DIELECTRIC BEHAVIOR OF MIXTURES OF POLAR LIQUIDS

dielectric constant could then be explained as being
almost entirely associated with the observed density
maximum? for the system.
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The Helmholtz free energy of a molecular fluid of rigid dipoles in the absence of any external field is
studied. An explicit formal expression for the excess free energy due to the dipolar interaction is found,
It is shown that the free energy per particle is independent of the shape of the sample, although shape-
dependent long-range correlations are present in the fluid. For the special case of the Onsager model of
polar fluids an explicit expression is obtained for the contribution to the free energy due to the
dipolar interactions. Next, we study the long-range part of the three-particle correlation function for an
arbitrarily shaped sample of the molecular fluid in the absence of an external field. This long-rangé part
is dependent on the shape of the sample. The three-particle correlation function arises in the expression
for the Kerr constant, which measures the birefringence of the fluid when a strong electric field
is applied. We show explicitly that, in the lowest nonvanishing order in the field, the birefringence is propor-
tional to the square of the resulting local macroscopic electric field with a proportionality constant (the
Kerr constant) which is independent of the shape of the sample. A formal expression is given for the Kerr
constant in terms of the local properties of the fluid.

L. INTRODUCTION

This paper is the second in a series dealing with the
structure of dielectric fluids. In the first paper we ob-
tained an explicit expression for the long-range part
of the two-particle correlation function for a molecular
sample of rigid dipoles in a volume of arbitrary shape
V. Included in the analysis was the possibility that the
molecular sample V was surrounded by a dielectric
continuum of arbitrary shape W. The basic result is
that the two-particle correlation function has a long-
range part that can be split into two terms. One term
involves the dipole-dipole interaction tensor. This
term, while not explicitly shape dependent, gives a
shape-dependent result when an integration is per-
formed over the volume V. The second term is explicitly
dependent on the shape of the sample and the surround-

ings, but it is proportional to the inverse of the volume
(V-+W). Therefore this second term will vanish in the
thermodynamic limit. On the other hand, the contribu-
tion of this second term is not negligible when the two-
particle correlation function appears in an integral
where the range of integration effectively covers the
entire volume. Such situations arise in the calculation
of the dielectric constant in terms of a fluctuation for-
mula and in the calculation of the reduced two-particle
angular correlation function.

Knowledge of the two-particle correlation function
may be used to determine the thermodynamic prop-
erties of the system. One purpose of the present paper
is to examine the statistical thermodynamics of the
dipolar fluid, We show how the Helmholtz free energy
of a polar fluid may be related to the Helmholtz free
energy of a reference fluid once the two-particle dis-
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tribution function for the dipolar system is known. In
the reference system molecules interact with exactly
the same short-range forces present in the dipolar
system, but the molecules have zero dipole moment.
We restrict our attention to the case where W is zero,
i.e., the molecular volume V is in vacuum, and demon-
strate that the Helmholtz free energy of the polar
fluid does not depend on the shape of the sample. The
same is true for the pressure and for the internal energy.

The molecular theory in I demonstrated that a shape-
independent dielectric constant e is consistent with a
long-range, shape-dependent two-particle correlation
function. A formal molecular expression for the di-
electric constant was obtained in terms of the shape-
independent short-range part of the two-particle cor-
relation function. Alternatively, the dielectric constant
may be computed according to

(e—1)/4m= {ni}in[P(r)-e/l Er)|], (@11
0

where E is the average macroscopic field at r, e is a unit

vector in the direction of E, and P(r) is the polarization

defined by

N
= (2 8(r—r1) u(e) )g,

=1

P(r) (1.2)
In Eq. (1.2) u(w;) is the dipole moment of molecule ¢
with orientation ®;, and the angular bracket with sub-
script Eo denotes an average over all molecular con-
figurations in the presence of the external electric field
Eo(r). For small E,, P(r) involves averages over the
one- and two-particle distribution functions in the
absence of any external field [see Egs, (3.5)-(3.7) of I].
In general the relation between Ey(r) and E(r) will
be dependent on sample geometry. In I it was demon-
strated that the shape dependence of the two-particle
distribution function in the absence of E, compensates
the shape dependence of the relation between Eo(r)
and E(r), so that one recovers, for all geometries, a
shape-independent dielectric constant defined in terms
of the short-range shape-independent part of the two-
particle correlation function.

Another important property of dipolar fluids is mani-
fest in the Kerr effect. The Kerr effect measures the
difference in the refractive index for light polarized
parallel #;, and perpendicular n. to a strong static
electric field E. The effect is customarily expressed in
terms of the Kerr constant?™*

K= lim{[m () -m@VIE@ . (13)
The refractive index #,(r) at point r for light propagat-
ing at optical frequencies with polarization in the di-
rection e, is given by the Clausius—Mossotti formula

% (§15(I I;) a(@;) :€,e;, )m,.

Here «(w;) is the anisotropic polarizability tensor of
molecule 7 with orientation ;. If the refractive index

(1.4)
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is close to unity it follows from Eq. (1.3) that the Kerr
constant may be expressed as

= 11m21r | E(r) I—Z(E 8(r—r;) e(w;) 1a(r) dg,,
1=}
where a(r) =e((r)e;(r)—eL(r)es(r), and e (r) and
e.(r) are unit vectors parallel and perpendicular to the
local macroscopic field E(r). We may rewrite this ex-
pression as

(1.5)

K= lim2r | E(r) [2Q(r) :a(r) (1.6)
with
Q(r)= (;15(1'—&)[&(0» — 31 Tra]e, (1.7)

where, for convenience, the trace of the polarizability
tensor is subtracted in the definition of Q(r) [note
that the unit tensor | obeys l:a(r) =0].

