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A molecular fluid of identical molecules with a rigid dipole moment in an arbitrarily shaped volume is
considered. The volume may or may not be embedded in a dielectric continuum. It is shown that when
an arbitrary external field is applied, the constitutive relation P= (¢—1) /4rE between the local polariza-
tion and the local macroscopic electric field is valid under some completely acceptable restrictions. In
the establishment of this relation a crucial role is played by a long-range part of the two-particle correla-
tion function, for which an explicit expression is obtained. One term in this long-range part is explicitly
dependent on the shape of the sample volume and on the surroundings. The resulting dielectric constant
of the molecular fluid can be formally expressed in only the local interactions of the molecules and is thus
independent of the surroundings and the shape of the sample.

I. INTRODUCTION

The molecular statistical mechanical theory of static
dielectric polarization has been extensively studied by
several authors.”™ These derivations lead to molecular
expressions for the static dielectric constant for systems
of molecules which have a permanent dipole moment,
a polarizability, or both. A common preliminary assump-
tion in these theories is that the static dielectric constant
of the molecular medium is really a constant, i.e., the
polarization in the molecular sample is proportional to
the macroscopic electric field, and the proportionality
constant is the same for any shape of the sample and,
in the absence of saturation, for any spatially varying
external electric field. Once this assumption is accepted,
in order to find a molecular expression for the dielectric
constant it is clearly sufficient to consider just one
specific situation, with a specific shape of the sample
and a specific external field. In fact, it has been cus-
tomary to perform the derivation for the special case
of a spherical sample in a homogeneous external field.
The resulting expressions for the dielectric constant
contain integrations over the whole volume.

However, a statistical mechanical theory of dielectric
polarization cannot be considered as complete, unless
it has been shown that an arbitrary external field acting
onan arbitrarily shaped sample of the molecular medium
with arbitrary surroundings yields a polarization inside
the medium which is proportional to the local macro-

scopic electric field. This property of the polarization
suggests that it must be possible to express the dielectric
constant in terms of the interactions of a molecule
with its neighbors on microscopic distances only.

In the present paper we develop a molecular theory
of dielectric polarization without using the preliminary
assumption mentioned above. By starting from the
statistical mechanical expression for the polarization of
an arbitrarily shaped system in an arbitrary static
external field, we shall prove that the polarization is
proportional to the local macroscopic electric field,
apart from some minor and completely acceptable
restrictions. The external electric field Ey(r) is defined
as the electric field in the absence of the molecular medium.
If we bring a molecular sample with an arbitrarily
shaped volume V into this field, the total electric field
is modified because of the resulting polarization in V.
The Hamiltonian is expressed in terms of the external
field Eo(r). Therefore a general statistical mechanical
theory leads in a natural way to an expression for the
polarization P(r) in terms of the external field Eo(r).
If we take into consideration the linear term in E, only,
the expression takes the form

P(r) = /Vdr’A(r, ) Eo(r), (1.1)

where A(r, 1) is an ensemble average of the molecular
sample in the absence of the external field. Now we
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want to prove that the relation (1.1) leads with accept-
able approximations to a simple proportionality relatior

P(r)=xE(r), ifrinV, (1.2)

between the polarization and the resulting macroscopic
electric field E(r). Equation (1.2) is the well-known
basic constitutive relation of the macroscopic theory of
dielectrics. The constant x, which is called the dielectric
susceptibility, is related to the dielectric constant e by
the simple formula

x=(e—1) /4m. (1.3)

In the present paper we consider a system of mole-
cules with a permanent dipole moment, but with zero
polarizability. The extension of the theory to include
polarizable molecules will be given in a subsequent
paper.

We find from either the macroscopic theory or the
microscopic theory that the relation between P(r) and
Eo(r) is shape dependent and depends upon the nature
of the surroundings. On the other hand, the constant of
proportionality x between P(r) and the macroscopic
field E(r) is independent of sample shape and surround-
ings. This difference is a manifestation of the long-range
nature of the dipole-dipole interaction. There are other
important consequences of this long-range nature. For
example, it is well known?® from calculation of the
polarization of a sphere in a homogeneous external field
that

(e—1) /dm=3%(e+2)5 (Bpu*) [1+ (N —1) (cosy12)0 ]
=3(e+2) (8/3V) (M*) (1.4)

for a system of polar molecules with zero polarizability.
Here M is the total dipole moment of the molecular
sample. N denotes the number of molecules, p is the
particle density, u is the absolute value of the permanent
dipole moment of the particles. v, is the angle between
the permanent dipole moments of molecule 1 and mole-
cule 2. The averaging { ), is over a canonical ensemble
for a sphere of the molecular medium suspended in
vacuum with external field zero. In the derivation of
Eq. (1.4) it has been assumed that the molecular
medium behaves as a dielectric with dielectric constant e.

For a sphere of the same molecular medium embedded
in a continuum fluid of its own dielectric constant an
analogous calculation yields??

(e—1)/4m=[3¢/ (2e-+1) Tk (Bpu®) [1+ (N —1) {cosv12)e ]
=[3¢/(2¢41) 1(8/3V) (M?)w. (1.5)

The averaging { ), is over a canonical ensemble for a
sphere of the molecular medium embedded in an infinite
dielectric with the same dielectric constant. The deriva-
tions of Egs. (1.4) and (1.5) are given in Sec. V.

If the dielectric constant of the molecular medium is
independent of sample shape and surroundings, then a
comparison of Egs. (1.4) and (1.5) indicates that the
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equilibrium pair distribution function in the absence of
the field must be different for these two cases.

The primary objective of this paper is to examine the
behavior of the pair distribution function of a polar
fluid. We shall demonstrate that the pair distribution
function has a long-range part which depends on the
sample shape and the surroundings. This long-range
character of the pair distribution function is a conse-
quence of the dipole—dipole interaction and precludes
the use of the conventional techniques employed for the
analysis of fluids where only short-range interactions
are present. We wish to emphasize that the two-particle
distribution function refers to the joint distribution of
positions and orientations of two dipoles. The marginal
distribution function of positions of the two dipoles is
referred to as the “position pair distribution function.”
The position pair distribution function is obtained from
the two-particle distribution function by integrating
over the orientations of the two dipoles.

II. MACROSCOPIC THEORY OF DIELECTRICS

In this section we derive some exact results from the
macroscopic theory of dielectrics, assuming the validity
of the constitutive relation (1.2), where the dielectric
susceptibility x is related to the dielectric constant e
by (1.3).

