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Two recent theories for the two particle distribution function of polar fluids are compared. The formal
theory of Nienhuis and Deutch [J. Chem. Phys. 55, 4213 (1971) ] is valid for arbitrary sample geometry
and arbitrary short-range forces accompanying the dipole-dipole interactions. The theory of M. S. Wertheim
[J. Chem. Phys. 55, 4291 (1971)] presents an exact result for the mean spherical model (MSM) of a
fluid of hard spheres with embedded dipole moment in an infinite system and in a finite spherical system.
Perfect agreement is found when the approximations of the MSM are introduced into the Nienhuis-Deutch
theory. This lends strong support to the conclusions that have been drawn about the long-range and shape
dependent nature of the two particle distribution function for polar systems. Finally an expression is given
for the excess free energy of a dipolar fluid in the MSM.

I. INTRODUCTION

A recent issue of this journal contained two articles
dealing with the two particle distribution function, #,,
of polar fluids. One of these articles was by us!; the
other by M. S. Wertheim.? The two particle distribu-
tion function of polar liquids has a long-range part
that arises because of the long-range dipole-dipole
interaction between the molecules. Since these two
articles are the first attempt to evaluate the long-range
nature of the two particle distribution function it is of
interest to examine the relationship between the two
theories. The main purpose of this paper is to show
that the theory presented by Wertheim? and that pre-
sented by us' are in essential agreement. This agree-
ment lends strong support to the central conclusions
about the long-range and shape dependent character
of the two particle distribution function of polar fluids.

The two theories are not identical in their scope.
Werthein? has adopted a particular model for the polar
fluid, the so-called mean spherical model (MSM). He
has solved this model exactly for two particular sample
geometries, an infinite system and a finite volume spher-
ical system. The molecules are assumed to be hard
spheres with a central point dipole. In the MSM an
approximation is made at the outset to the exact direct
correlation function C(1, 2). The approximation con-
sists in replacing C(1, 2) by [—8v] for |rn—r.| >R
where R is the hard sphere diameter, 8= (k7)) and v
is the dipole-dipole potential. For hard spheres, i.e.,
v=0, the MSM is the Percus~Yevick model for the
hard spheres system.

Our theory' does not adopt a particular model of
the fluid nor is the short-range nature of the inter-
molecular forces specified beyond the assumption of
pairwise additivity. This permits us to formally include
the effects of angular dependent short-range forces,
which is an important feature of real liquids. Further-
more, our theory deals with all sample geometries in-

cluding the infinite system and the sphere in vacuum.
All the consequences of our theory are determined once
the short-range part of the two particle correlation
function G;® is known. A calculation of this complex
quantity requires one to adopt a particular model for
the fluid, for example, the MSM.

It is clear that the two theories are attractively
complimentary. Our theory which is a more general
formulation has the disadvantage that calculation of
quantities of interest, such as the dielectric constant,
requires knowledge of the short-range correlation func-
tion G-, Wertheim’s theory achieves the explicit cal-
culation of quantities of interest at the expense of
adopting a reasonable, but restrictive, model.

The succeeding sections of the paper are organized
as follows: In Sec. IT we present the relevant results of
our theory; in Sec. III we present the relevant results
of Wertheim’s theory. The interested reader is referred
to Refs. (1) and (2), respectively, for the detailed
derivations of these results. In Sec. IV we demonstrate
that the results of the two theories are in agreement
for the infinite volume case. In Sec. V we show that
the central result of the two theories are in agreement
when finite volume effects must be taken into account
in the case where the sample geometry is a sphere in
vacuum,. :

The final section of the paper explores the thermo-
dynamics of the MSM dipolar fluid. In the second
article of our series on the structure of dipolar fluids,?
we showed how knowledge of the two particle correla-
tion function may be used to determine the thermo-
dynamic properties of dipolar systems. The Helmholtz
free energy of the polar fluid may be related to the
Halmbholtz free energy of a reference fluid and a par-
ticular integral involving the two particle correlation
function of the dipolar system. In the reference system
molecules interact with exactly the same short-range
forces present in the dipolar system, but the molecules
have zero dipole moment. Explicit calculations cannot
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be carried out until one adopts an expression for the
short-range part of the correlation function G»®, which
in our theory determines the long-range part of the
correlation function. In our previous article? we adopted
a form for G, implied by the Onsager model. As
stated in that paper, “the chief defect of the Onsager
model is that it does not adequately take into account
the short-range angular dependent forces present in
real liquids.” Wertheim’s calculation of the MSM pro-
vides us with a better approximation for G»?, since at
least the hard core part of the short-range forces is
taken into account in a more realistic manner. We
present an expression for the Helmholtz free energy of
a dipolar system when the MSM form of G, is em-
ployed to compute the two particle correlation function.