In the limit of small external field Q(r) is propor-
tional to | Eq |2. As in the case of the dielectric constant
one may question if the shape-dependent relationship
between Eo(r) and E(r) is compensated by the shape
dependence of the particle distribution functions that
occur in the zero-field averages that arise when Q(r)
is expanded in terms of E,. The second purpose of this
paper is to demonstrate that this compensation does
take place and that the Kerr constant for a strongly
polar fluid is independent of sample geometry.

The situation is more complicated, however, than
that encountered in the case of the dielectric constant.
The reason is that when Q(r) is expanded averages
over the two- and three-particle distribution functions
are encountered. Thus in order to examine the Kerr
constant one must generalize the theory developed in I
to the three-particle distribution function and deter-
mine the long-range nature of this higher-order dis-
tribution function. The analysis of the Kerr constant
presented here is an important test of our theory of
polar fluids, since it demonstrates that the techniques
we have developed may be used to obtain higher-order
distribution functions.

It is important to note that the Kerr constant de-
fined according to Eq. (1.5) is closely related to the
alignment which is measured in the NMR electric field
effect.*s Furthermore, detailed interpretation of Kerr
constant experiments for actual systems must take into
account the hyperpolarizability.?# We assume the
hyperpolarizability to be zero in our model polar fluid,
since our intent is to focus on the long-range nature of
the zero-field three-particle correlation function. Fi-
nally, we wish to emphasize that the definition of the
Kerr constant involves the refractive index for light
polarized parallel and perpendicular to the local macro-
scopic field E(r), not the external field Eo(r). This
Kerr constant will be geometry independent. Since the
relation between E, and E is in general geometry de-
pendent, one may not in all cases measure these re-
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fractive indices parallel and perpendicular to E, and
expect the resulting quantity to be independent of
sample shape.

The reader may wish to know with what confidence
we regard the results for the distribution functions in
this paper and Paper I. Our view is that, while we are
not prepared (or interested) to argue that the deriva-
tion is completely rigorous, we feel strongly that the
tesults are exact for large separation, to the order men-
tioned.

II. STATISTICAL THERMODYNAMICS OF THE
DIPOLAR SYSTEM

We consider a system of N rigid dipoles, each with
dipole moment A2y in a volume V of arbitrary shape.
The potential energy of interaction is

U\ =2 X [v(r;, @ 15, o))

=) T(r;, 1) -w(e)], (2.1)

where r;,, o; denote, respectively, the position and
orientation of particle 7, »(r;, ©;; 1;, ©;) is a short-
ranged pair potential that may depend on orientation,
and T is the dipole-dipole tensor

T, )=—V.V, | r—1' |
=Br—r) (r—r)/|r—r' []-(/[r-1'[}), (22)

where | is the unit dyadic. If A=1, U(A) refers to the
potential energy of the dipolar system of interest. If
A=0, then U is the potential energy of a reference
system where the molecules interact exclusively by
the short-ranged potential ». For N between zero and
one the configurational free energy A (M) is related to
the configurational partition function Z(A) by

exp[—BA(N) ]=Z(\) = (V@)=

X / dt¥de? exp[—BUMN) ], (2.3)

where Q= { do.
It is an easy matter to show by differentiation fol-
lowed by integration of InZ()\) with respect to X that

A(1) = A4(0) = (—&T) fldx[z(x)]—l 326(;\)

11
=— —/ d)\/ dnidendryde,
2/, v

Xna(11, @15 Iz, @2; \)

Xu(w) T(r, 1) - w(en). (24)
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Here, n,(\) is the two-particle distribution function
for the polar system when the molecules have dipole
moment A2y,

In T the following expression was found for #.,

12(T1, on; Ty, @25 N) = p?/ Q-G O (11, @1; 1, @25 \)

+GP (11, o5 Tp, @25 A),  (2.5)

where p is the particle number density. The function
G>© s strictly of short range for every value of A be-
tween zero and unity, and only depends upon the den-
sity, temperature, and the value of the dipole moment.
The function G5 is the long-range part of the two-
particle correlation function and for the case of the
molecular sample V in vacuum, G,® is given by

Gy (11, @5 T2, 025 ) = (Bp%/Q?) Al/zt‘eﬁ(‘ﬂl; \)

F(ry, 25 N) A 2peee( ey N). (2.6)
In Eq. (2.6) F is the effective interaction tensor
F(r, ;M) =[1/e(\) J{T(nrir) +Rv*(r, r'; €2 (V) ]}
(2.7

where Ry*-p has the interpretation of the reaction field
established at the point rin V by a dipole patr’in V,
when V is empty and the surroundings are filled with
a dielectric continuum characterized by the dielectric
constant ¢7(A). The dielectric constant of the polar
fluid e(A\) is given by

[e(A) —11/4m=3BoN 2N 2yerr(N),
where A2y, is an effective dipole moment defined by

N yere (15 A) =N (er) (o V).

(2.8)

(29)

The vector x(w1, N) which appears in the effective di-
pole moment is defined in terms of G,

(p/Q)x(on; 1)

= [ dredo\?u (@) Ga®@ (11, @1 I3, 025 N).  (2.10)

It must be emphasized that the results quoted above
for n and e(\) follow directly from the molecular
theory developed in I for the case W=0, and the reader
is referred to this reference for the derivation.

