemical equilibrium
coupled reactions may also be in stable limit cycles:
Concentrations of species vary periodically and fluc-
tuations decay to the stable limit cycle.® Since the
light scattering spectrum is directly proportional to
the Fourier transform of composition fluctuations we
expect that such systems will give qualitatively new
features in the spectrum. The purpose of this paper
is to investigate the new features that may be en-
countered in light scattering from chemically reacting
systems far from equilibrium. The scattering of light
from systems with hydrodynamic instabilities (Bénard
problem) has been studied.*®

Our intent is to explore the possible use of light
scattering to study these systems and the calculations
we present on model systems should be considered
suggestive. For some references on related experiments
see Refs. 3 and 6-8.

For chemical systems at equilibrium the spectrum
of light scattered from the composition fluctuations
leads to superimposed Lorentzians centered at zero
frequency w=0."" The reason for this is that the
matrix describing the linear regression of concentra-
tion fluctuations is real and can be made symmetric.
Hence, the eigenvalues of the matrix are all real and
the associated modes (eigenvectors) exhibit simple
exponential decay in time. For systems far from chemi-
cal equilibrium, the matrix describing the linear re-
gression of fluctuations need not be symmetric. Hence,
the modes may exhibit oscillatory decay if their asso-
ciated eigenvalues are complex. Such an oscillatory
mode will appear in the spectrum as a doublet with
intensity symmetrically placed at +w., where w. is

the frequency of oscillation of the chemical mode.
In addition there are non-Lorentzian contributions to
the spectrum.

It appears that the spectrum of light scattered from
a system far from equilibrium is richer in structure
than the spectrum scattered when the system is at
equilibrium. This additional structure contains useful
information, for example the splittings are related to
chemical rate coefficients. Since splittings are easy to
measure, it is possible that it will prove easier to
measure rate coefficients by light scattering in systems
far from equilibrium than in systems at complete
equilibrium. In the latter case it is necessary to analyze
superimposed Lorentzians in the limit of forward
scattering to determine a rate coefficient.

In Sec. IT a simple theory is presented for light
scattering from chemically reacting fluids far from
equilibrium. Diffusion is the only transport mechanism
taken into account other than chemical reaction. Thus
the theory applies to the central or Rayleigh part of
the spectrum. To extend the theory to the Brillouin
doublet pressure fluctuations must be included.? In
addition temperature variations will increase the pos-
sibilities for instability and introduce other effects not
considered here. In Sec. IV two specific model reaction
schemes are employed to illustrate some of the quali-
tative features to be expected in the spectrum.

II. LIGHT SCATTERING THEORY

The light scattered from a reacting fluid mixture is
proportional to the space-time Fourier transform of
the local dielectric constant autocorrelation function

I(k, w) =Re f exp(—iwt) (3eF(k, H3eF(—k))dt, (2.1)
0

where o is the change in frequency on scattering and

k is the scattering wave vector which is related to the

scattering angle 6 and the incident wave vector ko by

|k | =2|ko|sin/2. (2.2)

In Eq. (2.1) 8" (k, t) is the space Fourier transform
of the local dielectric constant de(r, ¢). The physical
assumptions underlying the expression (2.1) for the
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light scattering spectrum are that the dielectric con-
stant is local in space and varies in time due to fluc-
tuations in the fluid. The temporal fluctuations in the
dielectric constant are assumed to be characterized
by a stochastic process which is stationary and
Gaussian.’®

We further assume that e is an implicit function
of position and time through its dependence on the
local thermodynamic variables. Hence, at constant
temperature and pressure the fluctuations in the local
dielectric constant are related to the local composi-
tion fluctuations &y (r, £) from the steady state (de-
noted by superscript zero) by

56(1', t) = Z (ae/wi)OT.p&p‘i(ry t)) (23)
where the sum extends over the various species ¢. The
intensity of the scattered light may then be expressed as

I(k, w)=ReBT~/°° exp(— i)

X (@4" (k, £)og"(—k))dt-B, (2.4)

in which ¢ is the Fourier transform of the column
vector of the concentrations, B is a vector with ith
component equal to (d¢/dy:)r , and BT is the transpose
of B.

