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The potential of mean force between two impurities in a sample of a fluid of rigid dipoles is studied-
Each impurity may be a charge, an electric dipole or an electric quadrupole. It is found that the longest-range
part of the potential of mean force obtained from a molecular theory is the same as the interaction energy
obtained from macroscopic electrostatics, when the polar fluid is treated as a dielectric continuum, except
that the impurity dipole and quadrupole have to be replaced by effective dipole moments. These effective
dipole moments arise because of the local polarization of the polar molecules in the surrounding of the
impurities, due to the local interactions. Next a pure polar fluid in the presence of an arbitrary external
electric field is considered. The one-particle distribution function in the presence of the field is studied
to all orders in the field. It is found that both this one-particle distribution function and the dielectric
polarization are shape-independent functions of the local average macroscopic field.

I. INTRODUCTION

This is the third in a series of papers dealing with the
structure of equilibrium dielectric fluids. In the first
paper, hereafter referred to as I, we obtained an explicit
expression for the long-range part of the two-particle
distribution function for a fluid composed of rigid
dipoles. We calculated the polarization of the fluid to
first order in the external field Eo(r), and demonstrated
that the constitutive relation

Py(r) =[(e—1)/4r JE(r) (1.1)

is valid with a dielectric constant e independent of
sample shape and surroundings.! In the second paper,
hereafter referred to as I, we examined the statistical
thermodynamics of a polar fluid, in the absence of any
external field, on the basis of the two-particle distribu-
tion function determined in 1. In addition, we obtained
an explicit expression for the three-particle distribution
function of the polar fluid and used this result to
demonstrate the existence of a local Kerr constant,
independent of sample shape and surroundings.?

In this paper we consider two further problems in
the molecular theory of polar fluids. First we shall
determine, using graphical techniques developed in I
and II, the potential of mean force w; between two
molecular impurities in the polar fluid at large separa-
tions. The potential of mean force, at large separations,
is related to the two-particle distribution function 7,
for the two impurities by

n2(ra, Wy ; Iy, mb) =[V29a9bj_1[1_6w(ra) @ ; rb; (Db) ]7
(1.2)

where V is the volume of the sample, 8= (kzT)1, Q,
and @ are the integrals over the orientations of the
rigid impurities @ and b, respectively. The coordinates
r and ® denote the position and orientation of the
impurities. We compare the result obtained for w, with
the interaction energy obtained from macroscopic
electrostatics where the supporting polar fluid is as-

sumed to be a continuous dielectric characterized by
the dielectric constant . We consider several molec-
ular impurities: charges, dipoles, and quadrupoles and
the potential of mean force between any two of these.

In general the potential of mean force will be a
function of sample shape and surroundings. As in our
previous work, we consider an arbitrary sample volume
V in a surrounding volume W, perhaps zero, which
contains a dielectric continuum characterized by a
dielectric constant &. Our results are that the potential
of mean force obtained from the molecular theory is
consistent with the interaction energy obtained from
classical electrostatics, except that the impurity dipole
moments or quadrupole moments are replaced by effec-
tive dipole moments. These effective dipole moments
arise because of the short-range forces between the
impurity and the molecules in the fluid.

For example, in the simple case of an infinite volume
V, the potential of mean force between two impurity
charges ¢, and ¢ is found to be

102" =[qags/€ | Ta—15 | ], (1.3)

which is consistent with linearized Debye-Hiickel
theory, while the potential of mean force between an
impurity charge and an impurity dipole is

Wy =[app.cre (@) « (Ta—To) [e | T,—13 ] (1.4)

We present a formal, unique molecular expression for
the effective dipole moment ps..ss. The dielectric con-
stant ¢ which appears in these formulae is identical to
the dielectric constant appearing in Eq. (1.1). The
case of two impurity charges has been considered
previously by Jepsen?® and our work has been influenced
by the interesting work of Mahan! and Mahan and
Mazo® on impurities in simple ionic crystals.

The second problem we consider in this paper con-
cerns dielectric saturation, i.e., the validity of the con-
stitutive relation, Eq. (1.1), between the polarization
Py(r) and the macroscopic field E(r), beyond the
linear term in E. We investigate this problem by obtain-
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ing a formal expression for the one-particle distribution
function in the presence of the external field m(r, w; Ey)
to all orders in the external field for a pure polar fluid
identical to that considered in 1. Both the polarization
Py(r) and the macroscopic field E(r), to all orders in
the external field, are simply related to this one-particle
distribution function. We find that to all orders in the
field the relation between Py(r) and E(r) may be
expressed as

Py (r) =({LE(r) -1} /4m)E(r),

where the functional form of € is a property of the fluid,
independent of sample geometry and surroundings.
Formal molecular expressions for the terms arising in
the power series expansion of ¢ E(r)] are given in
terms of local molecular distribution functions. To
terms linear in the field #;(r, @; Ey) has the form

ny(r, ©; Eo) = (p/Q) [14Bpetr(®@) - E(r) ],

which leads to results entirely consistent with those
obtained in I. The free energy of the molecular sample
in the external field is also discussed.

(1.5)

(1.6)

II. GRAPHICAL EXPANSION OF THE IMPURITY
CORRELATION FUNCTION

The graphical expansion technique that we employ
to investigate the impurity problem is similar to the
technique employed in I to treat the pure polar fluid.
The major modification for the two-particle distribution
function % i1s that the root points refer to the two
impurities which may or may not be of the same species.
The system we consider consists of N rigid dipoles and
two impurities in a volume V surrounded by a region W,
perhaps zero, which is assumed to be a dielectric con-
tinuum with dielectric constant €. In the absence of
external fields the potential energy of interaction of
this (N4 2)-particle system is

U= Uo"‘uab(ra, Wg; Iy, mb)+¢a(ra) wa)+¢b(rb) W)

N
+ 2 [#ai(To, 0; Tiy @) +26i(Ts, @o; Ti, 0,) ]
1=1

—35 2 2 pl(w:) -D(ry, ;) - p(@y), (2.1)

=1 j=1

where Uy is the total potential energv contribution due
to the short-range forces that act between the (N+2)
particles, the tensor D is given by

D(r;, r;) =(1—6;5)T(r:, 1;)+Rw(1;, Ij; &)
with T the direct dipole-dipole interaction tensor
T(r, o) =B(r—r) (r—r) /| r—1" ][/ r—1' []

(2.3)

(2.2)

and Ry (1, 1’; &) the reaction field tensor. The quantity
Rw(r, 1’; &) - p is the field at point r from the polariza-
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tion in W induced by a dipole p at point r’. The terms
#ai(Ta, @q; Ti, 0;) and u;(Ts, @; iy @;) are the appro-
priate interaction energies between dipole < at position
r; with orientation ®; and the impurity @ or b respec-
tively at position r,(r;) with orientation w,(ws). Both
#a; and uy; are the direct interaction energies between
the impurity and the dipole modified by the surrounding
continuum W. Finally, the term #, is the longest-range
part of the interaction energy between the two impur-
ities again modified by the surrounding continuum W,
The shorter-range interaction energy is included in U,
The terms ¢, and ¢ give the potential energy of
impurity @ and b, respectively, with W. The short-range
part of the potential energy will be assumed to consist
of pair interactions only

N
Up=% 2 20 vii(Ts, 04 Tj, ;)
[€25)]
a,b,1

(2.4)

with v,; identical for every dipole pair and identical for
every pair involving one of the dipoles with each of the
two impurities a, b. The complete potential energy may
be summarized as

N N
U=32"2 [vistui]—3 2 p(w:) Ry (r;, 1;; 6)
) s
a,b,1

‘(@) +datdn, (2.5)

where wu;; is [—p(0:) +D(xs, ;) - (@;) ], %ia=tas, Uin=
Upi, Uap=1pa according to whether the indices ¢ and j
refer to two dipoles, a dipole and impurity a, a dipole
and impurity 8, or the two impurities respectively.