II. RESULTS OF THE NIENHUIS-DEUTCH
THEORY

In this section we summarize the results of the
Nienhuis—Deutch theory' in a way that permits easy
comparison with Wertheim’s results. The two particle
correlation function is defined by

m(1, 2) =[p/QT+G:(1, 2), (2.1)

where (1, 2) denotes the position and orientation of
dipoles one and two, i.e., {ri0;; I, @), p is the density,
and Q= [dw,. The correlation function G, may be sepa-
rated into two terms

G:(1, 2) =G0 (1, 2)4+-Gx™(1, 2). (2.2)
The term G,©® is strictly of short range, has a unique
definition in terms of a graphical expansion, and is the
same for all sample geometries V. The term Gy® has a
long-range character and is given by
GV (1, 2) = (Bp*/ ) pes (1) [T (11, 1)
+R* (11, 125 €7) ]* ers(2) = (/)% V' (1, 2), (2.3)

where for convenience we introduce the reduced corre-
lation functions by the definitions

G:= (p/Q)Y  and Gy = (p/2)%O.
In Eq. (2.3) T is the dipole-dipole tensor
T(r, ) =3(—1) @—r)/ |1~ 1=/ | 1—1" ]}
(2.5)
and e the dielectric constant of the fluid determined by
e—1=(47/3) Bppr+ Peess. (2.6)

The quantity R*(r, r’; ¢')-p has the interpretation
of the reaction field established at point r in ¥V by a
dipole p at r’ in V, when V is empty and the surround-
ing is filled with a dielectric continuum characterized
by the dielectric constant ¢71. The effective dipole mo-
ments are determined by the short-range part of the
correlation function 2@ according to

Beti (1) = 0 (1) +(p/Q) [A(2) A" (1, 2) n(2),

(2.4)

(2.7
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and in general s need not be parallel to . Since A©
determines s which in term determines ¢, it follows
that knowledge of 2 completely determines 2 and
hence #,.

These results are valid for arbitrary sample shapes V.
It should be noted that since £ is of short range and
independent of sample geometry, po: and e are the
same for all sample geometries. In our original work
we considered the more general situation of a molecular
sample of volume V surrounded by a continuim di-
electric region W of dielectric constant €. The results
summarized here are for the special case when this
surrounding region is not present, i.e., W=0.

III. RESULTS OF THE WERTHEIM THEORY

Wertheim presents® an exact expression for the cor-
relation function

(1, 2) =Gu(1, 2) (p/2)* (3.1)

in an infinite system for the MSM in the case where
the molecules interact as point dipoles embedded in
hard spheres of radius R. The exact expression for
(1, 2) is

h(1, 2) =hs(r)+hp(r)D(1, 2)+ha(r)A(1, 2), (3.2)
where

A(1, 2) = s1° &, (3.3)

D(1,2)=3r2(s;°1r) (82 1) —(8-8), (3.4)

1 (S2) is a unit vector in the direction of dipole one
(two), and r= | r,—r; |. Note that

Sl‘T(rl, rz)'Sz=T‘SD(1, 2) (35)

The quantity h,(r) =h,(r, p) is the pair correlation
function for a hard sphere fluid at density p computed
from the Percus—Yevick equation; closed form solutions
are available for this equation.*

The quantity #a(r) vanishes for r< R and, for >R,
is equal to

ha(r) = 267, 260) —ha(r, — )],

where, here, one of the terms 4,(r, —«p) refers to a
solution of the Percus~Yevick equation for hard spheres
at a negative density equal to (—«p). The constant «
is found from solving the equation (at a particular p
and 8),

(3.6)

y=%Lg(28) —q(—8)], (3.7
where
y="[4nBu’o/9], (3.8)
£=kn, (3.9)
and
n=[wR3/6). (3.10)

The function ¢(y) is inverse compressibility which for
hard spheres, in the Percus-Yevick approximation, is
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given by
Lo Ti=14mp [~ P, p)dr= 10 (311)
0 (1+27I)2
Finally, the function %p(r) vanishes for r<R and is
given by

hio(r) =i (r) — 372 / “ho(s)ds  (3.12)
0
for r>R, with
ho(r) =x[2h,(r, 2xp) +ho(r, —kp)].  (3.13)

In fact, Egs. (3.6) and (3.12) are also valid for r<R
since for these values they give zero.