At constant T and p the concentrations of the
chemical species obey the equations

a/9t=DV(r, )+ F[¢], (2.5)

where D is a matrix of diffusion coefficients and F(+)
a source term due to chemical reactions, which in
general obey nonlinear rate laws. We consider light
scattering from fluctuations away from a spatially
homogeneous steady state ¢° and assume that the
fluctuations regress to the steady state according to
the macroscopic hydrodynamic equations (2.5). For
small perturbations d{¢=1{¢—1? we obtain the linear-
ized equations*!®

as(r, 1) /0t=DV3Y(r, N+ () ok (r, 1), (2.6)

where we have used the fact that F({°)=0 for the
homogeneous steady state and we have defined

Q") = (OF/0) y—y°. (2.7)
The spatial Fourier transform of Eq. (2.6) is
347 (k, 1) /ot=[—DE*+Q({") Jou” (k, #)
=M(k)o¢F(k, 1) (2.8)
with the formal solution
34T (k, 1) =exp[M (k) {147 (k). (2.9)

When this result is used in Eq. (2.4) and the one
sided Fourier transform in time is executed, we obtain

I(k, ) =ReBT[iwl—M (k) - (347 (k) 3¢ (—k) )- B.
(2.10)
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We formally display the spectrum by expanding
respectively the vectors BY and (3¢ (k)s¢F(—k))-B
in terms of an assumed complete normalized biorthog-
onal set of left (row) Y,X(k) and right (column)
Y.2(k) eigenvectors of the matrix M (&),

M(E) - Y,E(k) =2,(k) YR (k) (2.11)

and
Y.L (k) -M(R) =2.(R) Y, L(k).

The result is
I(k, w)=Re Y An(k){1/[iw—2.(k) ]} Ca(k), (2.13)

(2.12)

where

An(B) =BT-Y.R(k) (2.14)

and
Cu(k) =Y 2 (k) - (847 (k)84T (—k))-B. (2.15)

The case of light scattering from a chemically re-
acting system at steady state differs from that at
complete equilibrium by the fact that the eigenvalues
(and eigenvectors) are, in general, complex. If we
write the eigenvalues

2 (k) =T (k) +100(k),
the spectrum becomes

I(k, w)= 2 (In(k) {Tn(k) /[w—0 (k) P+ Tu (k)%
+{Dn (k) [0—0n (k) I/ [0— (k) P+ Ta(R)?), (2.17)

where the amplitude of the absorptive (Lorentzian)
part of the spectrum I,(k) is given by

I.(k) =Re[A.(k)Cu(k)] (2.18)

and the amplitude of the dispersive (non-Lorentzian)
part of the spectrum D.(k) is given by

D (k) =I[An(k)Cr(k)]. (2.19)

In the conventional case of light scattering from
an equilibrium state® " the eigenvalues and eigen-
vectors are real so that the spectrum becomes

I(k, )= 3 {T, (k)T (k) /[*+ T (k)" ]},

n

(2.16)

(2.20)

which consists of superimposed Lorentzians centered
at w=0; there is no dispersive contribution. Normally
the analysis of spectra which consist of superimposed
Lorentzians is most difficult. In contrast the spectrum
from the steady state system, Eq. (2.19), consists of Lo-
rentzians (distorted by dispersive contributions) cen-
tered at various frequencies 2,(k) that are in general
non-zero. Provided that these frequencies are not all
identical and that ©,>T, the spectrum will be split
into well resolved contributions. Consequently light
scattering from chemically reacting systems at a steady
state, where fluctuations decay with oscillations, may
prove to be a better procedure for measuring fast
rate coefficients than light scattering from chemically
reacting systems at equilibrium.
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III. TWO EXAMPLES