The reduced two-particle distribution function for
the two impurities is defined by

13 (Tay @ T, @5) = / VA (1V 7, V), (2.6)
14

where

F(rN+2, @V+2) = exp[ —BU (r¥+2, @V+2) ]
—1
X( /1; exp[ —BU (r¥+2, @V+2) jdrN+2dwN+2) (2.7

with U given by Eq. (2.1) or alternatively Eq. (2.5).
The distribution function #, is related to the correlation
function G by the definition

n2(ra) Wq; Ip, wb) =[V29aﬂb]_l+c2(ra) Wg; I, mb) (28)

with Q;= [dw;, =a, b. The graphical expansion we shall
use for G, is based on the linear graph theory of Uhlen-
beck and Ford® and is closely related to the formalism
of Lebowitz, Stell, and Baer.” The terminology and the
procedures we shall use are extensively discussed in I
and II, to which the interested reader should refer for
details. According to the well-known graphical expan-
sion theory,5®! the virial expansion of the correlation
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function Gy may be represented by

G2(r¢ly W, ; Iy, (I)b)

© M
= 3 Cu(Ta, 0a; T, 00) [ V200 (5) , (2.9)

M=0

where as in I we made the simplifying assumption that
the single particle distribution functions are constant,
independent of position and orientation, and

drMde™ 1T f..
Ry

(2.10)

Crr(Tay @a; Tpy @) = (M~ 3

RBap) 7V

The sum is over all different 2-irreducible connected
graphs Ry with (M+-2) points labeled g, 8, 1, 2,---, M,
where the points a and & are the root points.

In the expression for Cy any two points with a bond
fi; present contribute a factor to the integrand in
Eq. (2.10) given by

fui=exp[—B(vii+ui;) ]—1. (2.11)

The factor f;; is expanded in the standard way (Refs.
9 and 10 of II)

fimairt 3 (@), (2.12)
a=1
where
ai;=[exp(—Bvi;) —1] exp(—Bu;;)  (2.13)
and
b,‘jz —‘,Buij. (2.14)

The factor a,; is of short range and it will be represented
by a dotted line (a short-range bond) between the
points 7 and j. A factor (1/a!)(d:;)® in the expansion
of fi; is represented by a solid lines between the points
1 and j. The factors a;; and b;; depend upon whether
the particles ¢ and j are dipoles or impurities. This is
indicated in the graphs by denoting the impurity ¢ by
an open circle, the impurity b by an open square and
the dipoles by a black point. Thus the f bond between
impurity @ and a representative dipole is represented by
faiimo- + o—e + ac—» + &+ (2.15)
1f every f bond in Eq. (2.10) is replaced by this expan-
sion we obtain a set of composite graphs, which have
between each pair of points one dotted bond (an a bond)
or any number of solid bonds (4 bonds) or no bonds at
all. The expansion of Cy, Eq. (2.10), may be expressed
as

Cu (e, @g; T, @) = (M N 3 /derwM
(Tau) 7V
X }I aiiy [(a)™'(bpa)=]. (2.16)

The sum is over all different connected 2-irreducible
composite graphs T with (M+2) points labeled
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a, b 1,2+, M. The indices (z,) and (p, ¢) refer to
points of the graph T The contribution of a graph
clearly does not depend on the labeling of the points
other than the points ¢ and 4. This property enables
us to express Cy in terms of 2-irreducible graphs in
which only the points @ and b are labeled (root points)
and the other points are unlabeled (field points). Hence
we may write Cyr as

Car (T, 5 Ty, ) = 2 o7 / drMdeM
v

(Sm)

X 11:[ aiip [(a!)—l(bm)a]x (2.17)

where ¢ is the symmetry number of the graph and the
sum is over all different connected 2-irreducible com-
posite graphs Sy with (M+2) points in which only
the points ¢ and b are labeled.

The analysis of the order of magnitude of the graphs
contributing to G, Eq. (2.9), proceeds in a manner
closely analogous to the analysis employed in I. The
2-irreducible, connected composite graphs contributing
to G, are either stars, or composed of stars hung
together at the articulation points of the graphs. At
large separations of the impurities ¢ and b the major
contribution will come from those graphs that contain
a single b bond, which is a star, between two points at
least once. A single & bond between two points which
is a star shall be referred to as the star Sp. For small
separations of the impurities @ and b all graphs contrib-
ute in the same order of magnitude.

The set of composite connected 2-irreducible graphs
which do not have the star S, as one of its building
stars is called Z. The 2-irreducible graphs which are
completely free of b bonds or which are stars other than
So are included in Z. The contribution to G: of the
graphs in Z at large impurity separation is smaller than
the contribution of the graphs not in Z. The leading con-
tribution of the graphs in Z is called Go® (1,, @,; Ts, @) .
It must be emphasized that Go® has a unique definition
in terms of the graphical expansion.

The contribution to G, from the graphs not in Z are
star chains which have the star S as at least one of its
building stars. The leading contribution of these graphs
to G is denoted GV (14, @g; Ts, @) . Thus

Ga(Ta, Wa; Th, ) =Go©@ (T, 006; Ty, ©)

+Go® (15, @, 1, ).  (2.18)

Note that while GV is the leading contribution to G
at large impurity separation, both G;® and Gy have
comparable contributions at small impurity separations.

We can construct an equation for G by recognizing
that all the graphs contributing to G.®, i.e., those not
in Z, may be constructed from the star So and all the
graphs in Z. The graphs contributing to G are found
by taking one or more stars S; and hanging them
together directly or via other graphs, which do not
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contain Sg as a building star, in such a way that the
resulting graph is 2 irreducible. The endpoints of the
stars Sp must be articulation points of the resulting
graphs so that closed loops of stars S, are precluded.
According to Eq. (2.17) the field points are integrated
over the volume V. In the case of the pure polar fluid
considered in I and II the graphical expansion for G,®
is illustrated in Fig. 1 where a wavy line together with
its endpoints denotes the graphs not in Z, i.e., those
contributing to Gy, and a large open circle with two
vertices attached to it represents the graphs in Z, i.e.,
those contributing to Gy®?. The graphical expansion is
obtained by resumming the graphical expansion of
Eq. (2.9) where Cy is given by Eq. (2.17). The result,
displayed in Fig. 1, may easily be constructed by adding
all graphs with exactly one building star S, (the first
four graphs) to all possible graphs that have more than
one building star S,. For the pure polar fluid the
integral equation for G»V, found by writing down the
contributions of the graphs in Fig. 1, is exactly Eq.
(3.28) of Ref. 1.

For the impurity problem the graphical expansion of
G takes a different form than Fig. 1. The reason is
that the impurities at the root points of the graphs
interact with the polar molecules at the field points
differently than the polar molecules interact among
themselves. Thus b bonds or large circles which have
an impurity as an end point differ from & bonds or large
circles which have fluid molecules at both end points.
However, we may construct an expansion for G,® in
the impurity case by making use of the long-range part
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of Gy determined for the pure polar fluid, which we
denote G, ™. The integral equation for Gs,, and its
solution for several geometries has been presented in 1.
For the impurity case we consider the resummed graph-
ical expansion for G as the sum of all graphs that
contain exactly one star S, exactly two stars Sy, or
more than two stars S;. All the graphs that contain
more than two stars Sy have at least one star .S, between
two field points. Thus the graphical expansion of Gy
may be expressed in terms of the graphs arising in the
expansion of G ", as is indicated in Fig. 2. There are
16 graphs in the expansion that have been numbered
for reference in the following development.

The large circles in the expansion of G,, Fig. 2,
depend, of course, on the character of the two end
points. Formally, these large circle diagrams may be
obtained from the graphs in the set Z, defined as
described above, with the end points appropriately
interpreted as impurities or polar molecules. Except in
low density it is not possible to obtain an explicit
expression for these contributions. For our purposes,
however, it is sufficient to note that the contributions
of these graphs have a unique definition and that the
effective range of this contribution may be determined
from examination of the graphs in Z. We denote the
contribution of the large circle with the impurity ¢ as
one end point by G, ,©, the large circle with impurity &
as one end point Go3®; and the large circle with two
polar molecule end points by G, ,©.

The equation for G may be written down from
the graphical expansion in Fig. 2,

G2 (ab) =[ V20 T s+ [V ]! / d(1)Ge.a™(ai) b+ [V / A(2) baiGa ™ (1b)
v v

+ [ 4080 Gea® (@i)bGos® ) FTVRAT [ )bl () +Ger® i) o

+LVe I /V d()d(7)d(k) Gr.a® (a2) bis Ha,p® ( k) +Gr.o® (k) Jous

+[Ve.I fV a(2)d( 7)d(k) bai Ha.p (i) + G.p® (i) b Ga s ® (kD)

+ / d()d(7)d(k)d(1) G2.o® (ad) i Ha p® ( &) +Go,p® (k) Wil @ (1),  (2.19)

where for convenience we have introduced
Hy 20 (1;, 055 15, ;) = (p/Q)8(1s, @i 15, ©07)
+Gz,11(0) (ri, w;; Iy, mi)a (220)

and we denote the coordinates (r;, ;) of particle i by
(1), and the integration element dr;-dw; by d(1).