We consider an electric field Eo(r) which is due to a
fixed charge distribution, and we refer to Eo(r) as the
external field. If a dielectric sample of arbitrary shape
is introduced in the external field, a polarization P(r)
is induced in the dielectric. The fixed charge distribu-
tion is unaffected by the change in the total field due to
this polarization. The resulting total electric field E(r)
can be readily expressed in terms of Ey(r) and P(r).
We introduce the dipole tensor T(r,r’) by requiring
that T(r, r') -p is the electric field at r, due to a dipole
p at r'. Then clearly

E(r) =Eo(r) + [ T, v)-P(r), (21)

where V is the volume of the dielectric. The dipole
tensor is given by

d 9
T(r,f)=— — —|r—1' |
(r: r ar ar/ ' |
3(r—1') (r—1') u
T = A P (22)

where U is the unit dyadic. The singularity in T(r, 1’)
at r=r’ is not integrable in the mathematical sense.
Hence, strictly speaking, Eq. (2.1) is defined only if
risnotin V. An expression for E(r) which is also correct
if ris in V is found by calculating the potential due to
the polarization P(r) and taking the gradient. Thus
we are led to

E(r) =E(r)— %fvdr'P(r’) air’ |r—1' |71 (2.3)
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However, we will use Eq. (2.2) also for the case that r
is in ¥. We incur no error provided that we calculate
the integration over the singularity according to the rule

9 a
/ ar'T(r, r')=— — ar' — | r—r' |7
r/—r|<A O Jjpr—rica  OT

4r
=——U

3 (2.4)

for any distance A. For instance, the electric field due
to a homogeneously polarized sphere with polarization
P; equals — (4x/3) Py inside the sphere.

The validity of Eq. (2.1) does not depend on the
constitutive relation (1.2). If we use the relation (1.2)
for rin V, we find from (2.1)

P(r)= %[Eo(r)+ /V arT(r, r’)-P(r')],

ifrisin V. (2.5)
Equation (2.5) gives us a relation between the polariza-
tion P(r) in the dielectric in V and the external field
Ey(r) in the absence of the dielectric. It is easy to show
that Eq. (2.5) implies the constitutive relation. Let us
assume that we fill the volume V with a medium, with-
out knowing whether or not this medium satisfies the
local constitutive relation (1.2). Suppose that we find
a resulting polarization P(r) in V which obeys the
equation

P(r)=a[E0(r)+/Vdr’T(r, r’)-P(r’)], irisin V.

(2.6)

The form between brackets in Eq. (2.6) is known to be
the total electric field E(r) according to (2.1). Hence
it follows from (2.6) that the polarization obeys the
equality P(r) =¢E(r) in the medium. We shall use the
equality (2.6) as a test whether or not a medium
behaves as a dielectric in the presence of fixed external
charges, according to Eq. (1.2).

We also wish to test the local constitutive relation
(1.2) in the case that the sample in V is embedded in a
dielectric. Therefore we consider the situation in which
the external field Eo(r) is due to fixed external charges
together with a dielectric in a volume W which satisfies
by assumption Eq. (1.2) with a dielectric constant e.
The volumes ¥V and W are assumed not to overlap. If
we now bring into V a sample of a certain medium with
a polarization Py(r), the relation (2.1) between the
field Eo(r) in the absence of the medium in ¥ and the
field E(r) in the presence of this medium does not hold.
For now the polarization of the dielectric in W is
modified by the electric field due to the polarization
Py(r) in V. In fact, from the point of view of the
dielectric in W, the polarization in V serves as another
external source. In order to find a relation between
E(r) and Ey(r) for this case we consider the situation
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where the dielectric in W is present only. We take as
external sources a fixed charge distribution q(r). The
resulting field is called Ei(r). This field is the solution
of the static Maxwell equations

curlE;(r) =0, (2.7a)
divE,(r) =4rq,(r) — 4 divPw (1), (2.7b)
Py (r) =[(e—1) /47 ]E (1), ifrisinW, (2.7¢)

where Py (1) is the polarization inside W for this situa-
tion. Introducing the function ew (r) by

ew(r)=¢, ifrisinW,
ew(r)=1, if ris notin W, (2.8)
we may write the Maxwell equations
curlE,(r) =0,
divew (1) E (1) =4mwq(r). (2.9)

It follows that the electric field in the case of an external
charge distribution q:(r)-+q.(r) is equal to E;(r)+
E;(r), where Ey(r) is the field to which an external
charge distribution q»(r) gives rise. The electric field is
a linear functional of the external sources. Because of
the constitutive relation (2.7¢) the same holds for the
dielectric polarization in W. The (unknown) polariza-
tion Py(r) in ¥V may be treated as an external field
source. Using the linear dependence of the field on the
sources, we may write

E(r) =Eo(r)+Ep, (1),

where Ep, (r) is the electric field in the case that the
dielectric in W and the polarization Py(r) in V are
present, but the fixed external charges are absent. Thus
for a sample V with polarization Py (r) embedded in a
dielectric in the presence of fixed external charges the
macroscopic field is the sum of the field E¢(r) in the
absence of Py(r) and the field Ep,(r) arising from
Py(r) and the surrounding dielectric in the absence of
the fixed external charges.

Next we find an expression for Ep,(r) in terms of
Py. We introduce the tensor Rw (1, r'; &) by considering
the situation where we have the dielectric in W. The
volume V is empty and there are no external charges.
If we put a dipole p at a point ', the resulting field
E,(r) is linear in p. The tensor Ry is defined by

Ep(r) =T(r, r') - p+Rw (1, 1'; &) - p.

Thus Ry (1, 1’; &) - p is the field due to the polarization
of the dielectric with dielectric constant ¢ in W, if this
polarization is caused by the presence of the dipole p.
We call Ry (r,1’; &) the reaction field tensor. For a
polarization density Py (r) in V, we have

(2.10)

(2.11)

Ep, (1) = / dCTT(5, ) +Rw (1, '3 @) - Py (1), (2.12)
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and it follows that Eq. (2.10) may be written as

E(r)=E(r)+ / dr'fT(r, ') 4Ry (1, 1'; &) |- Py (r').
v

(2.13)

This equation is the generalization of Eq. (2.1) for the
case that the external field E¢(r), in the absence of the
sample in V, is due to fixed external charges together
with a dielectric in W.

The derivation of (2.13) does not depend on the
assumption that the sample in V is a dielectric for which
the constitutive relation (1.2) holds. If we assume
Eq. (1.2) and use

Py(r) =[(e—1) /47 ]E(x),
we find from (2.13)

Pyn)="" {Eo<r>+ [ i)

ifrisinV, (2.14)

+Rw(r,r’;e0):]-PV(r’)}, frisinV, (2.15)
and
E(r) = Bo()+ (e— 1) /dr [ ar(T(r,7)
R (1, 5 @) T-E(F).

