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An analysis is presented for radical recombination according to a continuous diffusion model for two
and three dimensional systems in the context of chemically induced dynamic polarization (CIDNP)
experiments. It is argued that diffusional models of molecular motion are most sensitive to changes in
dimensionality and that CIDNP or other experiments carried out in thin film, quasi-two dimensional
systems, should reveal these effects. The reason for this sensitivity is that according to a diffusion model
dynamical quantities of interest will decay more slowly in two dimensions rather than three.
We discuss how these conclusions apply to a variety of experiments and two additional examples are cited.

I. INTRODUCTION

In 1967 Fischer, Bargon, and Johnson! and, inde-
pendently, Ward and Lawler? reported anomalous
nuclear magnetic resonances intensity patterns in the
spectra of the products of reactions in which inter-
mediate radical pairs are involved. The basic mechanism
for this effect, called “chemically induced dynamic
polarization” (CIDNP), is the singlet-triplet mixing
that occurs in the intermediate radical pair for the
brief time period between radical formation and re-
combination. The important features of this mechanism
were first worked out by Closs,?® and independently,
Kaptein and Oosterhoff.* One assumes that the radi-
cals are initially formed at an appreciable separation
7o in an electronic singlet or triplet state. The radicals
wander about for a time during which the Zeeman and
hyperfine interactions cause mixing between the singlet
and triplet electronic states that are separated by a
scalar exchange coupling 2J, assumed constant. Re-
combination takes place with probability X, when the
radical pair becomes separated by a critical distance
a, a<rg, provided the radical pair is in a singlet state.

The central quantity of interest for the interpreta-
tion of CIDNP experiments is the probability of form-
ing cage products, which may be written® as

w(i)=>\/w [COWOFf(Hd, i=st.  (L1)

In this expression [C,?(¢)? is the probability that
the radical pair is a singlet at time ¢, given that, at time
zero the pair was a singlet i=s or a triplet ¢=¢. The
quantity f(¢) is the probability that the radical pair
initially formed at separation 7, will be at time ¢ at
separation @ for the first time. While it is not explicitly
indicated, C,(¢) and hence w® depend on the nuclear
spin states of both radical fragments. Clearly evalua-
tion of 0 depends on calculation of both C, () and
f(#). The calculation of the amplitudes C,(¢) presents
no serious problems (see Sec. IT).

It remains to compute the dynamical probability
factor f(#). Early formulations®* arbitrarily adopted
an exponential form for f(¢) which has proven only
moderately successful.® In an elegant series of papers
Adrian® proposed that a diffusion model would be a
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more realistic way to determine f(f). In particular
Adrian employed the constant step random flight model
of Noyes’ to compute f(#) and hence w®. It appears
that this step diffusion model is more successful at
predicting the observed intensity patterns than the
simple exponential model.

Here we wish to emphasize that CIDNP measure-
ments may be used to study how a pair of radicals move
about in solution; that is CIDNP is a probe for the
dynamical probability factor f(¢). In particular the
characteristic time of geminate recombination is usually
thought to occur in a time of 1071071 sec, a time scale
on which the model of step diffusion or ordinary con-
tinuous diffusion might well be suspect. It occurred to
us that the predictions of diffusion type models are most
sensitive not to changes in temperature or density, etc.,
but, to put it bluntly, changes in dimensionality. The
underlying reason for this is that diffusion (or random
walk) type trajectories always return to the neighbor-
hood of the origin in two dimensions but not in three
dimensions. The consequence of this in a variety of
physical situations is that the temporarl decay of quan-
tities of interest, such as f(¢), will be much slower in
two dimensions than in three dimensions. The purpose
of this paper is to present an analysis for CIDNP in two
dimensions. We fine it convenient to describe the diffu-
sion of two radicals relative to one another by a con-
tinuous diffusion model rather than the step diffusion
model emploved by Adrian.5=® The continuous diffusion
model is analytically more tractable than the step dif-
fusion model, leads to essentially identical results for
w, and, so far as we are aware, does not do substantially
more violence to the underlying physical process. In Sec.
IT we summarize the result of previous theories and in
Sec. IIT we present the results of the continuous diffu-
sion. model for two and three dimensional systems.