Not all of the 16 graphs in the expansion for G.®
are of the same order of magnitude at large impurity
separation. The dominant graphs, i.e., those that de-
crease least rapidly as the end points separate, depend
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on the character of the impurities ¢ and 4. In order to
identify, for a particular choice of impurities, which of
the sixteen graphs are dominant, it is necessary to
determine the effective ranges of the constituent large
circles and b bonds. We shall consider a number of
different impurities, charges, dipoles, and quadrupoles.
Before proceeding to the discussion of special cases we
collect for reference the leading behavior of the b bonds
and large circles that occur with various impurities.

If impurity @ is a charge ¢,, a dipole @, or a quad-
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rupole Q,, then the b bond between the impurity e and
a field point &, is of order (qau/??), (wan/r?), and
(Qup/7Y), respectively. The large circles between the
impurity and a field dipole, which represents Gz.?,
is of the order of the square of b,; if the impurity is a
charge or a dipole. For a quadrupole impurity G
is of order (pesene/r*)? which is a longer-range interaction
than b, This is the leading contribution to G, ¥ for
the quadrupole because the formalism allows for short-
range forces to align dipoles locally around the impurity,
which in turn can interact with the field dipole. The
effective range goes as the square of the effective
dipole-dipole interaction since the first order inter-
action is not included in Z.

The leading contributions of single & bonds between
the two impurities is of order (gugs/7), (qums/7*),
(9.0s/7%) for the case of a charge impurity ¢, inter-
acting with a charge impurity ¢, dipole impurity us,
and quadrupole impurity Q, respectively. The large
circle between the two impurities, which represents
G2@, is of order (gags/7)? and (qous/r?)? for the charge-
charge and charge-dipole cases, respectively. For the
charge-quadrupole case Go'9 is of order (guues/7%)?
again because the short-range forces may cause an
alignment of dipoles around the quadrupole impurity.

The leading contribution of a single 5 bond between
an impurity dipole g, and an impurity dipole s or
impurity quadrupole Qs is of order (u.u/7®) and
(u(0s/7*), respectively. For the dipole-dipole impurity
case G:©® is of order (u.us/7®)? while for the dipole-
quadrupole impurity case Go\® is of order (pgpere/7%)2
Finally, for two quadrupole impurities the 5 bond is of
order (Q.(/7%) and the corresponding G» is of order
(met/1%)2

In discussing the order of magnitude of these various
terms we have neglected the angular factors in the
interactions altogether. Consequently, some of the
leading terms we have quoted for the large circles G,
or G;,,® might vanish if the short-range intermolecular
forces have some particular symmetry. The cases of
special symmetry in the short-range intermolecular
potentials must be examined separately. Furthermore,
in discussing the order of magnitude of the various
terms, we have not explicitly referred to the additional
terms in the effective interaction potentials that will

oNNNL = o———0

! 2 | 2

| 2 [ 2 t
+ O———— & A0 + o p——o o0
i 2 1 2

F1c. 1. Graphical expansion of G,,,® for the (pure polar fluid.
A wavy line with its endpoints represents G,,,, a large circle
with two points attached to it represents G,,,®, and a solid
bond represents a factor 5. Black points are integrated over the
volume V and over all orientations.
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+OO.TG+O_3—O+OO.:0

+O—z—ﬂ+o——;——~0

5
v Oe—e—eCp + 0—(9)—0 + OO’_..OO'_O
+°—?—0+°O_O—‘OJ+0——M—U
12 13
" 19 * 15 * 16

Fi1c. 2. Graphical expansion of the long-range part G,™ of
the impurity-impurity correlation function. Open small circles
represent the impurity a, open squares represent the impurity
b. Solid lines are & bonds, wavy lines with its endpoints represent
G2,,®. Large circles refer to all graphs in Z in the impurity
problem defined by its endpoints and the large open circles give
rise to a short-range factor G,©.

arise when the external dielectric continuum W is
present. These terms are smaller than the direct inter-
action terms by a factor which is some power of (r/ V%)
depending on the multipole nature of the interacting
pair of particles. Careful examination shows that the
effects of the medium W on b bonds for large separation
of its end points is of equal importance as the other
term. In G,©@ contributions which decrease as r—* or
faster the effects of the medium W are negligible because
these interactions are effectively short-ranged. Hence
in each b bond the entire #;, including terms of order
V-1 will be included, but the order of magnitude of
the term may be estimated by use of the direct inter-
action alone.

III. POTENTIAL OF MEAN FORCE
FOR IMPURITIES

In this section we obtain expressions for Go® and the
resulting potential of mean force w.™® for different
impurity pairs. For each case the procedure we follow
is to use the estimates of the constituent large circles
and b bonds developed in the previous section to select
the dominant graphs in the expression for G,*V given
in Fig. 2. The effective range of each of the sixteen
graphs is obtained by writing down the integral corre-
sponding to the graph, substituting the effective range
dependence of the constituent large circles and & bonds,
and performing the integration over field points treating
all factors which decrease as r—* or faster as spatial
delta functions. For example, in the case of two impurity
charges the contribution of graph (9) in Fig. 2 is

(9) =[V29a9b]-1 / dridmidrjd(DjbaiGz_p(O)(ij)b,‘b, (31)
v

Qapt ut 695

o= T [P ri—1i 1=

)~ / iy
Xconstant/| r,—13 |. (3.2)

Other graphs are estimated in a similar manner; the
wavy line which denotes G»,,® has a range % as
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determined in 1. In estimating the contributions of the
various graphs the angular factors and the effects of
the medium in W need not be explicitly considered.

We now turn to an examination of several impurity
cases of interest.

A. Charge—Charge
In the case of two charge impurities one finds that
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which have an effective range of | r,—1; |1, All other
graphs in Fig. 2 have a shorter range. We denote the
charge—charge potential by ¢.gvy(fs, Is), where v in-
cludes the direct Coulomb interaction | r,—r; [ plus
the effects of the polarization in W. The charge-dipole
interaction is denoted —g¢qp(®)-I'(r1, 1), where again
the effects of the external medium in W is present in
I' and I'(r,r')=—V.v(r,r'). Hence the expression

the major contribution to Go® comes from four graphs

GV =(1)+(5)+(9)+(13), (3.3)

for the charge—charge correlation function in the asymp-
totic limit of Jarge separation is given by

Go® (T, @43 Ty, wp) =[ V700 J! { —Bgagsy (Lo, 1)+ f drdo[Bg.p.(w) - T(r, 1a) ] 5 [Bg(0) - T(1, 1) ]
v

+/ drdedr’de'[Bgup(@) T (1, 1) LG, (1, @3 1, ) +Go 0 (1, @5 ', @) T[Bgp () - T (1, rb)]}' (3.4)
14

To reduce this expression further we use results for G, and G,V obtained in 1. For the case of a pure polar
fluid Gs,,® is of microscopic range and G, ,® is given by

Ga,, " (1, @; 1, ') = (Bp2/Q?) peff(m) -F(r, 1) Hers (@), (3.5)
where s is an effective dipole moment defined by
Hett(©) = (@) +x(0) (3.6)
with % determined in terms of G, ,©®
o/ (@) = / dr'de'Gy ;0 (1, @; T/, ') p (o). 3.7)
14
The dielectric constant of the pure polar fluid is found to be
(e—1) /4m =3Bpp- Pes. (3.8)

The interaction tensor F(r, r’) in Eq. (3.5) is given by the solution of an integral equation [Eq. (4.8) of I]

F(r, 1) =D(r, 1) +3Bpp+ pss / dr’D(r, 1) -F(1", 1), (3.9)
14

where D(r, ') =T(r, ')+ Rw(r, t’; &) . In the particular case where the surrounding medium W has a dielectric
constant given by Eq. (3.8) the function F(r, r’) is!
F(r, 1) = [T(r, 1) +Row)* (1, 15 €1 ]

The term R4 w)*-p has the interpretation of the reaction field established at the point r in V by a dipole p at 1/,
when (V+W) is empty and the surroundings are filled with a dielectric continuum with dielectric constant €.
With the results of Eqs. (3.5)-(3.7) we find that G, Eq. (3.4) becomes

(3.10)

G = Bgagn/ V22 [—'y( Lo, To) + (38pH Retr) / drr (r, 1,) - T'(1, 1)
14

+(%Bpp.-ucff)2/ drdv'r(r, r,) -F(r, ") - (1, rb)]. (3.11)
1 4

From Eq. (1.2) the potential of mean force w,® which gives the total potential of mean force w, in the asymptotic
limit of large separation is determined to be

w2<‘>=qaqb[v(ra, 1) — (38R Pett) fV drr(r, 1a) - T'(x, 15) — (3Bpp Petr)* /V drdr' T (r, 1a) - F(r, r') - T(r, rb)]-
(3.12)

For smaller separation Eq. (3.12) does not give the total potential of mean force, and the other G, graphs should
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be taken into account. Using the integral equation for F, Eq. (3.9) and the fact that

D(r, )=V, I'(r',1)=

one may obtain an integral equation for w,® (r., 1s)

Wy (Lo, Tp) =qagsy (T, L)+ (e—1) /4w / Ar'T(r', 1)« Voouw O (1, 1)
v

It is easy to show that this integral equation is equiva-
lent to Eq. (3.12) by substitution of Eq. (3.12) for w.
in the right-hand side of Eq. (3.14) and use of Egs.
(3.8), (3.9), and (3.13).