In order to compute the free energy difference
A(1)—A(0), we substitute the expression for .,
Eq. (2.5) into (2.4)

A(1)—A(0)=— % / o / dtdendtadany (@) T(ty, 72) - p(ws)
0 14

2
X (G2(°)+ gg‘ Agess(@1; A) *F(T1, T2 N) * thot (2] )\)) . (2.11)
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Since the integrand contains a factor T and since Ry* is proportional to V!, one may in general prove that the term
Rv* appearing in F leads to a negligible contribution to the integral as the volume becomes large. It follows that

A1) —A(0) = — %/Id)\/;drldm/drgdww(ml)-T(rl, 5) - u(ws)

x (Go+

where, due to the short range of G,® and the effective
short range of T2, the integration over I, may be ex-
tended over all space. Consequently, as V approaches
infinity the integral term in Eq. (2.12) will be propor-
tional to V and independent of sample shape. The term
A(0) is the Helmholtz free energy of a fluid with short-
range interactions and thus may be assumed to be pro-
portional to ¥ in the thermodynamic limit. Thus we
find in the thermodynamic limit that our expression
for the Helmholtz free energy A(1) of a fluid of mole-
cules with a rigid dipole moment w is proportional to
the volume V and independent of the sample shape as
required for a thermodynamic system. This calculation
cannot be regarded as a proof since it depends upon the
correctness of the assumptions used in obtaining the
expression for the two-particle distribution function #s.
Indeed in the derivation of #, in I we assumed uniform
density and we assumed in the graphical expansion of
1y, the existence of certain integrals as ¥V becomes
large. A proof that A(1) is a shape-independent, ex-
tensive quantity should not rely on these assumptions.
Our calculation simply shows that the long-range shape-
dependent #, derived in I is consistent with the expected
thermodynamic character of a polar fluid. Of course
it follows that the pressure and the internal energy are
also independent of the sample shape, since these quan-
tities are simply related to derivatives of the Helmholtz
free energy.

The expression for 4(1)—A4(0), Eq. (2.12), is also
useful because it enables us to relate the free energy of
the polar fluid to the free energy of a reference system
A{(0) where the interactions are exclusively of short
range. This is particularly desirable since a good deal is

VLA() —4(0)]= — %/ﬁl dx/l

r2-ri|>a

Bo®A
D% (N)

st (@15 N) < T(11, T2) * wers(@9; )\)) , (2.12)

known about the thermodynamics of systems which
interact via short-range forces only. However, in order
to proceed to calculate [4(1)—A4(0)] explicitly, we
need information about G.@(r;, wi; Iz, @2; A) for
0<A<1. [Note that the dielectric constant e(\) and
the unknown vector ues are fully determined by G,©@
according to Egs. (2.8)-(2.10).] In general it will be
difficult to compute G,® and we must resort to approxi-
mations or inference from available experimental data.
Here we restrict consideration to one possible approxi-
mation for Gs©@ to illustrate how [A4(1)—A4(0)] may
be computed. The approximation is based on a molecu-
lar picture inferred from Onsager’s theory of the di-
electric constant.

The Onsager model for a dielectric fluid implies that
the two-particle distribution function #, has the form'

72(I1, ©1; Iz, 25 A) =0 if | n—n|<a,

#2(T1, 015 Tz, @25 A) = p2 /LGy (11, 015 Ty, @25 \)
if | I—I; |>l1 (213)

for the case when the molecular core is considered to
be a hard sphere. More complicated core geometries,
e.g., ellipsoids, can be considered within the context of
the Onsager model, but we shall not investigate these
possibilities here. It follows from Eq. (2.5) that for the
Onsager model

GO =—[(p¥/®)+G®]  if|n-nl|<a,

dendtydasu (@) *T(11, I3) - u(we)

G©=0 if | -1 |>a, (2.14)
so that Eq. (2.12) becomes
X ——sz Meir(01; A) *T(r, I2) s wese(@o; A) . (2.15)
e(\)Q2 !

The quantities gest(w@; A\) and e(A) may also be computed according to this model. From Egs. (2.10), (2.6), and

(2.14) one finds

Q

——— AMetr{ 013 A) *T(Tq, T2) » gest{ @2} N),

P
= P A =—>\1/2/ dryd
k(o1; A) L wu{s) T

Be? (2.16)
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where because of the restricted region of integration
the Ry* term in Go® has been neglected. The singularity
in T is taken into account in this integral according to
the usual prescription!

/ AT (rir’) = —4nl, (2.17)
|r/—rl<a

s0 that Eq. (2.16) becomes
x(an; \) = [Bo/e(\) JN) ¥2(4w/9) w+ wete(A) wete(@1; N,
(2.18)
which according to Eq. (2.8) may be expressed as
®(w; \) = {[e(\) —11/3e(\) ]\ 2gese(0; V)
={[e(\) —11/3e(N) } [\ 2u(0) +x(0; A) ],
(2.19)

50 that x and wesr are parallel to w. From Egs. (2.19)
and (2.8) we obtain the Onsager formula for the di-
electric constant

Bzt =[e(N) —1](2¢(N) +11/12me(N).

The quantity 4 (1) —A4(0) may now be computed for
this model. The integral over w, in Eq. (2.15) is per-
formed, followed by the integration over r; where one
uses the fact that

(2.20)

8
/ AT (1, 1) Tt 1) = 1. (221)
rg—r1|>a 3a

The result is

A(1)—4(0) _ —4ngp?
vV @

1 }\ X .
/; dar Yy By ger(V) T2

(2.22)

A(1)—4(0) kT

Vv E&?’fsdf

=— (kT/4wa*) { (e—5) —§ In[(2e+1)/11]},

where €(1) is the dielectric constant of the polar fluid
at the particular density and temperature of interest,
Thus Eq. (2.29) gives an idea of the contribution to
the Helmholtz free energy due to dipolar forces when
the dielectric constant is large and the Onsager model
is considered to be adequate. For the Onsager model
itis clear that 4 (0) must be taken to be the free energy
of a hard sphere fluid.