One notices that the relation

Py(r)=a {Eo(r)+ / a1z, ¥)

(2.16)

+Ry (r, 1'; eo)]-PV(r’)} , ifrisinV, (2.17)

is equivalent with the constitutive relation Py (r) =
aE(r) for the sample. Consequently Eq. (2.17) may
serve as a test whether a molecular medium in V in the
presence of a dielectric in W and fixed external charges
does or does not behave as a local dielectric satisfying
(2.14). In the special case that W is zero or =1, the
tensor Rw(r, '; €) is zero, and Eq. (2.13) reduces to
(2.1), (2.15) to (2.5) and (2.17) to (2.6).

In the special case that ee=¢, we can find the solution
of Eq. (2.16). One knows that the electric field E(r)
in any system of dielectrics and fixed charges ¢(r) obeys
the Maxwell equations

curlE(r) =0,

dive(r)E(r) =4mq(r), (2.18)

where e(r) has the value of the dielectric constant at r.
It follows that a solution E(r) of the Maxwell Egs.
(2.18) remains a solution if we multiply the dielectric
constant everywhere with the same constant ¢, provided
that we replace the charge distribution ¢(r) by cq(r).
We use this property of Maxwell’s equations in two
cases. In case I the sample V and the surrounding region
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W are filled with a dielectric with local dielectric con-
stant e. When we multiply the dielectric constant every-
where and the external sources with €1, we arrive at a
situation I’ where V and W are empty, i.e., a region of
vacuum with dielectric constant unity, and the external
region has a dielectric constant ¢7*. In case II the sample
V is empty, and the region W is filled with a dielectric
with dielectric constant e. When we multiply the dielec-
tric constant everywhere and the external charges with
€1, we arrive at the situation II" where W is empty,
i.e., its dielectric constant is unity, and the sample V
and the external region have a dielectric constant ¢
These situations are illustrated in Fig. 1.

Recall that the field arising from fixed charges for
case II is Ey(r) and the field arising from the same fixed
charges in case I is E(r). These two fields are related
by Eq. (2.16). We define Ey/(r) to be the field arising
from the same fixed charges (multiplied by ¢) in case
I’. The field arising in case II’ from the same fixed
charges (multiplied by €!) is defined to be E’(r). The
same reasoning that led to Eq. (2.16) yields the relation

6—1—1 ' 4
y” )/;dr[T(r,r)
+Rysw* (1, r'; ) J-E' (1) (2.19)

In this case Ryrymy*(r, 1’5 €7!) - p is the reaction field at
r arising from the polarization induced in the region
external to (V4W) of dielectric constant ¢ by a
dipole p at r'.

The property of the Maxwell equations discussed
above leads to the conclusion that

Ey(r)=E'(r)

E'(r) =Eq () +(

(2.20)
and
E(r)=E/(r). (2.21)

Hence, we find the relation between the fields Eo(r)
and E(r)

Eo(r) =E(r)+(e—_:;—1) fv dr[T(r, 1)

FRaym * (1, ' 1) - Eo (1),

which is an explicit expression for E(r) in terms of
Eo(r) in the case that e =e. This relation is important
because it provides a relation between Ry (r, r';¢) and
Rwiw *(r,r'; 1) which we shall have occasion to
employ in the microscopic theory. If Eq. (2.22) is used
to substitute for E(r) in Eq. (2.16) for the case e;=c¢,
we obtain a relation in terms of E¢(r) which in the
macroscopic theory is valid for arbitrary Eo(r). It
follows that

T, )Ry *(r, 5 €) ]
=[T(r, ) +Rw(r, r';¢)]

e—1 " 1 7R
+‘Z;/‘-’dr [T(r, ") +Rw(r,1";¢)]

1 [T(r”, ) +Rymy * (1”7, U5 ) ]

(2.22)

(2.23)
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Although it shall not be necessary to our further
development, we give the expression for Py(r) which
follows from (2.22)

Py(r) = S B0+ Lol [ e, e)

FRym *(r, 5 €1) ] Eo(1'), (2.24)

which is the solution of Eq. (2.15) in the case that
e=c¢. In the special case that the region W is not pre-
sent, one obtains the relation

ifrisinV,

-1 —1)2
Prn)= B+ [ ar i)
+Ry*(r, ;€ 1) |- Eo (1), frisinV, (2.25)

which is the solution of Eq. (2.5).

In these macroscopic considerations we assumed the
existence of a local dielectric constant in V according
to the relation (1.2) or equivalently (2.14). The micro-
scopic theory will result in an expression for the polar-
ization Py(r) in the form of Eq. (1.1). In the linear
region, this expression is valid for arbitrary spatially
varying Eq(r). If the macroscopic expression for Py (r)
(2.24) is valid for arbitrary spatially varying Eo(r) a
necessary consequence is that the molecular expression
for A(r, 1) be

A(r, t) =[(e—1)/4x JUs(r—1') +[(e—1)2/167%]
X[T(r, ') +Rym*(r, ;1) ] (2.26)

when the medium in W has dielectric constant e. Our
molecular considerations show that A cannot be exactly
expressed in the form of Eq. (2.26). It follows that

SN

A\

F1c. 1. Illustrative dielectric geometries. Shadings leaning to
the right indicate regions with dielectric constant ¢; shadings
leaning to the left indicate regions with dielectric constant 1
Blank regions have dielectric constant 1. Case I’ is the inverse of
I and case I1’ is the inverse of II.
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Eq. (2.24) cannot be correct for arbitrary spatially
varying Ey(r), which in turn implies that the constitu-
tive relation (2.14) cannot be correct for arbitrary
Eq(r). However, we will show that, for cases where
E(r) does not vary sharply over microscopic distances,
the macroscopic expression (2.17) and the microscopic
expression (1.1) are consistent. The form of A(r, ')
will differ significantly from Eq. (2.26) for small
separations.

III. THE MICROSCOPIC THEORY

Our molecular considerations begin with considera-
tion of a sample of volume V and of arbitrary shape
filled with N identical molecules with a permanent
dipole moment p. Surrounding the sample is an arbi-
trary region of volume W which consists of a macro-
scopic dielectric continuum with dielectric constant e.
In the presence of an external field E¢(r) arising from
fixed external charges the potential energy of the molec-
ular sample may be expressed as

U@, B = Vale, ") — T % w(@) 10z, 1)

=32 2 p(0:) Ry (1, 155 &)

i=1 j=1

- p(0;)

N
p(o)— 2 pl;) -Eo(r:), (3.1)
i=1
if we neglect radiation and retardation effects. Here the
first term denotes the short-range interactions between
the N molecules. We assume that V, consists of pair
interactions only

N
> 2 o(r, o4 17, 0;).