For the MSM both the functions %a{r) and &p(r)
are determined once solutions to the Percus-Yevick
equation #,(r, p) for positive and negative densities
are known. Both %, (r) and ka(r) are of short range.
The function %p(r) is of long range and asymptotic to

— 33 f s?hp (s)ds,
0

which by use of Eqgs. (3.13), (3.11), (3.7), and (3.8)
may be shown to be equal to

(Bu*/r*)[1/q(2km) g(—wn) ]. (3.15)

It follows from Egs. (3.2) and (3.5) that the asymp-
totic form of £(1, 2) in MSM is '

Lim (1, 2) =BLq(2km)q(—xn) J'w(1) -T(1y, 1) - p(2).

(3.16)

In summary, Egs. (3.13) and (3.12) determine %p ()
and Eqs. (3.6) determines ka(r) in terms of the hard
sphere k,(r) obtained from the Percus—Yevick equa-
tion. These functions specify %(1, 2) according to Eq.
(3.2). It should be emphasized that Wertheim’s result
quoted in this section applies only to an infinite volume
system; for finite volumes the results must be modified.?

The dielectric constant is determined by Wertheim
in the MSM to be

(3.14)

e=[q(28)/¢(—9)], (3.17)
which can be put in the alternative form
e=[3y/q(—§) 1+1 (3.18)

by use of Eq. (3.7).

IV. COMPARISON OF THE TWO THEORIES FOR
THE INFINITE VOLUME SYSTEM

We now wish to show that the two theories are in
agreement. We shall demonstrate this agreement in the
following manner. In order to apply our theory we
must have an expression for #©®, the short-range part
of the two particle correlation function. We shall select,
as A, the short-range part of Wertheim result for
k(1, 2) in the MSM. We shall then use exclusively the
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results of our theory, presented in Sec. II, for an
infinite volume system, to compute all other results
for the MSM presented in Sec. III. This means that
we must use the MSM £© and our theory, to (a) com-
pute the dielectric constant and find agreement with
Egs. (3.17) or (3.18), (b) compute £ and find agree-
ment with Eq. (3.16), (¢) show that A=hrO44® is
identical to the exact expression for %, Eq. (13.2),
found by Wertheim for the MSM in the infinite volume
system.

The short-range function £® for the MSM is formed
by subtracting the long-range asymptotic part of
k(1, 2), Eq. (3.16), from the exact expression for
k(1, 2), Eq. (3.2). Thus,

h(u)(la 2) =h3(7’)+hA(T)A(1, 2)
+{kn(r) —[Bu?/rq(26)¢(—£) 1} D(1, 2),

where £=xn and we have made use of Eq. (3.5).

The functions #a{r) and g(x) are defined by Egs.
(3.6) and (3.11), respectively; the function kp(r) is
defined by Egs. (3.12) and (3.13); and the factor ¢
has exactly the same meaning as in Sec. III. We pro-
ceed to use this form of #© in the results of our theory
presented in Sec. II.

In order to compute the dielectric constant in our
theory according to Eq. (2.6) we must know pess. This
quantity is defined by Eq. (2.7). For the MSM, %@ is
given by Eq. (4.1); an elementary calculation yields

here(1) = (1) {1+[y/q<zs)q<~s>3

(4.1)

o [ r%(r)dr] . (42)

0
where the singularity at the origin in the last term of
the expression for 2@, Eq. (4.1), is taken into account
according to the prescription,!

f ar's; T(r, 1) - ;= / dr'D(1, 2)r3
Jr—r/|<L Ir—r¢/|<L

(4.3)