The chief defect of the Onsager model is that it does
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With the use of Egs. (2.8) and (2.20) this expression
can be put in the form

AD-A4(0) a1 ) -1
% T /o N V1’

which is the exact result for A(1)-4(0) when the
Onsager model is used for the two-particle distribution
function. The quadrature in Eq. (2.23) may be per-
formed only after Eq. (2.20) is solved for ¢()\) in terms
of \ at every density and temperature. The result is

(2.23)

AD-40) a1, Nap(ha)
4 B 243/0 3+Nap(Aa) ’ (2.24)
where
a=(4r/9)Bpu (2.25)

and ¢(x) is the function®
o() =3 ([1— B2) 7+ {[1— Bx) 712+ (8/9°) ).
(2.26)

We may gain an impression for the behavior of the
integral in Eq. (2.24) for the case of strongly polar
fluids. For fluids with large dielectric constant

e()=~(9/2)a+3. (2.27)

In these systems the function ¢(Ae) will rapidly reach

its asymptotic value for large Aa in the integral in

Eq. (2.24). We incur only a negligible error if we re-

place ¢(Aa) by its asymptotic form for large argument

d(ha)~[1— (1/9a) ] (2.28)

in the region of integration 1/a<A\<1 and ignore the

contribution to the integral for the region of integration
0<A<1/a. For this limiting approximation, ¢(1)>>5,

¢—1

2t+1

(2.29)

not adequately take into account the short-range angu-
lar dependent forces present in real molecular liquids,
Of course it is not necessary to limit attention to the
approximation of G, Eq. (2.14), implied by this
model, For example, it might be argued that an ade-
quate approximation to #y(A) in Eq. (2.4) is simply
72(0), ie., that the major contribution to the integral
occurs at distances where the angular dependent short-
range forces dominate the dipolar interactions. Under
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these circumstances 4 (1) —A4(0) may be approximated by

[A(1) —4(0)/V]=—3[ drdedenns(n1, o1; T2, @2; 0) u(er) T(1y, 12) » w(w).

In order to proceed with this approximation scheme it
is necessary to obtain information about the two-par-
ticle distribution function of the reference system.

III. THE KERR EFFECT

The birefringence measured in the Kerr effect arises
because the molecules tend to be aligned by a static
electric field. The effect exists only if the molecules
have an anisotropic polarizability or hyperpolariza-
bility. For strongly polar fluids composed of molecules
with large permanent dipole moments one expects that
the alignment produced by the external field may be
calculated neglecting the polarizability and fluctuations
in the average dipole moment. Therefore, in order to cal-
culate Q(r) for a strongly polar fluid we shall assume
that the molecules have a rigid dipole moment and

(2.30)

interact via the dipole-dipole interaction. In addition
there is a short-range angular dependent pair potential
v(r;, @ Iy, 0;) between the molecules. Thus the molec-
ular model of the fluid is identical to the model con-
sidered in 1. In the following we demonstrate that the
quantity Q(r) is proportional to the square of the
macroscopic field with a constant of proportionality
that is independent of sample geometry and may be
computed on the basis of certain short-range distribu-
tion functions. It follows according to Eq. (1.6) that
the Kerr constant is independent of sample shape.
The molecular sample of &V identical molecules with
permanent dipole moment g in a volume V will be con-
sidered to be surrounded by an arbitrary region W
(which might be zero) filled with a dielectric continuum
with dielectric constant . As in I we add these hypo-
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thetical continuum surroundings in order to investigate
the effect of the surroundings as well as the shape of V
on the quantity Q(r).

The total potential energy of the molecular sample
in the presence of an external field due to fixed charges
and the induced polarization in W is

N
U(rN) (’)N; EO) =Z Z 'l)(r,', w;; I, ("J')

n<s

S o) T 1) u(w)

1<y

N N
-3 Z 2 vlo) Rw(r, 155 &) - w(w;)

I
s
i
X

N
- 21 v(e)-Ey(r), (3.1)

where for simplicity the constant energy of interaction
between the continuum W and E, has been omitted.
The external field E, is the electric field in the absence
of the molecular fluid in V, but in the presence of the
continuum in W and fixed external charges. The tensor

m(ry, @) =Gi(r1, o),

241

Rw is the reaction field tensor, defined in I, which gives
the additional interaction energy between the mole-
cules in the sample due to the polarization induced in
W from the molecular dipole moments,

To compute Q(r), Eq. (1.7), we perform an average
over the canonical ensemble coordinate space distribu-
tion function

f(a¥, oV; Eo) = exp[ —BU (17, o¥; Ey) ]
X (/ dr¥de? exp[—pU (17, o¥; Eo)]) . (3.2)

In the low-field limit we expand f(rV, o¥; Eo) in powers
of Eo and substitute in Eq. (1.7). To accomplish this
reduction it is useful to introduce several auxiliary
quantities. The reduced s-particle distribution function
#,, in the absence of the external field, Ey=0, is defined
by
N!
(N—s)!

These reduced distribution functions are related to the
s-particle correlation functions G, (r, @*) and the special
correlation functions H,(r?, &*) by

n,(r°, @°) =

[ dr—dor=p(ev, a¥;0). (3.3)
14

na (1, o1; T2, W2) =Gy (1, 1) Gi(1, o) +Gy (1, o1; Tz, 0)

n3(T1, @1 T3, @2; I3, 03) =G (1, 01) Gy (12, @2) G1 (15, 03) +Gi(11, 01)Ga(T2, 09 I3, o3) +Gi1(T2, 02)Go (13, 635 Ty, 1)

. +G1(13, 03) Go(T1, @15 Ta, @9) +G3(T1, @15 Ty, @25 T3, @3g), =++ (3.4)
an
Hi(ry, @) =Gi(ry, o),
Hy(11, 01; 13, 03) =G1(11, 01)8(T1, @ To, @2) +Go (11, @1; T, @),
Hi (11, wn; Ty, wp; Ts, 03) =G, @1)3(11, 01 Ty, 02) 3(Ta, 02 Ts, 05) +Ga(T1, 01 T, 2)5(Ts, w; Ts, @)
+Ga(12, @2; Ts, @2) (T3, @35 11, 1) +Ga(Ts, @35 Ty, 1) 8(Ty, 013 T, @2r)
+Gs(11, o 12, 025 T3, @), + =+ (3.5)
To second order in E, we find for Q(r)
Q(r) =[Z(0)/Z(Eo) LQ:1+Qu+Qmr], (3.6)
where
Z(Eq) = / drdaN exp[ —BU (¥, w¥; Bo) ], 3.7)
1 4
and
Q= f dnidod (r—11) A (o) ms (11, @), (38)
\ 4