<j

Vo(rV, V) = (3.2)
The second term in U is the dipole-dipole interaction
between the molecules in the sample with T the dipole-
dipole tensor given in Eq. (2.2). The position of par-
ticle 7 is r;, and the orientation is denoted by the set of
Euler angles @;. The third term in U is the interaction
energy between each dipole in the sample and the reac-
tion field arising from the surrounding dielectric con-
tinuum in W. According to Eq. (2.11) each dipole leads
to a field at r arising from the region W of the form
Ry (r, 1;; &) - (@;), which gives rise to a total inter-
action energy of the form of this third term. The simple
form of this term results from the assumption that the
region W is filled with a macroscopic dielectric con-
tinuum. If the surrounding W were treated as a molec-
ular medium the direct molecular dipole-dipole inter-
actions between the two regions and within W would
have to be explicitly considered. Roughly speaking,
treating W as a macroscopic dielectric corresponds to
ignoring molecular fluctuations in W. We do not prove
that these fluctuations may be ignored. The last term
in U, Eq. (3.1), consists of the direct interactions
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between the dipoles and the external field Ey(r). This
field Eo(r) is the electric field due to fixed external
charges in the absence of the molecular sample V, but
in the presence of the surrounding dielectric in W.

The polarization Py(r) at the point r within the
region V is given by

Py(1)= (5 d(r—1) p(w))

=1

(3.3)

where the bracket denotes an average over the canonical
ensemble coordinate space distribution function

(1%, o¥; Eg) =exp[ U (¥, oV ; Eo) ]
x( / drV¥deV exp[—BU (1¥, 0¥ ; Ey) ])'1. (3.4)

It is an easy matter to show that up to terms linear in
Eo(r) the polarization is

Py (r) =Au(r) - Bo(r) + fv dr'Ay(r, ) -Eo(r),

rin ¥V, (3.5)

where we have assumed that there is no polarization in
the absence of the field Ey. In Eq. (3.5)

Ai(r) =8 [ deom(r, o) () (1) (3.6)

and

As(r, t') =B [ dodems(r, 0151/, o) (@) p(@2), (3.7)

where #,(r*, @), s=1, 2,+++, denotes the reduced s-
particle distribution function in the presence of W,
and in the absence of the external charges

N!
(N—s)!

In order to compute the polarization Py(r) we must
obtain an expression for the one- and two-particle dis-
tribution function #; and #,. We shall accomplish this
by linear graph theory in a form slightly modified from
that presented by Uhlenbeck and Ford.® The modifica-
tion is required since the potential of interaction in the
absence of the field U(r¥, @?¥;0) includes a single par-
ticle potential of the form —}p.(@;) -Rw (T, Ii; &) « ()
for each particle arising from the interaction with the
surrounding medium W.

The theory of linear graphs™* leads in a well-known
way to a graphical expansion of #, in powers of the
fugacity. From this expansion one finds a graphical
representation of the virial expansion of #, in powers
of the one-particle distribution #;. For our purpose it is
sufficient to consider the virial expansion of #. only.

First, we briefly mention some concepts in the theory
of linear graphs which we shall use. A linear graph is a
collection of points (vertices) with lines (bonds) joining
certain pairs of points. A graph is said to be connected
if there is a path of bonds between any pair of points.
A connected graph may or may not have articulation
points, which have the property that if all the bonds

ns(re, w®) = / dr¥—de®5f(rV, @¥; 0). (3.8)
14
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meeting at such a point are detached from it and the
point is erased, the graph becomes disconnected. A
connected graph is called a star if it has no articulation
points.

A slight generalization of the formalism presented by
Uhlenbeck and Ford® to include the single particle
potential and the orientational dependence of U leads
to the virial expansion of 7,

ﬂz(l’l, @; I, (I)z) = Z aM(rlx @1; I, ‘°2)1 (39)
M=2

where

au (T, o1; I, @) =[(M—=2) 1T X

(R M)

/ drM—2dgM—2
1 4

X Hfiiﬁ ny(ry, ). (3.10)

The summation in Eq. (3.10) is over all different linear
graphs Ry with M points labeled 1, 2,---, M, which
become a star when an additional bond between the
points labeled 1 and 2 is inserted, if not already present.
Between each pair of points there is either one or no
bond. A bond between the points 7 and j contributes a
factor fi;, which is the Mayer function defined by

1+-fi;=exp{ —Bu(r;, @;; I;, ®;) +Bp(w;)
[T(rs, 1) +Rw(ri, 15560) I-n(w;) ) (3.11)

for i>#j. Each point %k contributes a factor #,(r, @)
to the integrand in Eq. (3.10). Graphs which become a
star when a bond between the points labeled 1 and 2 is
inserted are called irreducible. Otherwise a graph is
reductble.

Strictly speaking, the derivation of the expansion
(3.9) in the canonical ensemble is valid only in the
thermodynamic limit, provided that this limit exists.
However, it is reasonable to believe that the derivation
is valid also for a finite sample volume V, provided that
V is of macroscopic size.* The expansion (3.9) together
with Eqgs. (3.10) and (3.11) is the starting point of our
investigation of the long-range correlations between the
molecules.

First, we make the simplifying assumption that
n(r, ) is constant, independent of position r and
orientation @. Outside a microscopic boundary region
this is most probably a good approximation. Hence, we
take

m(r, @) =pQ, (3.12)
where p=NV—1is the particle density and Q is defined by
[ dw=%. (3.13)

If a molecule requires three Eulerian angles to specify its
orientation, one finds =82 If the molecules have an
axis of rotational symmetry, its orientation may be
specified by two angles, and Q=4r.

Next, we notice that the only irreducible graph in the
expansion (3.9) which is disconnected is represented by
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two single points labeled 1 and 2. The contribution of
this graph is o2 If we introduce the two-particle
correlation function G, by

n2(11, @1; Tz, 02) =P’ A2H-Ga(1y, 01; Tsy ),  (3.14)

we find that G; can be written as a sum of contributions
of all different labeled irreducible connected graphs.