We are perfectly aware that strictly two dimensional
systems do not exist in nature. Adsorbed layers and
very thin films always will have an effective depth L.
In addition there may be present completely different
mechanisms, such as interactions with adjoining phases,
that compromise the assumed two dimensional char-
acter of a system. Ultimately one must rely on experi-
ments on real quasi-two dimensional systems to reveal
the sorts of effects that are discussed here. We have
treated analytically the limiting two dimensional case
where the effects are most pronounced. We have not
treated the more realistic case of a layer of finite thick-
ness because of the analytic complexity. In a layer of
finite thickness a portion of the diffusion (or random
walk) trajectories will also be strongly perturbed from
the three dimensional case and the effects discussed for
the two dimensional case will appear, but in a more
muted way. In the final section where we discuss other
experiments that have a strong dimensionality depend-
ence due to diffusive motion, we present a qualitative
assessment of how thin a system must be in order to
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see appreciable deviations from three dimensional pre-
dictions.

Many experiments are interpreted on the basis of
a diffusion model for molecular motion. The reader
should keep in mind that our basic motivation is to
encourage experimentalists to consider, in the context
of their measurements, the study of quasi-two dimen-
sional systems as a means of testing these models.

We do not wish to suggest that difficulties will not
be encountered in designing an unambiguous quasi-two
dimensional CIDNP experiment. For example in a thin
film the number of spins available for observation is
low and increasing the concentration may only serve
to reduce the importance of the geminate recombination
pathway. Furthermore different reaction and relaxation
mechanisms may come into play at the boundary which
could make the experimental interpretation difficult.
However, these difficulties should not obscure the fact
that an interesting experiment is possible.

II. BACKGROUND FOR THE CALCULATION

Although we shall not present the details here8 it
is an easy matter to arrive at expressions for C,¥(#)
based on a reasonable quantum mechanical model for
the radical pair. The Hamiltonian one adopts is

H={£:5:+£:5:0 JHo—T (281- Sy+3)
+ T A1l O8,04- T Al 5085, - (2.1)
« 8

where B, is the Bohr magneton, H, the external mag-
netic field in the z direction, g1 and g are the electronic
g factors of radicals 1 and 2, respectively, and Ay, (A42s)
are the hyperfine coupling constants between nucleus
«(B) of spin I,(Is) on radical 1 (2). For simplicity only
the z component of the isotropic hyperfine coupling is
retained. One seeks a solution of the form

¥(O) =[C()) [ S)+Ce(t) | To)Ixns (2.2)

where x, is an appropriate nuclear spin function and
again for simplicity, mixing with the other electronic
triplet components. Ty, is neglected. If the pair is
initially a singlet Cs(0) =1 the solution for [C,® (¢) J?
is

[C:®@ (1) P=1— (wa?/e?) sin’wt, (2.3)

while if the pair is initially a triplet C;(0) =1 the solu-
tion for [C, (¢) 2 is

[C:®(§) P= (we2/os?) sinwt.
In Egs. (2.3) and (2.4)
wn=(HoBo/2) (g1—g2) +3[ A1ama®—3 Aspms®]
a 8

(2.5)

(24)

and
w=[2+w, ]2, (2.6)

where m,® (ms®) are the spin quantum states of nu-
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cleus o (B) of radical 1 (2). The set of Egs. (2.3)-
(2.6) determine the quantum mechanical probabilities
[C.®(¢) J? appearing in the expression for w”, Eq. (1.1).
We next turn to consideration of the dynamical prob-
ability factor f(¢).

If one adopts an exponential form for f(¢) %4

f{t) =77  exp(—t/7), (2.7)

one obtains the following expressions for the probability
w:

Wexp® = 2A (wn7) 2/ [ 14 (207) %] (2.8)
and

Werp® = A 1~ 2(w,)2/[14 (2wr)?]}. (2.9)

For large magnetic fields such that w~uw, and for «r<1,
these expressions predict that the probabilities depend
on the square of the magnetic field.

Adrian employed the Noyes step-diffusion model® to
determine f(¢). For the first re-encounter (to which we
restrict attention here) the numerical results of Noyes
for f(t) may be put in the form

f:(1) =0, 1<2r
£.() =(0.24/7) [ (¢/7) +0.44 P12, (2.10)

where 7 is the time between diffusive jumps. The dy-
namical probability factor f(t) is zero for times less
than 27 because one assumes that the radicals are
initially formed at a separation of two diffusive steps
and so cannot recombine in a time less than 2r. Adrian
shows®® that in the limit wr<1 this form of f(?) leads
to the following expressions for w:

Wtep'? =M (wn/0)2(0.24) (wor) 12

t2>2r,

(2.11)
and

Watep™® = A (0.24) [2(2.44) 12— (w,/0) 2 (wor)V?].  (2.12)

For large magnetic fields w~uw, these expressions pre-
dict a dependence on the square root of the magnetic
field.