Qu=/vdl‘1d(-)15(r—r1)A(m1)By(m1)-Eo(rl)nl(rl, ©1)

+L dl‘ld(c)ldrgd(u)ga(l'—fl) A(o);)ﬂy((oz) 'EO(IZ)n2(rl; oy; I, (”2); (39)

N NN
Q=362 2 3 (6(r—1:) A(w;) u(w;) *Eo(1;) u(@r) *Eo(1s) Yo,

fra] jem] =l

(3.10)
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with
Alo)=a(w;) -3 Tre. (3.11)
In Eq. (3.10) the angular bracket with subscript zero
indicates an average over configurations in the absence
of Eo.
We assume as in I that the fluid is uniform in the ab-
sence of E,,

n1 (1, @) =Gi(1n, o) =H (11, @) =p/Q, (3.12)

where Q is introduced in Eq. (2.3). It follows since
o1 / dtded(—1) (o) = 2 Tra,  (3.13)
vV

that Qr=0. Furthermore since « is symmetric the first
term of Qry will vanish.

In order to compute the remaining term of Qi we
use the results of I, quoted in Sec. II of the present
paper. The two-particle distribution function can be
separated according to Eq. (2.5)

na(I1, @15 Ty, @2) = (p2/Q) +Go© (11, @1; I, @)
+G2(1)(l’1, ©1; I'y, 0)2) (314)

with an explicit expression for G, given by Eq. (2.6)
for A=1. If the external continuum has the same di-
electric constant as the molecular medium, then the
explicit expression for G2™ is given by Eq. (2.6) together
with Eq. (2.7) for A\=1 except that Ry* is replaced by
Rviwmy*. If the dielectric constant ¢ of W differs from
that of the molecular medium, the interaction term
F(r,r’; 1) appearing in Eq. (2.6) is given by the solu-
tion of the integral equation

F(I‘, r’; 1) = D(r: I") +%pr' Wetf
X / drD(r, ) -F(r", 1), (3.15)
v

where
D(r, ") =T(x, ')+ Rw(r, 1'; &) (3.16)

and geri= w(w)+x(w; 1) is defined by Eq. (2.9). From
Eqgs. (3.9), (3.14), and (2.6) it follows that

'Qn=f dondr:dw,A (@) (Gz“’)(fl, w1 Iy, @)
v

2
+ ?Pﬂ ert(on) -F(r, 13) - veff(wz)> Bulws)-Eo(rs).

(3.17)

If Eq does not vary appreciably over a distance of the
order of the range of G and « is symmetric, it is an
easy matter to show that this term vanishes iden-
tically. Consequently, the leading term in the enumera-
tor of Eq. (3.6) is Qu: which is proportional to E¢. To
lowest order Z(E,) may be replaced by Z(0) in the
denominator in Eq. (3.6), and one finds after some

G. NIENHUIS AND J.

M. DEUTCH

simplifications that to second order in E,

Q(r) = [ dndondtudondrsdo (r —1) A o)
v

X362 (ws)  Eo(1s) u(ws)

XEo(r5) Hy (11, @1; To, 2; 13, w03), (3.18)

where Hj is given by Eq. (3.5). Hence in order to in-
vestigate Q(r) we must study the special correlation
function H;. This function involves both G; and G;.
The correlation function G, has been obtained, so that
here it remains to investigate the three-particle correla-
tion function G;. We shall use a graphical expansion
to investigate G; similar to the graphical expansion
employed in I to obtain G,

IV. THE GRAPHICAL EXPANSION OF G; AND G;

Our starting point is the graphical representation of
G; and G; according to the formalism of Uhlenbeck
and Ford. The linear graphs which are used by these
authors consist of labeled points with bond lines joining
certain pairs of points. A connected graph may have ar-
ticulation points, which are defined by the property that
if all the bonds meeting at the point are cut and the
point is erased, the graph becomes disconnected. A con-
nected graph is called a star if it has no articulation
points. A graph with L points labeled 1, 2, -- -, L is said
to be s drreducible (s<L) if the graph becomes a star
when additional bonds are inserted between every
pair of points out of the set 1, 2, «++, 5, insofar as these
bonds are not already present. According to the well-
known graphical expansion theory,”* we can represent
the virial expansion of G, by

) 0 M
G, o) = 3 Culr, o) (—) RN
M=s Q
where
Car(r', @) =[(M=9) T [ dew-sdor+ 1 1
(RM) YV Ry

(4.2)

The sum is over all different connected s-irreducible
graphs Ry with M points labeled 1, 2, «+ -, M. Between
any pair of points there is either one or no bond. A
bond between the points 7 and j contributes a factor
fi; to the integrand in Eq. (4.2), where

fiy= exp[—pv(r;, 0; T;, @)
+Bu(w) -D(r;, 15) - u(w;) ]—1.

As we did in I, we expand the factor f;; in the standard
wayg.lﬁ

(4.3)

fomat 3 (@)(b5)", (4.4)
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where
a;;={exp[—Bo(r;, w; Tj, 0;) ]— 1}
X exp[Bu(w:) D(r;, 1) -u(e)] (4.5)

bii=Bu(w) D(r;, ;) - u(w)). (4.6)

The factor a.; is of short range, and will be represented
by a dotted bond between the points 7 and j in a graph.
The factor (1/a!) (b;;)* will be represented by « solid
bonds. If we replace each factor fi; in Eq. (4.2) by the
expansion (4.4), we can write Cx(r*, @*) as an expan-
sion in terms of composite graphs, which have either
one dotted bond, or any number of solid bonds, or no
bond at all between each pair of points:

and

Cu(re, o) = [(M—s)!]? > drM—sdeM—s

Su) YV

X IT ai; IT (a2 (bpe)  (4.7)
SMm SMm

The sum is now over all different connected s-irreducible
composite graphs Sy with M points labeled 1,2, <+, M,
A dotted bond between the points 7 and j contributes
a factor a;;, a number « of solid bonds between the
points p and ¢ contributes a factor (1/a!) (bye)* to the
integrand in Eq. (4.7).