Next, we examine the various graphs contributing to
Gs. According to Eq. (2.2) the dipole-dipole interaction
is proportional to the third power of the inverse distance
and is therefore of long range. The reaction field tensor
Rw has also a long range, and it can be shown that it is
proportional to the inverse of the volume V. This
property of Ry follows readily from its definition (2.11)
and the properties of T, and will be illustrated in
Appendix A for the special case of a spherical volume V.
Hence, the two-particle interaction can be split into a
short-range part v(r;, @;; r;, ®;) and a long-range part
—p(w;) -D(r;, 1;) - p(@;), where

D(r;, ;) =T(r;, 1;) +Rw(r;, 1;; ). (3.15)

We separate the effects of these two parts of the inter-
action in a similar way as it has been done by Hemmer?
in the case of the van der Waals gas and by Lebowitz,
Stell, and Baer, in the case of weak long-range forces.

The function f;; defined by Eq. (3.11) can be written
as

fii={exp[—Bv(r;, @; 15, ;) ]—1}
Xexp{Bp.(w;) -D(r;, 1;) - p(@;) }

+ 3 (a)[Bu(w:) -D(r;, 1;) -p(w;) Jo

a=1

=0t 3+ (a) " 0s)", (3.16)
where
aij={exp[[—Bu(r;, @; 15, w;) ]—1}
Xexp{Bp(w;) -D(r;, 1;) - p(0;)} (3.17)
and
bij=Pp(w:) -D(r;, 1;) - p(w;). (3.18)

One notices that the function a;; is of short range and
the function b;; is of long range. If we represent a factor
a;; by a dotted line (a short-range bond) between the
points ¢ and 7, and a factor (1/a!) (5:;;)* by « solid lines
(long-range bonds) between the points 7 and 7, then an
f bond in the graphs contributing to ax [cf. Eq. (3.10)]
can be written as the sum of one short-range bond a;;,
one long-range bond b;;, two long-range bonds, etc.:

—— — - — — s =+

+ O+ =+

fi=aitby+ (207 (i) + (3D (bi)*+ -+ (3.19)
If we replace each fi; in Eq. (3.10) by the expansion

4219

(a) (b)

(c)

(d)

4
(f)

F16. 2. Some examples of irreducible connected composite
graphs, which contribute to the two-particle correlation function
Gz(l’l, iy I, (v)z) .

(3.19) we obtain a set of composite graphs, which have
between each pair of points one dotted bond (an ¢ bond)
or any number of solid bonds (b bonds) or no bonds at
all. By replacing each f bond in the graphical expansion
of G; by the expansion (3.19), we are led to the expan-
sion

Go (11, @15 T2, @) = 37 br (11, 015 15, @) o0 F,  (3.20)
L=2
where the functions b., can be graphically represented as

br(r, 0, ) =[(L=2)!T 3 | dritdel-?
[(UARA

X g an{[ [(1/al) (bpe)=].  (3.21)

The sum is over all different connected irreducible com-
posite graphs Cr with L points labeled 1, 2,-+:L. The
indices (7,7) and (p,q) refer to pairs of points in a
graph Cr. Between each pair of points in a graph we
have three possibilities: (a) one or several solid bonds,
(b) one dotted bond, and (c) no bonds. A dotted bond
between the points ¢ and j contributes a factor a;; to the
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integrand in Eq. (3.21), a number « of solid bonds
between the points p and ¢ contributes a factor
(1/a!) (Bpe)=. In Fig. 2 we give some examples of com-
posite graphs contributing to G..

In order to estimate the order of magnitude of the
various graphs contributing to the expansion (3.20) of
the two-particle correlation function Gs, we introduce a
dimensionless parameter of smallness § by putting

8=Bu2A—S, (3.22)

Here A is a typical macroscopic distance in our system
which is very large compared with the average distance
between two neighboring molecules p7%/3. One expects
the quantity 38pu? to be of the order of the dielectric
susceptibility (e—1)/4m of the molecular medium. For
polar fluids the susceptibility is typically between zero
and ten. Hence the parameter & is much smaller than
unity for real systems under a wide variety of condi-
tions of density and temperature.

The bond &y, is of the order 8 and therefore small if
the distance | r,—1, | is macroscopic. However, for a
very small microscopic distance | r,—T, | the value of
by 1s not small and must be considered to be of zeroth
order in 8. Due to the short range of a;; the contribution
to G, of a graph where two points are connected by a
path of short-range bonds arises only from configura-
tions where the points are within molecular distance
from each other. Hence any number of long-range bonds
between two points which are connected by a path of
short-range bonds is of zeroth order in é. The factor
Bp(w;) *Rw (T, I;; &) « 1 (0;) is of order & for any distance
| r;~—r;| (cf. Appendix A). Thus this term is negligible
compared to Bp(e;) T(r;, r;) pk(w;) if r; and r; are
close together but of equal importance when r; and r;
are far apart.

The order of magnitude of various graphs may be
estimated from these considerations. For example, the
contribution of all the graphs in Fig. 2, if r; and 1, are
on microscopic distance from each other, has a leading
term of zeroth order in 8. If 1, and 1. are separated by
a macroscopic distance A then graph (a) is of order §
and graph (b) is zero because of the short range of a;;.
Graph (c) is of order 8, for if | r;—r3 | is microscopic,
the hond b3 is of zeroth order, and the bond by; is of first
order in 8, and vice versa. Moreover, the region in which
b1z and bss are both of order § is of the order of the volume
V, and hence of order §7'. Consequently, this region
also has a leading contribution of order 6. In a similar
way one finds that graph (d) is of order 82 In (e) the
contribution comes only from configurations in which
1, 3, 4, and 5 are separated from each other by micro-
scopic distances, and therefore this group of particles is
on macroscopic distance from 2. This graph is of order
8%, Graph (f) has a leading term of order & since the
coordinates r; and r; must be separated by a micro-
scopic distance and the integrations over rg and 1, give
a contribution of zeroth order in 6.

The contribution of a graph clearly does not depend

G. NIENHUIS AND J.
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on the labeling of the points other than the points 1
and 2. This property enables us to express &, in terms
of irreducible graphs in which only the points 1 and 2
are labeled. The symmetry number o of a graph in
which two points are labeled 1 and 2 is the number of
automorphisms of the graph.® An automorphism is a
permutation of points other than the pair labeled 1 or 2
which leaves the bonds between pairs of points un-
changed. For example, in Fig. 2 the graphs (a), (b},
(c), and (d) have a symmetry number 1, () and (f)
have a symmetry number 2. In a graph with L points
labeled from 1 to L there are (L—2) !/¢ ways of labeling
the points which are not labeled 1 or 2. Hence we may
write Eq. (3.21) as

bL(l'l, Wy; I, w2)= Z 0'_1/ drl~ e
(81) v

X ];I @i £I L(1/al) (bpg)],  (3.23)

where the sum is now over all different connected
irreducible composite graphs Sz, with L points in which
only the points 1 and 2 are labeled.