The solution of this integral equation for w. gives an
expression for the potential of mean force between two
impurity ions at large separation in a dipolar fluid.
An explicit solution may be obtained either from Eq.
(3.14) or from Eq. (3.12) if F(r, ') is determined from
Eq. (3.9). For arbitrary geometries of the regions V
and W it may be difficult to obtain these solutions.
However, it is easy to establish the important point
that the potential of mean force obtained from these
equations is identical to the potential energy of the
two charges w,,(f,, Is) obtained from the macroscopic
Maxwell equations and the constitutive relation
Py(r)=[(e—1)/4r]JE(r). The identity follows by
noting that w, (1., 1) =¥ (T,, 1) where ¥ (1, 1) is the
potential at r due to a charge ¢ at 1,. From Maxwell’s
equations we obtain an integral equation for Y

—1
‘l’(r, rb) =qb‘Y(r7 rb)+ : / dr’r(r’, l') ° VT"‘I/(r,; rb))
r Jy
(3.15)

which follows by noting that ¥(r, 15) is the sum of the
potential due to the charge ¢ in the presence of the
medium in W, and the potential due to the polarization
Py(r)=[(e—1)/4xJE(r) in V in the presence of the
medium in W. Equation (3.15) for ¢ is identical to the
molecular equation for we, Eq. (3.14).

A particularly important special geomeiry is the case
of an infinite volume V. The solution of Eq. (3.14) for
the potential of mean force in this case is

0 (Tq, Ts) = (1/€) (gags/| Ta—1s |).

This is the expected result for the effective potential
energy of interaction between two impurity charges at
large separation in an infinite dielectric solvent.

(3.16)

B. Charge~Dipole

We next consider the case of one charge impurity ¢,
and one dipole impurity pe. In this case the leading,
longest-range contribution to G, comes from the eight

graphs
G =(1)+(5)+(9)+ (13)+ (3)+ (N + (11)+(15)
(3.17)

-V, Vy(r, 1) (3.13)

(3.14)

which have an effective range | r,—r, |2 The eight
integrals corresponding to these graphs may easily be
written down in a manner completely analogous to
Eq. (3.4) for the charge—charge case. The resulting
eight integrals may be reduced by using the short-range
property of Ga ,@ and Ge,,, @, the definition

((Db)+ (Vﬂb) fdl’d(l)
X Gau @ (1, @; 15, ) o (00)  (3.18)

and Egs. (3.5)-(3.7). The result for the asymptotlc
limit .V of the potential of mean force is

I‘-b,eff(mb) =M

™ (T4 To, ) = —Gapb eti(@y) * T' (T, Ta) — (38pH.* Petr)
X [ dea (5,5 (5, 1) mou(or). (3.19)
4

This equation for w»'" is completely equivalent to the
integral equation

wo D (14 Ty, W) = —Qapo.ert(00p) T (13, )
-1
+ : / drF(r, ra.) ‘ erzu)(r; Iy, (Db), (320)
41!‘ v

as may be verified by use of the integral equation for F,
Eq. (3.9) and Egs. (3.13), (3.8). The solution of this
integral equation, Eq. (3.19), depends upon the geom-
etry of (V4 W). For the important special geometry
of an infinite volume V, . is given by

we™ (Xa; To, W) = (1/€) Qalbs.c:(e)
[(ta—13) /| Ta—15 *].

We see that the effective interaction between the
impurity charge and the impurity dipole at large separa-
tion is similar to the direct charge-dipole interaction,
except that the shielding of the polar solvent introduces
a factor ¢! and that the impurity dipole moment is
changed to pe.ir. The effective impurity dipole arises
because the short-range forces between the impurity
dipole and the fluid modifies the orientation of the
surrounding solvent dipoles.

For arbitrary geometries (V4W) the molecular
expression Eq. (3.19) or equivalently (3.20) for the
potential of mean force is consistent with the potential
energy of interaction, wn, of a charge ¢, and a dipole
P = Mb.ott obtained from the macroscopic Maxwell equa-
tions. In a dielectric ¥ with a dielectric constant e,
surrounded by a dielectric W with a dielectric constant
&, the macroscopic electric potential ¢(r; 1, ws) at

(3.21)
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point r due to a dipole p at 1, in V with orientation @
is given by the equation

¥(r; 15, ) = —p(p) - T'(13, T)
+f:—1/ dr'r(r, 1) Vb (r';m, )  (3.22)
r Jy

which follows again by noting that ¥(r; s, @) is the
sum of the potential due to the dipole p(w;) in the
presence of the dielectric in W, and the potential due
to the polarization in V in the presence of the dielectric
in W. Since w,, =gy it follows that w,'? is identical to
W, with the choice p= s efs.

C. Dipole—Dipole

We next consider the case of two dipole impurities
#e and ps. In this case all sixteen graphs in Fig. 2
contribute to G;\V with an effective range | r,—r, |3,
The 16 integrals may be written down for this case.
A vast reduction is possible if one uses the short-range
property of Gp ,® and Gz, and G,,, @, the definition
Po.eit according to Eq. (3.18) with an analogous defini-
tion of pq.etr, and Eqgs. (3.5)—(3.7). The resulting large
separation part of the potential of mean force between
the two dipoles is found to be

W (Lo, @a; To, W) = — g ert (05) *F(La, T5) * P ors (005)
(3.23)

which clearly is anticipated from the results of the pure
dipole case considered in I.

Once again we may show that the microscopic poten-
tial of mean force w,® between the impurity dipoles at
large separation may be obtained from the macroscopic
calculation, based on Maxwell’s equations, of the inter-
action energy between two dipoles Pu=phy.err and py=
fs,ece. Macroscopically, the field at r due to a dipole p,
at I in V with orientation s is given by the integral
equation

E(r7 Ty, (I)b) = D(r7 rb) 'Pb(‘*‘b)
—1
ks f ar'D(r, ') -E(r's 1, ) (3.24)
41!' 14

when V is a dielectric region with dielectric constant ¢,
surrounded by another dielectric region W with a
dielectric constant ¢. From Egs. (3.9) and (3.8) one
finds immediately that '

(3.25)

Since. the macroscopic energy of interaction between

E (r; 15, @) =F(r, 1) - ps ().

(5) =V ] f drdefg;p.(e) -T'(r, 1,) S_‘; [—181(®)  V,Qp: V,, Vi, (1, 1) ]
v
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Pa and Po is
(3.26)

the identity of w,, and w,?, Eq. (3.23), follows immedi-
ately from Eqgs. (3.25) and (3.26). Here again we see
that the impurity dipoles have an interaction energy
at large separations exactly as expected from macro-
scopic electrostatics, except that there is an effective
dipole moment for each impurity. The effective dipole
moments arise because the short-range forces between
the solvent dipoles and the impurities can modify the
local polarization around each impurity. In the case of
an infinite volume ¥ the potential of mean force is

Wi (Tay Wa; T, Wb) = — Pa(q) + E(14; 15, @p),

w2eo(ra, Wg, Tp, (l)b) = —c'_lp'a.eff(ma) 'T(ra; rb) * P-b,eﬁ(@b) .
(3.27)

D. Quadrupole Impurities

Clearly our considerations may be extended to higher
multipole impurities. It is of some interest to consider
the case of a quadrupole impurity, for in this case the
range of potential of mean force may be greater than
the range of the direct interaction. As an example we
consider the charge-quadrupole interaction with g, the
charge impurity and Q, the quadrupole impurity. The
direct potential energy of interaction for a charge and
a quadrupole is

30.Qs: V., Vi, (T, T) (3.28)

which is of order | r,—1;, [ 3. The direct potential energy
of interaction between a dipole g at r and the impurity
quadrupole is

%l‘-' V. Qe Vfbvrh'Y(ry rb) (329)

which is of order | r,—r|™. In these expressions the
effects of the surrounding medium in W are included
in v.