The last term in Eq. (4.2) may be evaluated by use of
Eqgs. (3.6) and (3.11) with the result

Pets(1) = (1) ([y/q(28) g(—8) ]

+3{le(26) ' +[2/¢(=5)1}). (44)

In the MSM, v is related to ¢(—£) and ¢(2¢) according
to Eq. (3.7). It follows that

Bets(1) =p(1)g(—§)7,

so that in the MSM p.¢ is parallel to u.
According to Eq. (2.6) the dielectric constant in our
theory will be given by

e—1=(47/3)Bop- pers=3yq(—£)"",  (4.6)
in agreement with Wertheim’s result, Eq. (3.18), the

=—47S;* S,

(4.5)
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alternative form for the dielectric constant, Eq. (3.17),
follows immediately by use of Eq. (3.7).

Our next task is to show that the MSM short range
kY, when employed in our formalism, regenerates the
appropriate long-range part of the two particle correla-
tion function found by Wertheim for the MSM. For an
infinite system, according to our theory, the long-range
part of £(1, 2) is given by

BO(1, 2) = (B/€) pete(1) T(ry, 1) * pers(2).  (4.7)

If we substitute for ps the expression we have found
in Eq. (4.5) and use the form for e given in Eq. (3.17)
we obtain exactly the asymptotic result [Eq. (3.16)]
found by Wertheim for the MSM. It follows immedi-
ately that A=A©+24® is identical to the exact expres-
sion for 2(1, 2), Eq. (3.2).

In our theory the dielectric constant may be com-
puted in alternative manner from a fluctuation formula.
For a sphere embedded in an infinite dielectric con-
tinuim of the same dielectric constant this formula is

(e—1)[{2e+1) /3e]= (8/3V) (M?), (4r)
=31+ (N—-1)(s1"$2)] (4.8)

[see Eq. (1.5) of Ref. 1], where the bracket denotes
an average over the distribution function appropriate
to an infinite system and the average is performed
over a sphere with radius 4,

(p— 1) <Sl' SQ>Q= (p/ﬂz) dl'd(l)ld(l)zsl' Sgh(l, 2) .
Iri<Ad

(4.9)

A simple calculation employing Eq. (3.2) for k=A@
hY leads to the result

(e—=1)[(2e+1) /3e]J=5{[q(26) I'+[2/9(—£) ]},
(4.10)

which may be shown by use of Eq. (3.7) to lead to the
expression for the dielectric constant presented in
Eq. (3.17).

In this section we have demonstrated the agreement
between our general theory and Wertheim’s results for
the MSM in the case of an infinite system. In the next
section we turn to a comparison between the two
theories in the case of a finite spherical system.

V. COMPARISON OF THE TWO THEORIES FOR
A FINITE SPHERICAL SYSTEM

For large separation, the potential of mean force
w(1, 2) between two dipoles is related to % by the
formula

h(1, 2)~—Bw(1, 2). (5.1)

Wertheim presents an exact formula for w(1, 2) for
the MSM in the case of a spherical sample of radius 4.

G. NIENHUIS AND J. M. DEUTCH

Wertheim’s result is

—1\/e—1
w(l, 2) = (ifi—y_)(;?) (M1 V1) (P2 V)
—1 e I41 L
X [1’12‘1-{— %1-— 121 m (2—22) PL(COSGH)] .

(5.2)

We shall show that our theory leads to an identical ex-
pression for the potential of mean force for this finite
system geometry. In our theory w(1, 2) at large sepa-
rations is given by

—pw(1, 2)~hr" (1, 2) (5.3)
or
w(1, 2) = —€ Yese(1) +[T(ry, 12)
R (1, 15 € 1) Jo et (2). (5.4)

The effective dipole moment and the dielectric con-
stant do not depend on sample shape, so for the MSM
we may use the result for pes presented in the last
section in the form

Betr=[(e—1)/3y]H, (5.5)
where we have used Eqs. (4.5) and (4.6). It follows
that
w(1, 2) =[(e—1)/3y[(e—1)/3pep(1)

ViV [ n—r [T =R* (1, 15 ) ] (2). (5.6)