III. CALCULATION OF THE DYNAMICAL
PROBABILITY FACTOR

In this section we present a calculation for f(¢) in two
and three dimensional systems by use of a continuous
diffusion model. The dynamical probability factor f(¢)
is the probability that two radicals initially separated
by a distance 7, will arrive for the first time at separation
a<r, between ¢ and ¢+-dt. The two radicals are assumed
ro move about independently by diffusion. Consequently
the probability of finding the two radicals at relative
separation r between ¢ and ¢#-4-dt is given by the diffusion
equation

dP(r, 1) /0t=DV,2P,(x, 1), (3.1)

where D is the sum of the diffusion coefficients for the
two radicals. Here the Laplacian and r take a form ap-
propriate to two or three dimensions, d=2 or 3, respec-
tively. For an arbitrary initial distribution P4(r, 0),

J. M. DEUTCH

Eq. (3.1) has the formal solution (d=2, 3)
Py(r, 1) = exp[DV,2]P4(x, 0). (3.2)

We shall restrict attention to a special class of initial
conditions which do not depend on orientation

Py(r,0) =[F(r)/m2¢1]. (3.3)
Normalization requires
/ " W () dr=1. (3.4)
0
For this class of initial conditions
Py(r,t) = exp[La(r)tJLF (r)/m2¢1],  (3.5)
where
Ly(r) =DL(1/7*) (d/dr)r*(d/dr)], (3.6)
or
Ly(r) =D[rX(d/dr)r(d/dr)]. 3.7

The solution, Eq. (3.5), may be expressed as

Pa(r, t) =[ 1o 1Ga(r, t | 7o, 0)F(ro)dro, (3.8)
9

where the Green’s function Gu(r, | 7, 0) is defined by
Ga(r, t| 10, 0) = exp[La(r){J[(r—r0)/ (2ro)*'x].  (3.9)

This Green’s function has the interpretation of the
probability of finding a separation between r-4dr at
time ¢ given an initial separation in the infinitesimal
radial shell about 7o. The Green’s function satisfies the
equation

3Ga(r, t| 7, 0)/0t=La(r)Ga(r, {| 1,0) (3.10)
with initial condition
Gd(?’, 0 [ T, 0) = [5 (f—’o)/ﬂ'(270)d_1]. (3.11)

The quantity we seek, fa(£) (d=2, 3), is closely related
to Ga. The Green’s function gives the probability of
separation r at time ¢ irrespective of how often the
separation 7 has been realized during prior times. On
the other hand we require f;(f), the probability that
a particular separation a is achieved at time ¢ for the
first time given that the initial separation was ro>a.
This probability distribution for first arrival times is
required for interpretation of the CIDNP experiment
because it is imagined that the radicals form diamag-
netic products with high efficiency (A~1) once they
approach a distance a. If required recollisions may also
be included.

A well-known trick is available® for finding f4(¢) from
Ga. Essentially one solves Eq. (3.10) subject to an ab-
sorbing boundary condition at r=ag,

Gd(a) t | 7o, 0) =07 (3'12)

which has the effect that a particle remains at separa-
tion r=g after its arrival. It follows that the flux of
probability at r=a is precisely the first arrival prob-
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ability density f4(¢). Thus

fa(ty =wD(2a)* [M

- Lﬂ, (3.13)

when Gg is the solution to Eq. (3.10) on the interval
a<r< « withinitial condition Eq. (3.11) and boundary
conditions Eq. (3.12) and ’

limGy(r, t | 7o, 0)—0. (3.14)
If one wishes to find the probability density for first
arrival times for a particular initial distribution F(ro)
one needs only average f;(¢) in Eq. (3.13) with this
distribution.

The Green’s functions Gz and G; may be found by
eigenfunction expansion or other methods.® We present
in turn the results for two and three dimensions.

For three dimensions

Ga(r, 1| 1o, 0) =[2wrre ] / dk exp(— DY)
0

X sin[k{(ro—a) ]sin[k(r—a)] (3.15)

or
Gs(r, ¢ | 7o, 0) = (47%rre) "L (w/4ADE) 12
X {exp[~ (r—1)%/4Dt]
— exp[— (r4+r—2a)2/4Dt]}, (3.16)

which leads, according to Eq. (3.13), to the following
expression for f3(2) :

f:(t) =[Da(ro—a) /2x' %, (Dt)¥?] exp[— (ro—a)2/4DK].