In this section we illustrate the structure of the
spectra that may be encountered when light is scat-
tered from a chemical system at a steady state where
fluctuations decay with oscillation. The examples are
not comprehensive, they have been selected to display,
as simply as possible, some of the features which
arise. We restrict attention here to steady states 1?
that are either stable or marginally stable with respect
to spatially homogeneous and inhomogeneous pertur-
bations. A system is stable (or marginally stable)
to homogeneous perturbations if Re[z,(0)]<0 {or
Re[2,(0)]=0 for at least one value of n}. A system
is stable (or marginally stable) to inhomogeneous
perturbations if Re[z.(k)]<0 for all k>0 f{or
Re[z.(k) ]=0 for at least one k}. This restriction
assures that the fluctuations around the steady state
do not grow so that the steady state {° is physically
attainable.

A. The Volterra~Lotka Mechanism
The Volterra—Lotka mechanism in the absence of

backreactions!*? is

k1
A+X—2X,

ks
X+Y—2Y,

ks
Y—E. (3.1)

We assume that species A, E, and any solvent present
are optically inactive and that the concentration of A
is kept constant; only fluctuations in-X and Y are
considered. The homogeneous steady state 4° is easily

found to be
(X" (k3/k2)
‘ko= )= .
Yo (kA /k,)

The linearized equations of motion for the fluctuations
d¢=(0X, 0Y) around this steady state satisfy Eq.

(2.8) with
(-—ka2 —k2X°)
M(k)= )
_DYk2

kYO
where for simplicity we have assumed a diagonal
matrix of diffusion coefficients. The eigenvalues of
this matrix are

23 (k) = —3 (Dx+ Dy) B[ (Dx— Dy) k*— 4kiksA T2,
(3.4)

from which one may conclude that the steady state

(3.2)

3.3)
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for this system is marginally stable to homogeneous
perturbations and stable to inhomogeneous pertur-
bations.

For the case of equal and diagonal diffusion coefh-
cients we note the general result for any reaction
mechanism, 2,(k)=2,(0)—Dk? and hence for the
present case we have

24 (k) = — DR*i(kiksA) 12, (3.5)

which according to Eq. (2.17) will give rise to a
doublet spectrum located at

+w.= (kiksA)2, (3.6)

Note that the splitting 2w, is proportional to a par-
ticular factor of rate coefficients. The width of each
line is (Dk?) so that if 2w,>DE? the doublet will be
resolved. At the present state of the experiments in
light scattering such resolution is achievable for re-
actions with w,>20 Hz. As forward scattering is ap-
proached k—0, and there is a progressive sharpening
of the lines until at k=0 each component is infinitely
sharp for a system which is marginally stable to
homogeneous perturbations.

In this example the chemical lines become infinitely
sharp as k—0. This is a result of the Volterra—Lotka
model without back reactions. If back reactions are
included, this model is stable to homogeneous per-
turbations and the chemical lines have finite widths at
k=0. However, the narrowing of a chemical line will be
a general feature of the spectrum as a point of marginal
stability is approached.

In order to display the spectrum for this case, it is
necessary to compute the factors (de/dy;)°r , and the
matrix of fluctuations at this steady state. To our
knowledge there is no rigorous theory for either one
of these quantities. For illustrative purposes we shall
make the assumptions

(0e/0X) 0 = (3¢/3Y )1 p=ar, (3.7

and
(‘W’tF‘W’JF > =B8:;

It should be emphasized that the calculation of the
spectrum can be accomplished for choices of these
quantities other than (3.7) and (3.8). Two points
about these approximations should be noted. First,
the assumption of equal effective polarizabilities e, for
each species, in the case of light scattering from
chemically reactive fluids at equilibrium, leads to no
contribution of the chemical process to the spectrum.
Second, a great deal of literature exists on different
procedures for computing the matrix (5{¢d+).>'® A par-
ticularly intriguing suggestion'® is that some elements
of this fluctuation matrix behave anomalously as a
point of marginal stability is approached. Such anoma-
lous behavior will be manifested in the spectrum.
With the assumptions Egs. (3.7)-(3.8), the spec-

i, j=X, Y. (3.8)
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trum may easily be calculated. The result is
[ (k, w)/oy"]
I'(k) I'(k)