First, we consider irreducible connected composite
graphs which are stars. For microscopic separation of
r; and 1, each star has a leading contribution of zeroth
order in 8. Now it is not difficult to see that the only
star which has a contribution to G, of first order in & for
a macroscopic distance between r; and 1, is the star
(a) in Fig. 2. We call this star Sp. Each other star is at
least of order & if ry and 1, are far apart.

Next, we consider an irreducible composite graph
contributing to G, which is not a star. Such a graph is
built out of a set of stars which are hung together at the
articulation points of the graph. An irreducible graph
must become a star if one inserts an additional direct
bond between the points labeled 1 and 2. For an
irreducible graph it must be the case that each building
star which does not contain either the point 1 or the
point 2 is hung to precisely two other stars and that the
stars which do contain either the point 1 or the point 2
are hung to precisely one other star. For if there were
any other star attached to only one star or attached to
more than two stars, the resulting graph would be
reducible. Each articulation point of the graph is called
an endpoint of the two stars to which it belongs, and
the points 1 and 2 are called endpoints of the end stars.
Thus the graph must be a chain of stars hung together
at the end points, with the two stars which contain
either the point 1 or the point 2 at the two ends of the
chain. Each building star itself is an irreducible graph
contributing to G.. For example, the graph (f) in Fig. 2
is a chain of three stars with the star Sp as the two
end stars.

If r, and r» are on microscopic distance any star chain
has a contribution of zeroth order in 8. If r; and r; are
on macroscopic distance from each other, each graph
has a leading term of the same order in & as the building
star in the chain with the lowest order in 8 for macro-
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scopic separation of its end points. This can be seen by
noting that there is a region in configuration space in
which the end points of this star are separated by a
macroscopic distance, and points not belonging to this
star are either microscopically close to point 1 or point 2.
This region in configuration space gives a contribution
which is of the same order in § as the contribution from
the star under consideration if its end points were
labeled 1 and 2 and were macroscopically separated.
Any other configuration is of higher order. For if the
end points of this star are close to each other, there
must be at least one other star in the chain whose end
points are macroscopically separated, because the end
points 1 and 2 of the complete graph are far apart. But
this configuration by assumption must give a higher-
order contribution to the graph. One may conclude that
the only graphs which give a first-order contribution to
G: for large separation of r; and 1; are those where the
chain of stars contains at least once the star .S,. Any
graph which is a chain exclusively of stars not of the
type So gives, for macroscopic distance between r; and
12, a contribution to G: of at least second order in 8.

The set of composite irreducible graphs which do not
have the star S, as one of its building stars is called Z.
The irreducible graphs which are a star other than S,
are also included in Z including those graphs which are
completely free of b bonds. The contribution to G, of the
graphs in Z is of zeroth order if r; and r, are separated
by a microscopic distance, and of second order if r; and
1. are separated by a macroscopic distance. The zeroth-
order term of the contributions of the graphs in Z to
G: is called Go@ (11, @1; Iy, @2). Then G2 has a range of
microscopic size. Actually, the leading contribution to
G, of the graphs in Z is proportional to % | ri—r, |~
if | r;—r» | tends to a macroscopic size. Hence the con-
tribution is of second order in § if | ri—1, |=0(4A), of
zeroth order if | r;— 12 |= 0(p~1/3), and of first order in
the intermediate region |r;—r;|=0(A2p1/%), Since
G:® is defined as the zeroth-order contribution for any
separation, it must be zero in this intermediate region.
Hence the range of G, must be smaller than Al/Zp~1/8,

We wish to emphasize that G, is not the complete
zeroth order of G,. The irreducible graphs which are not
in Z have a zeroth-order part for small separation. Thus
the graphs that contribute to order & for large separa-
tion, also contribute to order unity for small separation.
It is this feature that forces us to employ an unwieldy
graphical expansion, since a single parameter of small-
ness is not valid for all separations.

The contribution to G, from the graphs which are not
in Z (i.e., which are a star chain which have the star .Sy
as at least one of its building stars) has a first-order
term for large separation. We introduce the function
Gy (11, 1; Is, ;) which is the zeroth order of this
contribution for microscopic separation and the first
order for macroscopic separation. Hence for microscopic
values of | r;—r, | the function G, +G;® is the zeroth-
order term of Gs; for macroscopic values of | r;—r; | the

4221

zeroth-order term of G, vanishes, and the first-order
term is given by G:®. The function G;® 4G,V is ex-
pected to be a good approximation of G, for all separa-
tions. Hence

G (11, 015 T2, @2) =G (11, @1} Ta, @)
+G2(1) (1'1, Wi, Iy, (Dz) . (324)

We consider first the graphs contributing to G,®
which contain once the star Sy as a building link. We
have the possibility that either the point 1 is an end
point of this star Sy, or there is a graph out of the set Z
which connects the point 1 to an end point of this star
So. The same is true for the point 2. The symmetry
number of a star chain is the product of the symmetry
numbers of the constituent stars in the chain, where the
end points of a star play the role of the points 1 and 2
in determining the symmetry number. From Eqs. (3.20)
and (3.23) it follows easily that the contribution to
Gy of the graphs which contain exactly once the star
So as a constituent star can be written as

/ dr3d03dl'4d04H2(0) (1'1, Wy; Iy, @3)[3'&(@3)
14

D(13, 14) - (@) Ho© (14, 45 T2, @),  (3.25)
where the function H.® is defined by
HyO® (11, @1; 12y @2) = (p/2) 6 (11, 01; T2, ©03)
+GO (11, @1; 1y, 02).  (3.26)
The & function, defined by the equality
[ dradwsd (11, @1 13, @2) (T, @2) =f(11, @1)  (3.27)

for every function f of position and orientation, is
included to take into account the case where Sy is
attached to point 1, 2 or both.