Although the direct interaction between a charge and
a quadrupole is of order 3, we find upon examination
of the sixteen graphs contributing to Gy that seven
graphs have a leading contribution of order r—2 The
graphs are

G = (5)+ (N + (13)+ (3)+ (7)+ (11)+ (15).
(3.30)

However, it may be shown that the leading terms of
some of these graphs which are formally of order r?
vanish. For example, the contribution of graph (5) is

(3.31)

Since the term between brackets in Eq. (3.31) is of order »* and therefore effectively of short range, we may
replace T'(r, r,) by I'(rs, r.). The contribution of (5) is then

(5) = “'%[V?Qaﬂb]ﬂ%ﬁpﬁzﬂq.xr(rb, ra) '/ drvrQb: V'rbvfb'Y(ry rb) 3
14

(3.32)
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where we have performed the integration over @. Since the integrand has a short-range | r—r, [, we make an
error of higher order if we neglect the effects of the surrounding medium W, replacing y by | r—r, [, and per-
form the integration over the entire space. The tensor [drv,V,,V,, | r—r,|~! is completely isotropic and sym-
metric and therefore must be zero, because its rank is not even. We conclude that graph (5) does not contribute

to order r~2. The same is true for graphs (9) and (13). The expression for G,® obtained from the remaining four

graphs is
GO =

%(/ drdop.(@) - T'(1, 1,) G2 s@ (1, @; T, @)+ / drdedr’de’p(w) - (1, 1,)
a 14 v

X éﬁp.(w) D(r, 1) n(0) GO (Y, @; 1o, ) + / drdwdr'dw’'dr" de’ p(w) - T(r, 1,)
14

XG0 (1, 0,1, @) +Go, (1, 0; 1/, @) 18 (@) - D(r', 1) p(0") G2p® (1", 0 10, "’b)) - (3.33)

The function G;4@ is of short range, so we introduce the dipole vector pg by the definition

(1/V%) po(w) = [drdop(0) G, 5@ (1, @; 1y, @)

(3.34)

in analogy to the definition of x in Eq. (3.7). We may reduce the expression for G;® by taking into account the
short-range nature of G»'® and Ge,,' and the definition of x and pe. The result is

Bga

) =
G V0.0

(75 2)-potan+ gowepr) [ a5, 22005, ) Dt

+(%ﬂpll'lleff)2f drdt'T (1, 1,) -F(r, 1) - D(r/, l‘b)'Po(@b)), (3.35)

where we have used the expression for G,,,, Eq. (3.5). The integral equation for F, Eq. (3.9), may be used to
simplify this equation and we find for the potential of mean force between the impurity charge and the impurity

quadrupole in the asymptotic limit

Wy (Xq; T, ) = —¢aPg (@) - T (Lo, Ta) —ga(3BoI+ fhetr) / drr(r, 1,) -F(r, 1) - po(ws).
N4 2

This expression for the potential of mean force is identi-
cal to the expression obtained for the charge-dipole case
in Eq. (3.19) if we replace ps,.¢: by peo. If the short-
range forces between the impurity quadrupole and the
solvent dipoles are such that a local dipole moment pq
arises, the leading effective long-range interaction with
the impurity charge will be determined by the induced
dipole moment and not by the quadrupole-charge
interaction.

If we consider the case of an impurity dipole and an
impurity quadrupole an analogous analysis leads us to
an expression for the potential of mean force identical
to the potential of mean force determined for two
impurity dipoles, Eq. (3.23), except for the replacement
of Ws.ctt by pe. The case of two impurity quadrupoles
Q. and @, also leads to a potential of mean force
identical to that obtained in Eq. (3.23) for two impurity
dipoles, except for the replacement of pq.st by po, and
Ms.ctt bY Pg,. In all these cases of impurity quadrupoles
(or higher multipole impurities) our formalism will lead
to the quadrupole impurity appearing to another distant
impurity as an effective dipole. This occurs because our
molecular model allows the possibility that the short-
range quadrupole-solvent dipole forces induce a local
dipole moment.

(3.36)

It may, with some justification, be argued that for
molecular impurities such a model is unrealistic. For if
the short-range forces are such that solvent dipoles
around a molecular impurity are oriented, then the lack
of symmetry of the interaction means it is likely, but
not necessary, that the impurity will have a non-
vanishing dipole moment. However, our model suggests
an interesting intermediate situation. Consider an
impurity molecule that has a large molecular quadru-
pole moment Qs, but a very small dipole moment s,
e.g., toluene. At very large distances the dipole moment
dominates the potential. At smaller separations the
quadrupole moment dominates the potential. At large
separations the interaction with another impurity is
determined by the effective dipole moment ps .., not
by ps or Qs, because of the effects of the short-range
forces.

IV. DIELECTRIC SATURATION

In this section we turn attention to the problem of
dielectric saturation. Our objective is to obtain expres-
sions for the polarization Py (r) of the polar fluid and
the macroscopic electric field E(r) to all orders in the
external field Ey(r). We accomplish this by computing
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F16. 3. Example of an old composite graph (a) contributing
to Hs. The graphs shown in (b) are the disconnected parts re-
sulting from the graph in (a) if we erase the solid bonds in the
building stars So. For each resulting H,® graph we indicate
the numbers p, ¢ and y=p+¢. In (c) we show the new Hj graph
which contains in it the graph in (a).

an expression for the one-particle distribution function
in the presence of the field.

We consider a polar fluid of NV rigid dipoles in an
arbitrary volume V. The potential energy U of the fluid
in the presence of the external field Ey(r) is expressed as

N
U(rN; “ON; EU) = E Z 'U(I'{, w;; Ij m.‘f)
i<y
L

N
—3 220 p(@;) -D(ry, 1)) - ()

=1 j=1
N
- 2 p(@) -Eo(r:), (4.1)

where D is defined by Eq. (2.2), and the other symbols
have the meaning discussed in the previous sections.
We include the possibility that the sample volume V is
surrounded by the dielectric continuum in W. The pair
interaction v(r;, ;; r;, 0;) is assumed to be of short
range. The canonical ensemble configurational distribu-

G. NIENHUIS AND J. M. DEUTCH

tion function f is given by

J(1¥, o¥; Eo) =exp[—BU (1%, o"; Ey) ]
X { f exp[—BU (1¥, @V; Eq) ]drNdw'V}—l. (4.2)

The one-particle distribution function in the presence
of the field n:1(r, @; Eo) is customarily defined as

i (ty, o1; Eo) =N / V1oV (1, @V By).  (4.3)
14

The polarization Py(r) of the molecular sample is
microscopically expressed by the relation

Py(r) =[dom(r, 0; E)) p(a). (4.4)

The macroscopic field E(r) is related to Py(r) and
Eo(r) according to the defining relation

E(r) =Eo(r)+ fv dr'D(r, T')-Py(r).  (45)

The integral over the singularity in D(r,r’) at r=r’
must be computed according to the usual prescription?

/ dr'T(r, r') = — 4wl
|xf—r| <a

for every distance ¢>0. We emphasize that within the
framework of the canonical ensemble the relations (4.4)
and (4.5) are exact to all orders in the external field.
In order to investigate Egs. (4.4) and (4.5) we wish
to express n((r, ®; Ey) in terms of the distribution
functions of the fluid in the absence of the external field.

For simplicity we shall denote the coordinates (r;, ®;)
of particle ¢ by (7), and we write d(7) for the integration
element dr.dw;. We introduce the reduced s-particle
distribution functions #,(r%, ®*) in the absence of the
external field by the definition

N!
(N—s)!