The term involving the reaction field tensor may be

evaluated. The reaction field for a spherical cavity of

radius 4 in a dielectric continuim of dielectric constant

¢ is given by
R,,*(rl, Iy, 6) =A_IV1V2
2 (e=1)(L+1) (7’172)1‘
" {—] Pr(cost 5.7
X T Tt \az) Peleosta) (5D)

[see Eq. (A13) in the Appendix of Ref. 1]. It follows
that

-1
R* (11, Is; 1) =— ('E—A*‘) ViV2
I S | (nrz)"
———{—} Pr(cosbp). (5.8
X Z Trtger\az ) Frleosh). (58)

When this expression is substituted into Eq. (5.6) we
obtain exact agreement with the asymptotic potential
of mean force Eq. (5.2) obtained by Wertheim for the
MSM in the case of a finite spherical sample geometry.

VI. THERMODYNAMICS OF THE MSM
DIPOLAR FLUID

In the second article of our series on the structure of
dipolar fluids® we presented a formula that permits
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calculation of the excess free energy of the dipolar
system once the two particle correlation function is
known. The formula is obtained by formally scaling
the dipole moment by a parameter A2, so that each
molecule has a dipole moment equal to AYu, and then
considering the free energy of the system A(\) as a
function of A. If A=1 the system is the dipolar fluid of
interest; if A=0 the system is a reference system where
the molecules interact exclusively by the short range
potential. The general formula we obtained is

A()—A(0)=— -;—/:d)\/vd(l)d(Z)

p ’ - . 3 ‘
X () b1, 0BT, D02, (61)

where 2(1, 2;\) is the two particle distribution function
for the polar system where the molecules have dipole
moment AY2u. The reader is referred to Ref. 3 for
details of the derivation and related discussion.

Wertheim’s calculation of k(1, 2) for the MSM
dipolar fluid provides a new and important approxi-
mation for this excess free energy. It turns out that
the answer is remarkably simple. By closely following
Wertheim’s argument for an infinite system with A=1,
it is an easy matter to show that

h(lr 2) )‘) =h,(7)+hA(f, )‘)A(l) 2) +h1)(f, )‘)D(ly 2):
(6.2)

where ha(r; \) and Ap(r; \) have the same functional
form as in Eqgs. (3.6) and (3.12)-(3.13), respectively,
except that « is replaced by a function of A, K(A).
The function K(\) is determined by an equation simi-
lar to Eq. (3.7),

Ay= (47/9)BoNu?=3{g[2K (M ]—g[— K (Mn1},

where 7 is given by Eq. (3.10) and the functional form
of g(x) by Eq. (3.11).

If Eq. (6.2) for k is substituted into the expression
for the free energy, Eq. (5.1), the resulting integrals
can be performed. The singularity in T does not con-
tribute in any of the three resulting terms because #a,
and kp all vanish for r<R®, and the term involving %,
does not contribute since %,(r) =—1 if r<R. The term
involving %a vanishes after integration over orientations
because Tr[T]=0. After integration over angles the

(6.3)

3515
term involving zp may be expressed as
A(1)—4(0)=—1} (2p2u2)f an [ o (rs
(6.4)

. 1 o
= —$rV f N / drho (r; N7,
0 R

(6.5)

where we have used the fact that #p vanishes for r<R.
Wertheim has shown that
[ o, =K ) (6.6)
R
[see Eq. (36) of Ref. 2], so that the final answer for
the excess free energy of the MSM dipolar fluid is
given by the simple expression.

AD—40) .
_‘—]/f———z;szu fo dNK ().

For fixed p and B the function K (M) is found by solving
the equation

=3{[1+4K (M0 /[1—-2K(M\)n ]
—[1-2KM\)nP/O1+KM )0}, (6.8)

In Eq. (6.7), A(0) is to be interpreted as the Helm-
holtz free energy of a hard sphere fluid in the Percus-
Yevick approximation.

We expect that the MSM expression for the excess
Helmholtz free energy, Egs. (5.7)-(5.8), will prove
quite successful in predicting the thermodynamic prop-
erties of highly polar fluids. Furthermore, the MSM
expression may be more successful than the Onsager
model expression for the excess free energy,? because
the MSM takes into account short-range forces in a
more realistic manner. We intend to compare the
MSM predictions for the dielectric constant and the
free energy (as well as the Onsager model predictions)
with experiment in the near future.

(6.7)
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