We reduce the graphical expansion one more step
by noticing that the contribution of an s-irreducible
graph to G, does not depend on the labeling of the points
other than the points 1, 2, -+, s. We introduce the
symmetry number ¢ of an s-irreducible graph as the
number of permutations of the points other than these
s points which leave the bonds between pairs of points
unchanged. If the graph has M points, M >s, there are
(M —s)!/e different ways of labeling the other points
s+1,s+2, «++, M. Thus we may expand Cu (1, &) as

Cu(r, 0= X 0—1/ drM—sd oM
v

(T™)

X y aiig (a!)—l(bpq)a: (4-8)

where the sum is now over all different connected com-
posite s-irreducible graphs Ty with M points, in which
only the points 1, 2, -+« s are labeled.

The graphical expansion of G; has been studied in I.
Here we are interested in the expansion of Gs, and we
use similar techniques to those employed in I. We
introduce a dimensionless parameter of smallness 6 by

8=Bu’A, (4.9)

where A is a typical macroscopic distance in the system,
which is much larger than the average distance p~'/
between neighboring molecules. Then § is much smaller
than unity in real systems. In order to obtain Q, given
by Eq. (3.18), to zeroth order in § we need G; up to
zeroth order in § if the three particles are microscopically
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close together, up to first order for configurations where
two particles are close together and the third one is
macroscopically far from them, and up to second order
in § if all three particles are separated by a macroscopic
distance from each other, since every position integra-
tion which is effective over the entire volume reduces
the order in & by one, We recall! that a b bond is of order
& for macroscopic separations, and that it has a zeroth
order contribution in & if the endpoints are microscopi-
cally separated. The term Bu(w:) -Rw(r;, 15; &) - w(wj),
which is one of the terms in b,;, is of order & for every
separation of r; and r; since Ry is explicitly proportional
to V-1

Now we consider the graphical expansion of Gs.
Every 3-irreducible connected graph consists of a num-
ber of stars hung together at the articulation points,
or the graph itself is a star, In the former case the
graph must become a star if we insert additional bonds
joining the points 1, 2, and 3. As we did in I, we intro-
duce again the simple star Sy consisting of two points
joined by one solid & bond. One easily checks that a
graph out of the expansion of Gz which is a star, is of
zeroth order in 8 if the three points are microscopically
separated from each other, at least of second order in
8 if two points are close together and the third one is
macroscopically far from both, and at least of third
order in § if all three points are far from each other.
The same holds for graphs which are built out of stars
other than the star Sy, We introduce the set ¥ of graphs
contributing to G; which either are a star, or which are
built by hanging together any stars other than the star
So. The zeroth order term of the total contribution of
the graphs in ¥ to G; is called G3©®. According to the
foregoing, Gs© is zero unless the three particles are
microscopically close together, so that G;@ has a micro-
scopic range. This definition of G;® is completely anal-
ogous to the definition of Go® in I. By a similar argu-
ment one shows that G;© depends only on the relative
positions and orientations of the three particles, and
thus is independent of the shape of the sample and the
surroundings. In order to calculate G;@ we may entirely
neglect the effects of the Ry terms in the & bonds, and
we may extend all integrations over the entire space.

We are left with the contributions of the connected
composite 3-irreducible graphs which are not in ¥,
i.e., which contain at least once the star Sp as a con-
stituent star. We introduce the function G;'V as the
contribution of the graphs not included in ¥. The
lowest order contribution to Gs® will be zeroth order
in & if the three particles are close together, first order
if two of the particles are close together, and the third
one is far from both, and second order if the particles
are far apart. Higher order contributions to Gz®® will
be neglected. Thus G;® contains the lowest nonvanish-
ing contribution to G; when two or three of the particles
are well separated. For microscopic separation of the
three particles both G;® and G;© are of order unity.
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The total function G;@+4-G; is an excellent approxi-
mation for every configuration of the three particles,

Gs(11, w1} Ta, @} Ts, @3) =GO (11, 015 Iy, @2 T3, @3)

+G3(1) (rl, o 1'2, [0 r3; (')3) . (4'10)

We now find an expression for G;V. The graphs con-
tributing to G,V are found by taking one or more stars
So and hanging them together directly or via other
graphs which do not contain S, as a building star, in
such a way that the resulting graph is 3-irreducible.
The endpoints of the stars S, we consider must be ar-
ticulation points of the resulting graph, so that closed
loops of these stars Sy are precluded. In other words,
the endpoints of a building star Sy in the resulting graph
are connected exclusively by the direct solid bond be-
tween them. The different possible combinations may
be conveniently summarized by using a new graphical
representation, in which the sum of all graphs con-
tributing to H; is represented by a single wiggled bond,
the sum of the graphs contributing to G.® is repre-
sented by an open circle with two points attached to it,
G;© is represented by an open circle with three points
attached to it. Only the points 1, 2, and 3 are labeled.
The reason that

Hz(riy ;; Iy, ")J') = (P/Q)a(ri) o4 Ij, (‘)i)
+Ga(r1;, @;; 1), @)

arises is because one must include the possibility that
the endpoint of the star Sy might be a labeled root
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point as well as an unlabeled field point. Then one
checks that the graphs contributing to G;¥ are pre-
cisely summarized by the new graphs given in Fig. 1.
The symmetry numbers of the total graphs are properly
taken into account, for the symmetry number of any
of the graphs represented by a new graph in Fig. 1 is
the product of the symmetry numbers of the parts one
is left with after erasing the solid & bonds in the basic
stars .So. An integration is performed over the coordi-
nates of the points which are not labeled. For ease of
notation we denote the coordinates (r;, ;) of particle ¢
by (7). The integration element d(4) is a short-hand
notation for dr.dw;. Further, we introduce the special
correlation functions H;®, H,® and H;" by