- (ﬂx+ﬂY)[(w+wc) TR T <w-—wc>2+1’<k>2]

(w"'wc) _ (w+wc)
(w—w)* +T(k)?  (wtw)*+T (k)

where the chemical frequency w, is given by Eq. (3.6),
the width T'(k) by I'(k)=Dk?, and

A(k) =3[ (BxXo—BxY?) / (XOX°) 12,

the contribution of the dispersive term may be im-
portant. ‘

A similar analysis can be carried out for the case
where Dx#Dy. The essential difference is that the
eigenvalues are not necessarily complex for all values
of k and hence a splitting of the chemical lines will
not be present at all angles. From Eq. (3.4) we can
see that z,.(k) has a complex part only if

k< (4k:ksA/| Dx— Dy |) =k,

so that a splitting will only appear for angles such
that k<k..

+a0) | 6o

(3.10)

(3.11)

B. The Prigogine~Lefever Mechanism"

As a second example we consider the model reaction
scheme which has received some attention?317—19

k1
A-X,

ks
2X+Y—3X,

ks
B4+X—-Y4-D,

ks

X—E. (3.12)

Here again we consider only fluctuations in X and Y;
the species A, B, E are assumed to be optically in-
active and present at fixed concentrations. Furthermore
for ease of analysis we shall consider only the special
case where all the rate coefficients are equal to a single
value x and A=1, B=5. Under these circumstances,
the steady state concentrations are X0=1, Y0=5. If we
assume a diagonal matrix of diffusion constants the
matrix M(k) appearing in the linearized equation of
motion for the fluctuations siy= (X, §Y) is

—Dxk*- (b—1)« K
M(k) =[ :I (3.13)
—bk — Dyk?—«

DEUTCH, HUDSON, ORTOLEVA, AND ROSS

The eigenvalues of this matrix are

22 (k) = —3 {[Dxk*+ Dyk*+ (2—b) &1 [ f(R2, b) 2},

(3.14)
where
F(#2, B) =v0(8) +v1 (D) B4 yokt (3.15)
with
o) = (2—5)? 2— 42,
m1(8) =26(Dy—Dx)x,
¥2= (Dx—Dy)2. (3.16)
At k=0 the eigenvalues are
2+(0, 8) = —3[(2—B)xk (vo)*?].  (3.17)

From this we may conclude that the steady state is
stable to homogeneous perturbations for 5<2 and
marginally stable for =2.

The situation with regard to inhomogeneous per-
turbations is more complicated. The result will de-
pend on the ratio of the diffusion constants (Dx/Dy),
which we denote a. For fixed « and b we must see
if there is a real, positive value of k% at which the
real part of the largest root z_(k% b) vanishes. This
condition implies the existence of a real, positive value
of k* given by the expression

ky?=(k/2Dx) { (b—1—a) £[(b—1—a)?~da]"}.
(3.18)
Analysis of this discriminant shows that, provided
b<[1+ (@) 2 =b,, (3.19)

no real value of %2 will exist that makes z_ vanish.
Thus when §<b. the system is stable to inhomoge-
neous perturbations; at 5=5, the system becomes
marginally stable to inhomogeneous perturbations.
We may conclude that according to the value of
there are two regions of interest. If 0<a< (3—2v2)
then 5.<2 and b must be less than b, to assure sta-
bility with respect to inhomogeneous perturbations.
If > (3—2v2) then 5.>2 and b must be less than 2
to assure stability with respect to homogeneous per-
turbations. We consider several possible cases in turn.