(3.17)
Note that
fi()y~t732 as t—oo (3.18)
and that
/ f(tydi= 2. (3.19)
0 7o

The asymptotic expression for f3(f) is similar to the
step diffusion result f;(¢), Eq. (2.10). Furthermore
Eq. (3.19) states that in three dimensions the prob-
ability that the two radicals will never reach a separa-
tion @ is (1—a/r). From Egs. (1.1), (2.3), (2.4), and
(3.17) we may compute for the three dimensional con-
tinuous diffusion model, the probability of forming
cage products, w. The result is

wi® = Awyla/2u?r) [1—e 2 cos(2p)]  (3.20)
and
s =\ (a/70) — (wa2a/ 2?r)[1—eP cos(2p) ]},  (3.21)
where
p=(r—a) (w/8D) 2. (3.22)
For three dimensional diffusion!®
D= (a?/6r), (3.23)
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where 7 is the time between diffusive jumps so that
p="L(r/a) —1](Bwr/4)V2, (3.24)

Since wr<<1, one may take the small p limiting forms of
Eq. (3.20) and (3.21),

w3 =N (wn?/e?) [1— (a/r0) J(V3/4) (wr) 12

and
we® =\{ (a/70) —[(wn/w?) [1— (a/r0) J(V3/4) (wr)¥2]}.
(3.26)

These results for the continuous diffusion model agree
quite well with Adrian’s results for the step diffusion
model. For large magnetic fields a square root depend-
ence on the magnetic field is predicted and the numeri-
cal coefficients are quite close with the choice 7= 2a.
The two dimensional analysis is slightly more com-
plicated because not all the necessary integrals can be
performed analytically. The Green’s function is

(3.25)

Ga(r, 1| 7, 0)= (2m)~1 f dkk exp(—Di2t)
0

Co(kf)Co(kro)
Yo (ka) +J2(ka)’ (3.27)
where
Colkr) =Jy(kr) Vo(ka) —To(ka) Yo(kr), (3.28)

and Jo(x) and Yo(x) are zeroth order Bessel functions
of the first and second kind, respectively. From Eq.
(3.13) it follows that

Cy(kro)
Vi (ka)+752(ka) °
(3.29)

The long time asymptotic behavior of f,(f) may be
determined by the substitution x=D#k% in Eq. (3.29),

£(0) = — (mt)— /0 " dxe=Co [(5’3)”30]

X { Yo [(—;—t)ma] T [(%)Uza]r (3.30)

followed by evaluation of the integral when Cy, ¥, and
Jo are replaced by their limiting form for small argu-
ment. The result is

h= =22 / " dkk exp(— D)
™ Jy

fa(£)~ In(r/a) (2/6)[In(+/) 2, (3.31)
where we have made the identification!®
D= (a/4r) (3.32)

appropriate to two dimensional diffusion. While the
integral in Eq. (3.29) cannot be easily performed, it
can be shown!! that

/ °°fz(t)dt= 1. (3.33)
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For two dimensions Egs. (3.31) and (3.33) show that
the two radicals will always achieve the critical separa-
tion and that the time decay of the dynamical prob-
ability factor is much slower in two dimensions than in
three.

In order to compute the probability of forming cage
products in two dimensional systems, w,;, one must
perform integrals of the type

w L, o =4 edk
/ofz(t) sin%widt= 1"/0 E [(DE)*+ (20)?]

X {Co(kfo) [Yoz(kd) +Joz(k(1) ]_1}. (334)

This integral may be evaluated approximately in the
limit
wr=wa?/4DK1 (3.35)

with the result

/ " fa(t) sinttdt=%In (%’) {In[ (wr) 2]} (3.36)
0
It follows from Egs. (1.1), (2.3), and (2.4) that

0@ =A(wn*/0?) § In(ro/@) {In[ (wr)~2 ]} (3.37)

and
0@ =A—X(w,¥/w?) 5 In(ro/a) {In[ (&r)~12]}-1.  (3.38)

In contrast to the three dimensional case there is a
logarithmic dependence on the magnetic field when
w~wy,. Thus the striking difference between the two
and three dimensional systems for the CIDNP experi-
ment is the magnetic field dependence of . In addition
there will be a substantially modified temperature de-
pendence of w arising from the temperature dependence
of 7.

Iv. DISCUSSION

Our calculation clearly indicates the striking differ-
ences that may be expected from CIDNP carried out
in two and three dimensional systems. We next wish
to formulate and discuss the qualitative criterion neces-
sary for a real system to behave as a quasi-two dimen-
sional system. Essentially this criterion is that a repre-
sentative trajectory of a radical must encounter the
boundary of the system several times before recombina-
tion. For an infinite layer of thickness L this criterion
is

L< (6Dt ) 2=a(t/T)'2, (4.1)

where # is the observed time constant for recombina-
tion. Since the best estimate!? of f, is approximately
10719 sec and 7 and @ are roughly 10-'? sec and 2 A, re-
spectively, once L is less than 20 A the two dimensional
character of the film should emerge. It should be noted
that much larger values of ¢, have been estimated.®® It
should be possible to realize films of this thickness or
less in a variety of experiments.