H;®(123) = (p/2)5(12)8(23) +G: (12)6(23)
+G®(23)5(31) +Go® (31)8(12) +G5® (123),

(4.11)
and
Hy9(12) = (p/Q)6(12) +G,@(12), (4.12)
and
H;®(123) =G (12)8(23) +G.M(23)6(31)
+GP(31)6(12) + G, (123).  (4.13)
Hence,
H;(123) =H;© (123) + H;1(123). (4.14)

An expression of Gz is now found by writing down the
contribution of the graphs given in Fig. 1. We find

G5 (123) =/ d(4)d(5)[Gs®(124) +G,® (12)5(24) + G, (24)5(41) 10y (ws) - D (14, 15) * u(ws) H2(53)
v

+/ d(4)d(5)[Gs™ (234) +G,(23)8(34) + G2 (34)6(42) I3y (w4) - D(1s, 15) - () Hy(51)

+/ d(4)d(5)[G:©(314) +G,(31)6(14) + G2 (14)8(43) J8u (@) D (rs, Ts5) - w(w5) Ha(52)
v

+/Vd(4)d(5)d(6)d(7)Hs‘°’(146)69(0'4) *D(14, 15) - w(ws) Hx(52) B (wx) * D (s, T7) * y(0r) H2(73)

+fv d(4)d(5)d(6)d(7) Hs© (246)By(ws) + D(14, Ts5)  w(s) Hy(53) By (ws)  D(1s, 17) - w(wr) Ha(71)

+/V d(4)d(5)d(6)d(7T)H; 9 (346)Bu(ws) + D (14, T5) » u(ws) H2(51)Bu () - D1, 17) - u(0r) Ha(72)

+/V d(4)d(5)d(6)d(7)d(8)d(9) Hs® (468)By(ws) - D(rs, 1s) - w(ws) Hy(51) By (ws) - D (15, T7)

- w(wr) Ha(72)Bu(ws) - D(1s, To) - p(wo) Hx(93).  (4.15)

In order to simplify Eq. (4.15) we use the fact that the functions G,® and G;© have a microscopic range. Hence,
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we expect to incur a negligible error if we make the replacement
[ 46 iiptes, o) = [ a6 G, w) (4.16)
and
[ a6 s (x5, 05551, 00) = [RIELOIRICOVCAEAPS (4.17)

for any function f, provided that f does not vary appreciably over a microscopic distance. By making the approxi-
mation (4.17) one shows

/ d(j)D(!'i, I‘j) . y((.)j) Hz(]k) = D(I'i, l'k) '£ geff(mk)+%ﬁpg- Ueif / der(l',-, l'j) 'F(I'j, I‘k) '£ geff((.)k), (4.18)
14 14

where use has been made of the definition of H,, Eq. (3.5), and of Egs. (2.6), (2.9), and (2.10) with A=1. Use of
Eq. (3.15) leads to

[ 4D, £ w0 Bl 8) =F(x, 70)-{ (o), (4.19)

which permits simplification of several of the terms appearing in the right-hand side of Eq. (4.15). Further sim-
plification results if we introduce the vector &(i5) by the definition

J a(B)Gs® (ijk) w( o) = (o*/Q%) X(2)) (4.20)
and the tensor M(©;) by the definition
J a(5)d(k) Hs (ijk) w(w) u(or) = (o/DM(e)). (4.21)

The vector A(3j) depends only on the relative position and orientation of the molecules 7 and 7, and has a short
range. The tensor M(e;) is a tensor fixed to molecule 7, and independent of the position r;. Both & and M are in-
dependent of the sample shape and the surroundings since they involve only the short-range part of the three-
particle correlation function. By using the definition (4.11) of H;® we find

. M(e) = u(0)v(0)+y(o)x(0) +x(0) y(w)+B(w) +C(o), (4.22)
where
. (p/Q)B(wn) = [ 4(2) G2 (12) () y(we) (4.23)
an
(/@) Clwn) = [ d(2)d(3) G5 (123) y(w2) w(@s) = (p/Q)* [ 4(2) 2 (12) u(2). (4.24)

The tensor M is clearly symmetric. Now we make the approximations (4.16) and (4.17) and use Egs. (4.19)-
(4.21) in the result (4.15) for G5V, and we find

Gu(128) = 2 (£2.(12)+ 60 (12) [ () + () 1)-Flrs 1) o)
o+ 222229 +6:0.(28) Lw(on)+8(0) 1) F(r, 1) - (o)

Bo
Q
+ 22 (2 260 +GO G u(on) +u(00) 1) F(r, 1))

2.3

+ %,,_ err (@2) *F (T3, T1) M (w1) (T3, T5) - pore ()

B%°
+ ?Z;“ Beit(ws) F(r3, 15) M () 'F(I'z, ). Yotz (1)

2,3

8%
+ @ Yett(@1) *F(r1, 13) -M(@3) - F(13, 12) - gere (@2) . (4.25)
The first term in the right-hand side of Eq. (4.25) is zero unless particles 1 and 2 are microscopically close together,

similarly for the next two terms. The last three terms give the three-particle correlation function G; up to order
8% if the three particles are macroscopically separated one from the others,

Downloaded 25 Jan 2004 to 18.51.1.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



246 G. NIENHUIS AND J. M. DEUTCH

In the special case that the dielectric constant ¢ of the surrounding dielectric medium in W is equal to the di-
electric constant ¢ of the molecular medium,!

e=1+4n(1Boy - west), (4.26)
the tensor F is given by

F(I', r’) = _IET(I', r,) +R(V+W)*(r7 r,; e_‘)]) (427)

as we showed in I. Hence, if eo=¢, the three-particle distribution function #; is the same as if the entire volume
(V4+W) were filled with the molecular fluid. The implications of this equivalence have been discussed in 1.