1. Case (1): a=1

For this case of equal diffusion coefficients the con-
dition for stability requires that 5<2; the two eigen-
values are

21 (k, 8) =—{DEH-[1—(8/2) Jx} Hdese, (3.20)
where

we=[—0(8) J*=«{1—[1—(8/2) P}** (3.21)

and we have taken into account that y,<0 for §<2.
The spectrum may easily be computed for this case

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



LIGHT SCATTERING

and we find with the assumptions Egs. (3.7)-(3.8),
a shape identical to Eq. (3.9) with the width given by

I'(k) =Dk H-[1— (8/2) Jk, (3.22)
the chemical frequency w. by Eq. (3.21), and
A(k) = (x/2w:)[(6/2) (Bx+Bv) —By]. (3.23)

The width w, is a monotonically increasing function
of b, reaching a maximum value at b=2 where w.=k.
At small b where w. is small the quantity A(%), which
measures the amplitude of the dispersive part of the
spectrum, becomes large.

As b2 the system approaches marginal stability.
The quantities which characterize the spectrum ap-
roach the values

T'(k)—Dk2, A(E)—Bx/2. (3.24)

The widths are completely determined by diffusion
and the doublet lines sharpen as k—0. The separa-
tion of the doublet components 2w, is independent of k.

WK,

2. Case (2): a1, a> (3—2V2)

For this case of unequal diffusion coefficients the
stability condition requires <2 and the eigenvalues
are given by Eq. (3.14). We examine the behavior
of f(k?, b) in Eq. (3.15). This function may be written
for 8<2 as

fR, B)=—|vo| + | 1| B2+ | v2 | B*
f&2 0 =—|v|— | 7| B+ |y |

with y1=%.=0 at a=1.
If f(%%, b) is negative z.(k, b) becomes complex and
the spectrum is split by an amount

1>a> (3—2v2),
a>1  (3.25)

20, =2 —f(k2, b) JV2. (3.26)
The width T'(k) when f(k2, b) <0 is
T'(k) =3[Dxk*+ Dyk*+ (2—b)x].  (3.27)

If f(%2, 8) is positive, z.(k, b) is real and negative
and the spectrum is not split.

Consideration of Eq. (3.25) shows that for 1>a>
(3—2v2) the splitting is largest at k=0 and decreases
until it vanishes at

kr={[a/(1~a) J(x/Dx)[2(b)*—b]}1"2.  (3.28)

If the scattering angle is such that k>k; there is no
splitting.

.For a>1 the splitting first increases and then de-
creases as k is increased from k=0. The splitting
vanishes at

ku={[a/(a—1)](x/Dx)[6-+2(6)2]}12,  (3.29)

and if the scattering angle is such that k2>ky there
is no splitting. The special value a=1 has been treated
above. The behavior of the spectrum as the system
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approaches marginal stability may easily be de-
termined.

3. Case (3): 0<a< (3—2V2)

For this case of unequal diffusion with Dy>>Dx the
stability condition requires <&, where b, is given
by Eq. (3.19). The analysis of this case for 5<b,
closely follows Case (2). For example the splitting
in the spectrum vanishes at values of %; given by
Eq. (3.28).

1t is particularly interesting to examine the behavior
of the spectrum as a function of angle at the point
b=>5, where the system becomes marginally stable to
inhomogeneous perturbations. According to Eq. (3.18)
for this value of b the eigenvalue z..(k, b) will be zero
at ky?=[ka/Dy]). Since for this value of b, k=
xa/Dx<k,?, there is no splitting and z_(k, b) is real
in the neighborhood of £,. When z_=0 we expect an
infinitely sharp line at zero frequency. The behavior
of z_(k, b,) as a function of %* in the neighborhood
of k,* will determine the width of this component in
the neighborhood of the critical angle defined by &2
A simple calculation yields

2(k, be) == (¢/a)[(1=a) (1+-a7) I
X (Dx/x)? (B—k,2)%.  (3.30)

Since 2_<0 except at k£, we may conclude that at
marginal stability (b=5,) the fluctuations with wave
vectors infinitesimally larger or smaller than the criti-
cal wave vector k, will be stable. This fact will be
manifest in the light scattering spectrum at marginal
stability by small but symmetric widths as a function
of %% about %,? for the sharp component of the spec-
trum. This feature may serve as an experimental
diagnostic of a marginal stable state.