(4.6)

14

5=1,2,3,--. (4.7)

Further we will employ the special distribution func-
tion k,(r¢, ©*), the s-particle correlation functions
G.(r*, »*) and thespecial correlation functions H,(r*, ®*),
which are defined by the sets of relations

k(1) =m(1),
kg (12) =n1(1)8(12) +n,(12),
k3 (123) =n1(1)8(12)6(23)+n5(12)5(23)
+12(23)8(31) +n2(31)8(12) +na(123),
oo (4.8)
and
m(1) =G (1),
m(12) =Gi(1)G1(2)+Gx(12),
73(123) =G1(1)G1(2) G (3) + G2(12) Gr(3)
+G2(23)Gi (1) +G2(31)G1(2) +G3(123),
(4.9)
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and
kl(l) =H1(1)7
k2(12) = Hi (1) Hy (2)+H,(12),
k3(123) = Hi (1) H1(2) Hy(3)+ H5(12) Hi (3)
+ H(23) Hy(1)+H.(31) H1(2) + H5(123),
(4.10)

One may show that the relations between the functions
H, and G, are the same as between %, and #,

Hi(1) =Gi(1),
H,(12) =G1(1)6(12) + Gx(12),
H;(123) =G1(1)6(12)8(23) +Ga(12)5(23)
+G3(23)8(31)+Ga(31)8(12) +Gs(123),
(4.11)

DIELECTRIC FLUIDS.
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A relation between 7;(r, ®; Ey) and the functions H,
in the absence of the external field Eq can be found if
we employ functional derivative techniques. We intro-
duce the modified potential energy U(E,; ¢) by adding
a single particle potential ¢(r, ®) to U(r¥, o¥; Eo),

U(By;9) = U, ¥ B+ 3 ot @), (4.12)

=1

The configurational partition function Z(E,; ¢) corre-
sponding to U (Ey; ¢) is

Z(Eo; ¢) = [ dr¥do™ exp[—BU (Eo; ¢)]

(4.13)

so that Z(E,; ¢) is a functional of the external field
Ey(r) and of the potential ¢(r, ®@). One readily shows
that m (1, ; Eo) is related to the functional Z (Eq; ¢) by

(Vﬂ)N

m (1, ®; Eo) = —B7[Z(Eo; 0) 1[6Z(Eo; ¢) /36 (1, ®) ] |50

= —5—1[6 an(EOy ¢)/6¢(r; 0))] I4’=0'

(4.14)

On the other hand, we find by expanding Z(E,; ¢) in powers of (jn-Eo—¢)

Z(EO; ¢)
Z(0;0)

=1+ £ 5 [ a0)d(2)-+-d(a)ko(12--e) L) -Eolr) = (x1, @) ]+ [ (0)Eo(r) ~0(re @0) .

(4.15)

If we take the logarithm of Eq‘. (4.15) and use the relations (4.10) between k, and H., we find according to Kubo®

InZ(Eq; $) ~1nZ(0; 0) = 3
a=1

X [ (@1) ~Eo(11) = (11, @1) ]+ + - [.(0a) - Eo(fa) — ¢ (ray @a) ].

g:/;’d(l)d(z) cord(a)Ho(12++

)
(4.16)

By taking the functional derivative of this equation with respect to ¢(r, ®) and by using Eq. (4.14), we obtain

W0

m(r, @; Bo) = El( 1

In order to study »(r, ®; E;) we must investigate Ha,
a=1, 2,---. We shall develop a suitable graphical
expansion of H,, and thus of #;(r, ®; E).

Our starting point is the expansion of G, =2, 3, -+
in terms of irreducible connected composite graphs.?
As in I and II we assume that in the absence of the
external field the system is homogeneous and isotropic

Hi(1) =Gi(1) =m(1) =p/Q. (4.18)

If @22, we find from the basic theory of linear graphs,
in a manner similar to that employed in I and II, that
G, can be represented as the sum over all different a-
irreducible, connected, composite graphs with a root
points labeled 1, 2,- -+, @ and any number of unlabeled
field points. It is customary to represent a field point
by a small black circle, a root point by a small open
circle. Each point contributes a factor p/2. Between
any pair of points we have one dotted bond, any number
of solid bonds or no bonds. A dotted bond between the

/ d(1)d(2) -+ +d(@) Ha(12+ - @)3(r, ©; 11, 01) p(@2) - Eo(1a) - - - () + Bo(ra).

(4.17)

points 4 and j contributes a short-range factor a.; given
by

a;;={exp[—Bu(r;, 0;; 1;, ;) ]—1}
Xexp[Bp(w;) -D(r;, 1) p(w;) ] (4.19)

A number a of solid bonds between the points ¢ and j
contributes a factor (1/a!) (b.;)%, where

bij=Bm(w;)-D(ry, ;) - p(j).

The contribution of a graph has an extra factor 77,
where ¢ is the symmetry number of the graph, that
gives the number of permutations of field points in the
graphs which leave the bonds between pairs of points
invariant. An integration is performed over the coord-
inates of the field points. The difference in the ground
rules for the graphical expansion in this section and in
the previous section is only the designation in the
previous section of root points as impurities.

(4.20)
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A similar expansion of H,, a2 2, is found as the sum
over all different connected composite +y-irreducible
graphs, 1<y <a, with v root points and any number of
unlabeled field points.” Each root point is labeled by a
subset out of the set of numbers (1, 2,-+-,a). The
subsets labeling the root points in a graph are disjoint
and exhaust the set of numbers (1, 2,-++,a). If y=1,
the only irreducible graph is said to be the graph con-
sisting of one root point and no field points. The con-
tribution of the field points and the bonds are the same
as for G, graphs. A root point labeled {4, 45, 7.}
contributes a factor (p/Q)8(4y, 12)8(4a, 13) * = +8(fn—1, in) .

From the discussion in earlier sections and in T and IT
we know that we can split the H, graphs in two classes.
The graphs in one class do not contain the basic star S,
as a building star. As previously, the star .S, consists of
a single solid bond with its two end points. The sum of
the H, graphs which do not contain the star Sp as a
building star is called H.®. We know that H,? is of
short range and does not depend on the shape of the
sample and the surroundings. The contribution of the
other graphs, i.e., the H, graphs which contain the star
So at least once as a building star, is called H,'P. Any
graph contributes either to H,'9, or it has at least one
building star S;, and therefore contributes to H,™. If
we erase in a H, graph the solid bonds in the constit-
uent stars .S, we are left with a number of disconnected
parts, none of which contains a building star So. Each
of these remaining disconnected parts may be considered
to be a H,® graph, vy = p+¢, where p is the total number
of labels attached to the root points in this disconnected
part and ¢ is the number of stars Sp attached to this
disconnected part in the original graph. In order to
illustrate how the number 7 is determined for a remain-
ing disconnected part in a graph, we give an example
in Fig. 3. Figure 3(a) gives a graph contributing to
H™, After erasing the solid bonds in the building stars
Ss, we are left with five disconnected parts, which are
shown in Fig. 3(b). For every resulting disconnected
part we indicate the numbers p, ¢, and y=p+q. A
resulting disconnected graph is considered to be a H,©®
graph with an additional label assigned to each point
for every star Sy which has been removed in the original
graph, as shown in Fig. 3(b). Field points with stars S
attached to it in the original graph become labeled
root points in the H,'® graphs which result after erasing
the solid bonds in the building stars Se.

We can find a simpler graphical expansion of H, by
representing a factor H,©® by a hypervertex consisting
of a large open circle with ¥ small circles attached to its
circumference. We use ideas introduced by Lebowitz,
Stell, and Baer,” but our expansion here is not identical
to any of the expansions these authors use. By resum-
mation we find that H,, a>2 is given as the sum over
all connected irreducible graphs consisting of H,©
hypervertices, v=>2, and single solid bonds which are
stars Sp. The small circles in the H.,©® hypervertices are
either black (field points) or open (root points). The
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total graph must have precisely a small open circles
labeled 1, 2,- - -, . To each small black circle precisely
one solid bond is attached, and no solid bond is attached
to any of the root points. Each solid bond must be a
constituent star Sp, and the total graph must be irre-
ducible. In determining whether or not a graph is
irreducible, each hypervertex is to be thought of as a
single point, which is considered a root point if the
hypervertex contains one or more small open circles,
and which is considered a field point otherwise. In
Fig. 3(c) we show the new graph contributing to Hj
which contains in it the contribution of the old graph,
Fig. 3(a). The number ¢ of (black) field points in a
hypervertex in a new graph is equal to the number ¢
of the corresponding H, graph in an old graph, and
the number p of (open) root points in a hypervertex
in a new graph is equal to the number p of the corre-
sponding H,® graph in an old graph. Every old H.,
graph may be found by substituting H,® graphs for
the H,® hypervertices in a new H, graph. Reversely,
if we substitute H.,©® graphs for the H,©® hypervertices
in a new H, graph, we find an old H, graph. It will be
clear that one new graph represents the sum over an
infinite number of old graphs. Furthermore, the new
graphs contributing to H. cannot contain an H,\?
hypervertex with y>a, otherwise the resulting new
graph would be reducible. We may forget about the
symmetry numbers of the new graphs, because they
are always equal to unity.