The major result of our analysis is the explicit expression for the long-range part of the three-particle correlation
function presented in Eq. (4.25). This result is a generalization of the analysis presented in I to a higher order
distribution function. It is interesting to note that the superposition approximation implies that at large but
not infinite separations G; vanishes while G,0. Since for large separation only the last three terms on the right-
hand side of Eq. (4.25) remain, one may regard Gs® as providing information on the correction to the superposi-
tion approximation for polar fluids.

We are now in a position to calculate the tensor Q(r), Eq. (3.18). First, we obtain an equation for H;® using
the definition of H;V, Eq. (4.13), and Eq. (4.15) and the relation for G, obtained in I,

Gz<1)(12)=/ d(4)d(5) H;® (14) Bu(ws) - D(r4, T5) » w(ws) H2(52) (4.28)
v
see Eq. (3.28) of I]. The resulting equation for H;® is

q

H;®(123) = / d(4)d(5) Hy® (124) 5(45) Ha(53) + / d(4)d(5) Hy® (234)b(45) Hy(51)

+ f A(4)d(5) Hy® (314)5(45) Hy(52) + X, (4.29)

where X denotes the last four terms on the right-hand side of Eq. (4.15) and b(3) = &;; given in Eq. (4.6). We may
simplify Eq. (4.29) by noting that H® and H;© are of short range and may be treated in integrals analogously
to Go® and G;® in Eqs. (4.16) and (4.17). With the use of Eq. (4.19) and the definition

0¥/ (12) = [ d(3) Hs® (123) u(ws), (4.30)
we find

H;®(123) = (Bp% /)0 (12) -F (11, T3)  goss(w3) + (B6°/2*) ¢ (23) - F(x2, 11) * tess (1)
+ (Bp3 /D) 0 (31) +F(1s, T2) * wots (@2) + (B%0°/Q°) wesr (@2) * F(r2, 11) *M (1) - F (11, T3) * ters (3)
+ (8% /) Wit (w3) *F(13, I2) M (@2) -F(13, 11) « gess (o)

+ (820 /) tess( 1) *F(1y, 15) - M (@3) F(13, I2) * gete(@2), (4.31)
where pest is defined by Eq. (2.9) with A= 1. Note that ¢ (4j) has a microscopic range and is related to M according
to

M(e) = (p/Q) [ d(2)0(12) u(2). (4.32)

When we introduce for Hy= H;®+ H;® in the expression for Q(r), Eq. (3.18) and use Eq. (4.31) for H;, we find

Q=162 [ dina o) [Eo(r)-l-%ﬂpv'veff || driEate F(r, r)]

M) '[Eo(l‘)-i-%ﬁpw v [ drF(e, ) 'EO(fs)] . (433)

where use has been made of Eqs. (4.21) and (4.32). But it is not difficult to show from the results in I that the
relation between the macroscopic electric field E(r) and the external field Eo(r) may be written as'

E(s) = Eo(r) +380u- vur | draF(rirs) -Eo(n). (4.34)
From Egs. (4.33) and (4.34) it follows that
Q(r) =362o/2) [ den (on) E(x) -M(ar) -E(1). (435)
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We now must average a fourth rank tensor AM over all orientations, where both second rank tensors A and M
are fixed to the particle and are symmetric. Furthermore, tensor A is traceless. A lengthy but straightforward
isotropic average over orientations yields the result®

Q(r) =&B8%[ Tr(a-M) —% Tr(«) TIMJ[E(r)E(r) —3E2(r) ]. (4.36)

Thus we found that Q(r) is proportional to quadratic factors of the local macroscopic field E(r) with a propor-
tionality constant which is independent of sample shape and surroundings by virtue of the definition of M in terms

of the local, short-range correlation functions in H;©®.

From the definitions of the Kerr constant, Eq. (1.6), we find

K =27768%[Tr(e-M)—% Tr(a) Tr(M)],

(4.37)

so that the Kerr constant of this model dipolar fluid is a property of the fluid, independent of sample shape and

surroundings.

V. CONCLUSIONS

In this article we have extended the molecular theory
of polar fluids developed in I in two directions. First we
have shown how the two-particle distribution function
may be used to obtain a molecular expression for the
Helmholtz free energy of a polar fluid as a sum of the
Helmholtz free energy of a reference fluid and a dipolar
interaction energy. If the short-range part of the two-
particle correlation function Gx@ is known for various
dipole moment strengths then this interaction energy
may be computed exactly. In general, such complete
knowledge about G,©® is not available and one must
resort to approximations. We examine in detail the
interaction energy that results when one uses the G,®
implied by Onsager’s model of dielectric fluids. An ex-
pression for the contribution to the Helmholtz free
energy due to the dipole-dipole interactions is obtained
for this model.

Next, we studied the three-particle correlation func-
tion G; of the polar fluid in the absence of an external
field. We found an explicit expression for the long-range
part of G; in terms of the interaction tensor F(r, 1’).
In the special case of the molecular sample of arbitrary
shape ¥ in vacuum or immersed in a continuum W of
the same dielectric constant e as the molecular fluid
the interaction tensor F is

F(r, 1) ='[T(r, 1) +Rouwm*(r, ;e 1. (4.27)
Thus G; has an analogous long-range character to that
of G, discussed in I. When G; occurs in integrals where
the reglon of integration extends effectively over the
entire volume, one obtains shape-dependent results.

The three-particle correlation function arises in the

molecular expression for the Kerr constant of the polar
fluid. We demonstrate that, when the Kerr constant
is defined in terms of the average macroscopic field
rather than the external field, there is a compensation
in shape-dependent effects so that just as in the case
of the dielectric constant, a local Kerr constant in-
dependent of sample geometry and surroundings results.
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