IV. CONCLUDING REMARKS

The spectrum of scattered light exhibits the time
dependence of the regression of fluctuations (through
the dielectric constant) and hence provides informa-
tion about the eigenvalues of the fluctuations. The
spectrum is predicted to contain qualitatively different
features when the system is in a steady state far from
equilibrium compared to that for a system at com-
plete equilibrium. We have considered some simple
examples to illustrate this point. Generalizations are
possible in a number of directions; for instance other
features may be expected in the spectrum when the
effects of nondiagonal diffusion coefficients are con-
sidered. Furthermore we have restricted the discussion
to fluctuations from stable (time-independent) steady
states. The study of fluctuations from a time-depend-
ent homogeneous state, the time dependence being
due to either relaxation or a stable limit cycle, re-
quires further analysis, both with respect to the
fundamental equation of light scattering, Eq. (2.1),
and the calculation of concentration fluctuations around
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nonstationary states. In addition we have limited
ourselves to isobaric and isothermal fluctuations. In-
stabilities involving reactions and temperature fluc-
tuations are common in chemical engineering applica-
tions. For example, phenomena such as singing flames®
exemplify instabilities involving the interaction of
reaction, temperature and pressure fluctuations. De-
stabilization of acoustic modes in reacting fluids has
been studied.!?:.%
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We develop a simplified version of the fixed orbital multiconfiguration self-consistent-field theory (MC-
SCF-FXO) for localized orbitals of Gilbert by analyzing the operators and matrix elements in powers of
the overlap, neglecting terms quadratic and higher in overlap. This procedure eliminates many
terms found in the complete theory. The matrix elements of the orbital operators are particularly simple
since all strictly environmental terms and many of the subsystem—environment interaction terms vanish.
The orbital and secular equations are then decomposed into equations for a subsystem coupled to its environ-
ment. A scheme for the self-consistent solution of these equations is discussed.

I. INTRODUCTION

The main purpose of this paper is to develop a
simplified version of fixed orbital multiconfiguration
self-consistent-field theory (MC-SCF-FXO) for use in
large polyatomic systems. Our starting point is the
exact MC-SCF-FXO theory recently derived by
Gilbert.! In Sec. II we briefly summarize the principal
results of this theory and obtain the multiconfiguration
generalization of the Adams-Gilbert equation? for
localized orbitals. In Sec. III we analyze the operators
appearing in the MC-SCF theory. We first decompose
these operators into r-body parts making use of the
Jacobi expansions of the second and third order
normalized density and transition operators; then we
obtain the decomposition of the MC operators into
“atomic,” intra-atomic overlap, and interatomic over-
lap parts; next we analyze the MC operators in powers
of the overlap and neglect terms which are quadratic
and higher in overlap; finally we analyze the matrix

elements of the orbital operators in powers of the over-
lap neglecting all terms quadratic and higher in over-
lap. In Sec. IV we decompose the orbital and secular
equations into equations for a subsystem coupled to its
environment, making use of the operator analysis of the
previous section, and present a scheme for the solution
of these equations.

II. FIXED ORBITAL MULTICONFIGURATION
THEORY

We briefly summarize the principal results of the
multiconfiguration self-consistent-field theory recently
derived by Gilbert.! The wavefunction for the poly-
atomic system is chosen to be the sum of V Slater de-
terminants each constructed from a subset [¢;,+*&:,]
of a common set3* [¢1°--¢m] of fixed orbitals, as

follows:
v= 3 C¥, (1)

&= (n))7 || ¢s, () || (1’

where
w,v=1 n.
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