It is not hard to verify that by using the new graph-
ical representation of H, each old graph is effectively
taken into account once and not more than once, and
that the symmetry numbers of the old graphs are
properly accounted for. The contribution to Hy from
the new graph in Fig. 3(c) is

/Vd(i)d(.7')d(k)d(l)d(m)d(S)d(t)d(u)

X H,@ (1341) b,'jH4(°) ( ]2kl) b Ho©@ (m8)
X b Hs® (5562) b Hy® (u7).
The new graphical expansion of H is given by

By(12)= o + e + Q—O—O;d»
—H0(12)+ / A(3)d(4) Hy® (13) by Hy® (42)
14

(4.21)

+ / 4(3)d(4)d(5)d(6) Ha®(13) b
14

X Hy® (45) b Hy @ (62) + - - . (4.22)

This expansion of H, is equivalent to the result for G,
obtained in I and quoted in Sec. II.

We use the new graphical expansion of H,, a=2,
3,++, in order to obtain a graphical expansion of
m(r, ; Ey), Eq. (4.17). The contribution of a new
H. graph to ni(r, ®; Eg) clearly does not depend on
the labeling of the root points other than the point 1,
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Hence the factor 1/(a—1) lin Eq. (4.17) can be taken
into account by summation over new H, graphs in
which only the root point 1 is labeled. The other root
points are unlabeled, and a factor 1/7 is included instead
of the factor 1/(a—1) |, where the symmetry number 7
is the number of permutations of the («—1) unlabeled
root points which leave the graph invariant. Permuta-
tions of unlabeled root points within a hypervertex
must be included in determining 7. From the foregoing
and Eq. (4.17) it follows immediately

m(r, o; Eo)

= (p/Q)}+ (sum over all different connected irreduc-
ible graphs built out of H,® hypervertices,
¥22, and building stars S, with two or
more open root points and any number of
black field points. One root point is labeled
1, the other root points and the field points
are unlabeled. To every field point oneand
not more than one solid 4 bond isattached,
no b bond is attached to a root point).

(4.23)

The contribution of a graph in Eq. (4.23) is found by
assigning a weight H,® to each hypervertex with v
points, a weight &;; to each solid bond, a weight 8p.(w;) -
Eq(r;) toeach unlabeled root point, a weight 5(r, @; 11, ;)
to the root point labeled 1. The field points contribute
no extra factor. An integration is performed over both
field points and root points, including the root point 1.
An additional factor 1/r is included in the contribution
of each graph, where 7 is the symmetry number of the
graph, defined above as the number of permutations of
the unlabeled root points which leave the graph in-
variant. The graphs consisting of one hypervertex with
a root points, no field points and no solid bonds must
be included in the expansion (4.23).
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In the graphs in Eq. (4.23) the hypervertex con-
taining the point 1 has two or more points. The con-
tribution to #,(r, ; E) of the graphs in which the
hypervertex containing the point 1 has (s+1) points
(i.e., s points other than the point 1) is called
m® (r, ; Eo). Hence we may write

m(r, @;Eg) = £+ = m(r, 0;E).  (4.24)
=]

The graphs contributing to 7, all begin with a
hypervertex that has s points other than the point
labeled 1. In order to build up the graphs contributing
to m® we must exhaustively consider all possible com-
binations in the hypervertex of unlabeled root points
and field points, whose total number is s. Thus we start
with the hypervertex containing the point 1. A certain
number g of the s points other than the point 1 are
chosen to be root points, the remaining points are field
points. To the field points we attach a b bond, and at
the other end of the b bond we attach one of the graphs
contributing to #,(r, @; Eg). Each graph contributing
to 7@ can be built up in this way. The symmetry
number 7 of the total resulting graph can be shown to be

(4.25)

where 7; is the symmetry number of the #1(Eo) graph
which we hung to the & bond attached to the field point i
in the hypervertex, m, is the number of root points
other than the point 1 in the hypervertex, m,, is the
number of identical #,(E,) graphs g; which we hung to
b bonds attached to field points in the hypervertex, etc.
By definition

7= (TIrs) mglmg, my, 1+« -,

(4.26)

If we sum over all possible sets {myg; m,,, myy,+--}
obeying Eq. (4.26), then we find that 7, satisfies the
relation

motmg+mg, - =5,

m®(r, ®; Eo) = (s / d(1)d(2) +++d(s+1) Hiy0y)? (12- + +5+1)8(r, @; 11, @y)
14

X {ﬂl‘-(ﬂh) '[Eo(rz) + -/v dry'dwy'D(1y, 19') - u(y”) 1 (12, @' Eo):” Xoes

X {ﬁp‘(mﬁl) '[EO(IS+1)+ / d1,41'd0,11'D (Lo, Topn') - (@41 ) 1 (gt @0p1”; Eo) ]} . (4.27)
14

This result may be understood qualitatively in the following manner: Choose (s—g) points of the s points other
than the point 1 in the hypervertex as root points, and add to each of the ¢ remaining points by a b bond the sum
of the contributions from attaching all the graphs which compose 7(1, @; Eo); then sum over ¢ from zero to s. In Eq.
(4.27) the root points appear as factors 8.+ Eo, the b bonds appear as factors Sp(w;) *D(r;, 1) - uwi’. The factors
1/7:in the inverse of the symmetry number of the total graph 1/r, are taken into account in the term m(r/, ®,; Ey)
in Eq. (4.27). The product (mg!m,,!+++)~1 in the inverse symmetry number 1/7 is taken into account by the
multinomial factor s!/mylm,, ! --- which arises if we expand 7;1(Eo) in Eq. (4.27) in graphs and take together
terms which correspond to identical total graphs.
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From Eqs. (4.4) and (4.5) we find

E(r) = Eo(r) + /V dr'de/D(r, ') - p (@) m(r, o ; Bo).
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(4.28)

Hence we can simplify Eq. (4.27) by substituting Eq. (4.28). So the total one-particle distribution function in the

presence of the field becomes

m(r, @ Ex) =p/Qk 35 2

3=18!

The equation (4.29) is the primary result of the analy-
sis. It shows that the expression for #,(E,) in terms of
the macroscopic electric field E is simpler than the
expression in terms of the external electric field E,.
Within our model defined by the potential energy
U(tV, @?¥; E;) Eq. (4.29) is valid in all orders in the
field. In real systems the effects of higher orders in the
field than the first few orders are usually negligible.
For fields which are strong enough to cause electrical
breakdown the potential energy Eq. (4.1) does not
provide a reasonable description of the system. The
important fact illustrated by Eq. (4.29) is that one
may understand how the particles are aligned and
distributed more easily by considering the macroscopic
electric field rather than the external electric field.

If we use that H,, has a microscopic range, and
assume that the macroscopic field E(r) does not vary
appreciably over the range of H,:®, then the field
E(r;) may be replaced by E(r) in Eq. (4.29). The
integrations over positions may be extended over all
space and thus we find

m(r, 0; Eq) = £ [1—{- i f—: M® (@) O(E(r) )"] (4.30)

=19,

where M® (@) is a tensor of the sth rank, fixed to the
molecular orientation ®, and defined by

M@ (@) = f A1) d(2) - d(s+ 1) Hyy® (12—5+1)
Q v

X(r, ; 11, o01) p(@2) p(05) + + - (,41).  (4.31)

The product © is an inner product between two tensors
of the rank s. The product (E(r))* is to be understood
as a tensor of the rank s.

We obtain an expression for Py(r) in terms of the
macroscopic field E(r). It follows from Eqs. (4.4) and
(4.30) that

Py(r) = 3 Xe o (E(r) )=+ (4.32)
8=0
where X®1V is a tensor of the even rank (2s+2),
defined by

Xt =

s+1
(2511) 'gf dow(@)Me+(a).  (4.33)

Only the even rank tensors X+ appear in Eq. (4.32),
because by definition X® is isotropic and symmetric

/d(l)d(Z)---d(s+1)Hs+1\°)(12---s+1)6(r,(o;rl, @)
|4

X[ (wg) - E(rg) -+ - [(wora) *E(rn) ] (4.29)

for fluid systems. The tensors X®+D are independent
of r and independent of the sample shape and the
surroundings. We conclude from Eq. (4.32) that the
polarization is a local position-independent function of
the macroscopic field, which may be expressed as

Py(r) ={e[E(r)]—1/4r}E(r). (4.34)

The functional form of the dielectric constant [ E(r) ]
is defined by comparison of Eq. (4.34) with (4.32),
and this functional form is independent of sample shape
and surroundings.

We note that to first order in E

m(r, @; Eo) = (o/Q) [1+Bperc(0) -E(r) ], (4.35)

where psi=M® is defined in Eq. (4.31), or equiva-
lently by Eq. (3.6). Equation (4.35) is completely
consistent with the low-field results obtained in I.

Finally, we make a few remarks about the electric
field contribution to the Helmholtz free energy A of the
sample. We define the configurational partition func-
tion Z(Ey) by

Z(Eo) =[1/(VQ)¥fdr¥dw? exp[—BU (¥, @¥; Eq) ]
(4.36)
and the configurational free energy is equal to
A(Eo) =—(1/8) InZ(Ey).