The graphs contributing to G,V which contain as a
basic constituent the star S, twice or more times can be
built up by starting with a graph out of Z with one of
its end points labeled 1, then hanging S, to the other
end point of this graph of Z, and finally hanging any
graph contributing to G, to the other end point of this
star So. By taking together the contribution of these
graphs with the contribution (3.25), we arrive at the
following equation for G.®:

GV (11, @15 Ty, @)
= /V drsdwsdrdeH,O (11, a; 15, @3) B (@s)
-D(r3, 11) « p(@s) Ho@ (14, @43 T2, 032)
+ /V drsdwsdr,dwH,® (11, 01; T3, 03) B (03)

(3.28)

Lebowitz, Stell, and Baer* have shown that in the
thermodynamic limit an integral equation equivalent
to Eq. (3.28) is exact when the pair potential is sepa-

D (13, 11) - P (@04) G2P (14, 55 T, ).
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rated into two contributions provided that Go® is inter-
preted to be the entire contribution of the graphs in Z
and G, is interpreted to be the entire contribution of
the graphs not in Z. Our derivation leads to Eq. (3.28)
for finite volume but should not be considered rigorous
[see Footnote (12)7]. The parameter § is introduced in
order to display the relative order of magnitude of the
graphs for large and small interparticle separation. For
large interparticle separation the graphs in Z are of
order 8 or higher. The term G® includes only the
zeroth order in & contribution of the graphs in Z so that
G:® vanishes for large interparticle separation.

In Eq. (3.28) we have taken into account only the
zeroth-order term G.® of the graphs in Z, since we
intend only to find an equation for the lowest-order
term G.® for macroscopic separation.

The range of H>© is the same as the range of G,
which is microscopic. We assume that we make a
negligible error if we replace D(rs, 1) by D(r1, 1r2) in
the first term of Eq. (3.28) and by D(ry, ;) in the last
term. For the first term this is certainly justified for
configurations where | 11— | is much larger than the
range of G»©@. For the second term the replacement is
only justified when r; and rs are well separated. For
small separations we must expect to incur an error.
With this replacement we may write Eq. (3.28) as

GoD (11, o1; T, 2) = (8p*/0%) [ (1) +x (1) ]
D(ry, 12) - [ (@) +x(w2) ]

+2 [ dndou(@)+x(on]

D(r1, Ty) « p(04) G (14, @45 T, @), (3.29)

where we have used the definition (3.26) of H,®, and
where the vector x(®) is defined by

2 (an) = f 1sdGe® (1, 01; T, @) p(02).  (3.30)
12

Equation (3.29) is the principal result of the micro-
scopic analysis. It is an integral equation of the Dyson
form for the long-range part of the two-particle cor-
relation function valid to lowest order in 6.

In order to examine x(w), we must examine the
function G;® which is nonvanishing only for small
separations, but involves the interaction —p-D-p as
well as the short-range interaction v. We recall that
Bp(0;) ‘Rw (T:, I;; &) « p(@;) is of first order in & for any
separation. Furthermore, one readily checks that

[ drsT(x, 13) *T(rs, 1) = —4aT(ry, 1), (3.31)

if r; is integrated over the whole three-dimensional
space, and that

f 5T (10, 15) *T(Es, T2) = — 4aT (11, 12)+ O (1/V), (3.32)
Vv

if ryand 1, in V, and if r; is integrated over V only. The
property (3.32) of T reflects the fact that the square of
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the dipole-dipole interaction is effectively of short range
(being proportional to %). The same is true a fortiori
for higher powers of T. One may conclude that in order
to calculate G»@ it is sufficient to calculate the contribu-
tions of the graphs in Z by replacing D(r;, ;) by
T(r;, ;) [neglecting Rw(r;, I;; &) | and by performing
the space integrations over the entire three-dimensional
space instead of over V only. So we arrive at the fol-
lowing conclusions: (i) G2 (11, wy; I3, @) has a micro-
scopic range and (ii) G2 (11, o1; Iz, ) depends only
upon the relative positions and orientations of the
particles 1 and 2. Strictly speaking, the conclusion (ii)
is not justified in a microscopic region at the boundary
of V. For then 8p+R-p can become large and also the
difference between (3.31) and (3.32) can be non-
negligible. However we neglect the effects of this
boundary region. Because of the short range of Go® we
may extend the region of integration in Eq. (3.30) over
all space, provided that 1y is outside a negligible bound-
ary region. It follows that the vector x(w;), which has
the dimension of a dipole moment, is a vector fixed to
particle 1 and independent of 1;.

The two-particle correlation function G will be ap-
proximated by G:®4-G>®, which is correct up to zeroth
order in 6 for microscopic distance, and up to first order
in & for macroscopic distance between 1, and r». In the
next section we examine the consequences of the two-
particle correlation function for the dielectric properties
of the fluid.

IV. LONG-RANGE CORRELATIONS AND
DIELECTRIC PROPERTIES

We are now in a position to give a molecular equation
for the polarization Py (r). From Eq. (3.5) one finds

PV(r)=[3pQ—1/dmlp(wl)p(wl)-Eo(r)+Bj:,dr'dmldwz

XGQ(I', Wy, l',, 0)2)[1-(0)1) IL(‘DZ) 'EO(I’) . (41)

In order to calculate Py (r) to zeroth order in 6, we need
G up to first order for large separation, since when 1’
is integrated over the volume V, the order is reduced
by one. Now we assume that the external field Eo(r)
does not vary appreciably over a distance of the order
of the range of G;@. Using this assumption we find
from Eq. (4.1)

Py (r) =gp [ daup (@) (@) +r(0r) - Eo(x)

+8 / dr'dand@,Gy® (1, g5 T/, @) (o) o (02) - Eo (')
14

(4.2)

or
Py (1) = 38pp- (k1) Eo(r) +6 fv dr' dawda,

XGZ(I)(I; w; I", mg) p,(ﬂ)l) p.((lh) 'Eo(l',) (43)
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provided that r is not in a microscopic boundary region
of the volume V. Here we have used the separation of
G. according to Eq. (3.24) and the definition of the
vector ¥ Eq. (3.30). We substitute Eq. (3.29) in Eq.
(4.3) and we find

Py (1) = 1601 <p.+«>[Eo<r> 3w ()

X / dr'D(r, r’)~E0(r’)+3/ dr'dw.dridm,
14 1 4

X G (Ty, 065 T/, 02)D(x, 14) - p{0s) p(@2) -Eo(r') | .

(4.4)
This equation can be written as

Py () = 3Bpn- (lH‘K)[Eo(r) + [[aroie )P |

(4.5)

as may easily be verified by substitution of Eq. (4.3)
for Py in the last term of Eq. (4.5). Recall that
D(r,t")=T(r, ') +Rw(r, 1’; ).

The integral equation (4.5) for Py(r) follows from
the molecular statistical mechanical theory of the sys-
tem for any external field Eo(r), provided that this
field does not vary considerably over a distance of the
order of the range of G,® in V.