It is possible to estimate f, within the framework of

J. M. DEUTCH

the theory. Ordinarily one would identify ¢, with

= / ifalt)dt (4.2)
0

but this integral does not exist. Alternatively one may

identify £, with the most probable value f, of f3(¢),

ho=[(ro—a)/ar. (4.3)

If 4 is taken to be 107 sec and 7=10""2 sec a value of
7o roughly equal to 10e is implied. This value of the
initial separation is much larger than is thought reason-
able for a radical formation. Normally one assumes that
7o 1s about 2e¢ which implies that £, should be about 1012
sec in contrast to the observed value of 107 sec or
longer. We believe the resolution of this problem is as
follows. Radical formation occurs at 7o~a. In the first
brief period of time (~107'2 sec) the radicals may re-
combine or an event unfavorable for recombination
may happen. The unfavorable event might be, for ex-
ample, the interposition of one or two solvent molecules
or rotation of one radical fragment. The radical pairs
that experience this unfavorable event may be treated
as if they had an effective initial separation much
larger than ry=a. The implication of this view is that,
on a fast enough time scale, two time constants for
geminate recombination should be observed.

In this paper we have given a detailed analysis of
the CIDNP experiment in two and three dimensions.
Other experiments are interpreted on the basis of molec-
ular diffusion and these should also be candidates
interesting quasi-two dimensional measurements. We
discuss briefly two examples.

First, elegant picosecond spectroscopy experiments
are underway'® to observe directly the time decay of
radical fragments formed by photolysis. These experi-
ments are more powerful than CIDNP in the sense
that the probability of recombination is observed di-
rectly as a function of time. For geminate recombina-
tion, if the efficiency for product formation is high,
A~1, the picosecond experiment should measure f;(¢)
directly. Experiments carried out in films of variable
thickness should show a transition between f;(f) and
fa(2). If the efficiency for product formation is smaller,
the measured quantity for geminate recombination,
F4(t), is the probability of product formation taking
into account that prior arrivals at separation a did not
lead to products. The quantity Fz(¢) may be bound
from the integral equation

Fu®) =30 +(1=3) [ defalt=s)Fu(s). (49)
0

As a second example we consider nuclear magnetic
relaxation by intermolecular dipolar coupling. For this
sort of relaxation mechanism it is usual to evaluate the
correlation functions one encounters by the continuous
diffusion model.* These correlation functions have the
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form
Fin(t) = (N—1) ({Vi*[2() /P (1)} { Y [2(0)]/7(0)}),
(4.5)

where Y, is a spherical harmonic, 7 is the distance be-
tween two representative spins, and @ denotes the
orientation of r with respect to the external magnetic
field. The calculation of ki, (f) for a three dimensional
system according to the continuous diffusion model is
well known!; the correlation functions decay rapidly
in time, their Fourier transforms exist at all frequencies,
and well behaved values of T and T result.

In a two dimensional system qualitatively new effects
appear. This problem has been considered in some de-
tail by Kokin and Izmest’ev.’® First one must relate the
spherical harmonics defined with respect to the external
magnetic field to spherical harmonics defined with re-
spect to an axis perpendicular to the two dimensional
surface. Next the correlation functions must be eval-
uated according to the two dimensional diffusion equa-
tion. For the case /=2 one finds
Rim (1) = (5p/2) {| dom® (B) |* Ko(?)

+3[1 d-2n®(B) 2+ | d2w®(B) ["IK2(1)}, (4.6)

where

Ka(f) = f " dkk exp(— D) [ / ) dr]n(kr)r—2]2, @.7)
0 a

dum P (8) is a matrix element of a finite rotation'® and
B is the angle the external magnetic field makes with
the axis perpendicular to the slab. Note the strong
dependence on the angle 8.

An alternative expression for K,(¢) is”

K.(t)= / " dr / ” drg[r*r22Dt 1!
X exp[— (r*+r2/4Dt) ). (rro/2D1), (4.8)

where I,,(x) is the modified Bessel function. From this
formula it may be shown that K,(f) has the slow asymp-
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totic time dependence ¢~ It follows that for the two
dimensional system the correlation function k. (f)
will not decay fast enough for the zero frequency Fourier
transforms to exist. In short the normal condition for
motional narrowing are not present and the inter-
molecular magnetic relaxation must be interpreted by
techniques usually employed for slow motion in solids.
We believe that such effects should be observable in
thin liquid films or absorbed layers.
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