The polarization Py(r) of the sample is given by the
functional derivative of A with respect to the external
field

(4.37)

Py(r) = —6A4(E,) /0Eo(r),

as one verifies by using the expression (4.1) for the
potential energy. Integration of this equation leads to

A(Ey)~A(0)=— /V dr /E"(') SEo(r)-Py(r), (4.39)
0

(4.38)

where the polarization Py is a functional of the external
field Eo(r). Equation (4.39) suggests that

Eo(r)
- f 8Eo(r) - Py (r)
0

may be thought of as the density of free energy in the
sample. This free energy density appears to be a func-
tion of the local external field rather than of the local
macroscopic field. However, one should realize that,

(4.40)
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although Py (r) is determined by E at 1, it is not deter-
mined by E, at 1 only since the relation between E(r)
and Eo(r’) is nonlocal [see Eq. (4.5)]. A more common
expression for the free energy density is in terms of the
macroscopic electric field!¢—2

D(r

(4m)— D (r)-E(1), (4.41)

0
where the dielectric displacement D is defined by

D(r) =E(r) +4xP(1). (4.42)

It is not hard to establish the relationship between the
expression (4.41) for the free energy density and the
expression (4.40), which follows from the statistical-
mechanical formalism. By using methods similar to
those employed by Jackson'® one may show that

- / drPy (r) -8Eo (1) = ()1 f drE(r) D (1)
1’4

— (4m) [ drEy(r)-0Do(r). (4.43)

The displacement Dy is the form appropriate in the
absence of the molecular medium in V. Inside the sur-
rounding medium W the displacement Dy is different
from E,, because of the polarization in W. We empha-
size that in the right-hand side of Eq. (4.43) the position
integrations are performed over the entire space, whereas
in the left-hand side the integration is performed over
the volume V only. The differentials D (r) and §Do(r)
in Eq. (4.43) correspond to the differential 6Eo(r).
The identity (4.43) shows that if one uses Eq. (4.41)
as the expression for the free energy density, one has to
realize that also outside V there may be a non-zero
free energy density, which has to be taken into account.
Substitution of Eq. (4.43) in (4.39) shows that the
field-contribution to the Helmholtz free energy is equal
to the difference between the total macroscopic field
energy in the presence of the medium in ¥ and the
total field energy in the absence of the medium in V.

A(Eg) —A(0) = (4)1 / dr / o sD(r) -E(r)
0

Do(r)
— @) [ ar / §Do(r) -Eo(r). (4.44)
0

In the special case that the relation between Py and E
is linear, we obtain the result

A(E)—A4(0)=— %f drEo(r) - Py (1)
— (8m)1 f D (r) -E(r)

— (8m)1 / drDo(r) -Eo(r). (4.45)

In the general case that we take into account nonlinear
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terms it is not possible to perform the functional inte-
gration in Eqs. (4.39) and (4.44) in such a simple way.

CONCLUSIONS

In this paper we have extended our molecular theory
of polar fluids in two directions. First we have obtained
expressions for the potential of mean force at large
separations for two impurities which may be either a
charge, dipole or quadrupole in the polar fluid. The
impurities and the solvent dipoles interact by arbitrary
short-range pair potentials in addition to their electro-
static interaction. The important result is that the
potential of mean force for large separation obtained
from the molecular theory is the same as the interaction
energy obtained from macroscopic electrostatics when
the supporting polar fluid is treated as dielectric con-
tinuum, except that the impurity dipole and quadrupole
are replaced by effective dipoles. The dielectric constant
of the polar fluid determined in this way is the same
as the dielectric constant found in I from the polariza-
tion of the polar fluid in an external electric field. The
effective dipoles arise around the impurity dipoles and
quadrupoles because the short-range impurity—solvent
dipole interactions may cause local polarization of the
surrounding fluid. Of course, the potential of mean force
determined for two impurities will depend on the shape
of the sample and the surroundings, as expected from
the macroscopic theory.

Our analysis of the two impurities may be extended
in a number of interesting ways. First we could consider
the case of impurities that must be characterized by
more than one multipole moment, e.g., ions which have
appreciable dipole moments. Second it would be inter-
esting to consider the case of three impurities, in an
analysis similar to the one undertaken here and in II
for the three-particle correlation function of pure polar
fluids. One could determine whether the molecular
theory predicts a three-particle potential of mean force
which is not the sum of the two-particle potentials of
mean force. Third in our analysis the effective dipole
moment of an impurity Ma.sr is only formally deter-
mined. We consider it likely that p,.ts can be deter-
mined from low concentration dielectric measurements
of mixtures of the dipolar impurity and the polar
solvent. Finally, our considerations may be extended
to impurities in the dipolar medium in the presence of
external fields.

The second problem we have considered in this
article concerns dielectric saturation in the pure polar
fluid. We have extended our previous analysis of the
polarization induced in the molecular polar fluid beyond
the term linear in the external field. The major part of
the analysis is concerned with obtaining an expression
for the one-particle distribution function in the presence
of the field, which determines both the polarization and
the average macroscopic electric field. We have demon-
strated the important result that this one-particle dis-
tribution function has a simple form when it is expressed
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in terms of the local macroscopic electric field and not
the external field. The resulting polarization is shown
to be a local, geometry-independent function of the
macroscopic electric field.

The expression for the one-particle distribution func-
tion to terms linear in the macroscopic field E is

m(r, o; Eo) = (/@) [1+Bperc(w) -E(r) ], (4.35)

but higher order terms in E are not properly obtained
from the exponentiated form of this linear result.
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Infrared Emission at 2.7 ym from Flowing CO.-N.* Mixtures

P. E. Oerrincer anp K. P. Horn
The Aerospace Corporation, El Segundo, California 90245
(Received 17 March 1971)

A flow tube has been constructed wherein ground-state CO: and vibrationally excited Np molecular
streams interact and the combined flow is spectrally investigated at selected downstream stations. The
close coupling between the lower vibrational levels of N3(X 12,%) and the CO; asymmetric stretch mode
(00°0;) allows rapid energy exchange to these levels, followed by internal redistribution among the vibra-
tional states of the various CO, modes, When emission at the 2.7-ym bands is monitored, it has been ob-
served that such redistribution produces substantial population of the mixed-mode levels associated with
this radiation. Comparison of the observed band profiles with analytically derived counterparts has
indicated that for an N, vibrational temperature of 1900°K, CO, difference bands at 2.7 pm con-
tribute approximately 2.5 times as much radiant energy as is emitted in the 10°1-00°0 and 02°1-00°0 summa-

tion bands.

I. INTRODUCTION

The rate of vibrational energy exchange between
the 00°1 level of the asymmetric stretch mode of
CO, and the first vibrational level of N: has been
examined by several investigators.!™® For molecular
translational temperatures below 2000°K, the cor-
responding rate coefficient lies between 10~ and
10~1? cm?® sec™ . Similarly, the near resonance between
higher levels of this CO, mode with corresponding
N, states also allows additional energy exchange
between these molecules. The appropriate vibrational
level diagram for Ny-CO. energy transfer is shown in
Fig. 1. Band intensity measurements for N, vibra-
tional temperatures below 1400°K have indicated that
such transferred energy, redistributed internally among
the various states of COs, produces substantial radia-
tion in the 2.7-um spectral region.* We have extended
these measurements to higher vibrational tempera-
tures and have spectrally resolved the 2.7-um band
profiles.

At relatively low N. excitation levels, one would
expect the summation bands at 2.7 pm to represent

the major portion of the observed radiation. The
intensities of such bands depend on the degree of
population of the CO, Fermi resonance, mixed-mode
10°1 and 02°1 levels. As the Ny is increasingly energized,
the difference bands (Fig. 1) associated with higher-
lying Fermi resonance states will raise the intensity
and alter the observed emission profiles. The summa-
tion and lower difference bands in the 2.7-um spectral
region, together with their band-center wavelengths
as calculated from the data of Refs. 5-7, are presented
in Table I.

II. EXPERIMENTAL PROCEDURE

The flow-mixing operation and the subsequent radia-
tion emission are shown in Fig. 2. The infrared radia-
tion emitted at 2.7 um was measured at selected
locations along a flow tube in order to determine the
rate of population of the 10°1 and 02°1 levels of CO..
A primary flow of Nj was vibrationally excited within
a quartz tube by an S-band generator. The associated
vibrational temperature was monitored as a trace
amount of CO was injected into the No* stream. CO;
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