If we compare Eq. (4.5) with the macroscopic con-
siderations in Sec. II, in particular with Eq. (2.17), we
find that the molecular medium obeys the constitutive
relation of the macroscopic theory of dielectrics for an
arbitrary sample volume V surrounded by an arbitrarily
shaped macroscopic dielectric with arbitrary dielectric
constant ¢ and for any static external field which does
not vary too wildly in V. In these circumstances the
molecular medium behaves as a dielectric [cf. Eq.
(2.17)] with a local static dielectric constant e which
is given by

(e—1) /4m=3Bpp- (p+x). (4.6)
It follows from the definition (3.30) of x that the
resulting dielectric constant ¢ depends only on the local
interactions in the molecular medium, and is independ-
ent of the shape of the sample and the surroundings.
We are interested in finding the solution of the
integral equation (3.29) for G,V. If we assume the
solution for G- to be of the form

G2V (11, @15 Tz, @) =B (1) +x (1) ]
‘Fry, 1) - [p(@)+x(we)] (4.7)

and substitute in Eq. (3.29), we find that the tensor
function F(1y, 1;) must satisfy the equation

F(r, ') =D(r, r') +3Bop- (p+x)

X / ar'D(r, ) F(r", ). (4.8)
v
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If Fis determined from Eq. (4.8), the solution Eq. (4.7)
for G>® is unique. The tensor D defined by Eq. (3.15)
depends upon the dielectric constant ¢ of the surround-
ing medium in W. Consequently F depends both on the
dielectric constant ¢ in W and the constant € which we
found to be the dielectric constant of the molecular
medium in V. The tensor function F(r,r’) obeying
Eq. (4.8) can be used to write down the solution of
Eq. (4.5) for the polarization Py(r). One readily
verifies that

Py (1) =38pp- (m+x) Eo(r) +[36pp- (p+x) P
X / drF(r, ') -Eo(r')  (4.9)

obeys Eq. (4.5) if F obeys Eq. (4.8).

In the special case that the dielectric constant € of
the medium in W is the same as the dielectric constant
¢ given by Eq. (4.6) of the molecular medium in ¥, the
solution F(r, r') of Eq. (4.8) is known. For in the case
e=¢, Eq. (4.8) for F is precisely the same as the integral
equation for e '[T(r, r') +Rym*(r, 1’; ¢ 1) ] given in
Eq. (2.23). Hence we have proven that

F(r, r') =e[T(r, ') +Rwym*(r, r';€1) ] (4.10)

is the solution of Eq. (4.8) if the surrounding medium
in W has dielectric constant e given by Eq. (4.6). Thus
we find from Eq. (4.7) that

G2V = (Bp*/?) [ () +x (1) J-[T(r, T)
FRywm* (1, 15 1) J- [ (02) +x(w2) ] (4.11)

in the special case that the surrounding medium in W
and the molecular medium in V have the same dielec-
tric constant. Because we know that

ng(rl, Wp; T, 0)2) =p29”2+62(0) (rl, Wy, I, @2)
(4.12)

we now have found an explicit expression for the long-
range part of the two-particle distribution function #.
if €= ¢p.1

Note that G, contains two long-range contributions.
One involving T is itself not dependent on the shape or
the surroundings, but will give rise to shape-dependent
values when integrated over various geometries. The
second term involving Ruiw)*(r, I3 €) is explicitly
dependent on the shape of ¥ and W, but is also propor-
tional to (VW)™ (see Appendix A). This term pro-
portional to (V4-W)~! may not be omitted since the
calculation of angular averages [see Egs. (1.4) and
(1.5) and Sec. V] will involve integrations of r, and r
throughout the volume.

It is clarifying to describe the long-range correlation
in terms of a two-particle potential of mean force ®,
which is defined by the relation

+G2(1) (rly 0y; Ty, ‘“2):

12 (11, @y Ta, @) = p?U2 exp[ — BB (11, @1; T, @s) .
(4.13)
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From Eqgs. (4.12) and (4.11) it follows that, in the case
that e=¢, the potential of mean force is given to lowest
order in & by

®(11, W1; T2, @) = — €[ (1) +x (1) ]
-[T(ry, &) FRwiw)* (1, 1a5 €1) ]+ [ (002) +x(w2) ],

(4.14)
if { I —1 |>)\

Here X is the range of G,9. Equation (4.14) corre-
sponds to the picture that each molecule drags with it
an additional average dipole moment %, defined by
Eq. (3.30), which is caused by the average orientation
of its near neighbors. This whole configuration of mole-
cule together with its oriented neighbors is embedded
in a dielectric with dielectric constant e. Another mole-
cule at r separated by a distance larger than A from the
first one at 1’ feels only the electric field e(r) due to the
total dipole moment

B(@) +%(0) = phets (@) (4.15)

in a continuous dielectric with dielectric constant e
which fills the total volume (V+W). From the macro-
scopic considerations in Sec. II one obtains

e(r) =[T(r, r') +Rww)* (1, '; €) ]+ phesi (@) /6. (4.16)

We may draw another important conclusion from
Eq. (4.11), which is valid in the special case that e=e.
In this case G depends only on the total volume
(V+W), and not on the two volumes separately. The
short-range function G>®® does not depend on the shape
of either of the two volumes. Consequently, the expres-
sion we obtain for G,® is identical if we consider a
molecular sample V surrounded by the continuum W
of the same dielectric constant ¢, or if we consider the
total volume (V+W) to be a molecular medium in
vacuum. Thus the important conclusion is that to order
8 it does not matter for the two-particle distribution
function whether the surrounding medium of dielectric
constant e is treated as a continuum or on a molecular
basis. The equivalent statement is that at large separa-
tions the potential of mean force may be computed
according to macroscopic electrostatic considerations,
as it is shown in Eq. (4.14).

The splitting of Eq. (3.24) for G into the functions
G:® and G, was found by distinguishing between
different types of graphs. The dielectric constant e of
the molecular medium is expressed in Eq. (4.6) in the
vector ¥, which is defined by Eq. (3.30) in terms of
G only. However, the complete two-particle distribu-
tion function #, has another short-range part resulting
from G». The zeroth order in 6 of this short-range part
is given by

(8% @) [ (1) +-x(@1) ] T(ry, 12) - [ja. (@02) +x(e2) ],
(4.17)
as is illustrated in Eq. (4.11) in the special case that

G. NIENHUIS AND J. M. DEUTCH

e=e. For short separations the term Ruyyw)* in Eq.
(4.11) is negligible compared to T. Thus we may obtain
an expression for the dielectric constant € in terms of
the entire short-range part of #.. From Eq. (4.17) we
find

/ (ll'de)-sz(l)(rl, Wy, Iy, 0)2) p.((l)z)
| x2=r1]<A

=—(p/N[(e—1)/3e][p () +x(wr)], (4.18)

where we have made use of Egs. (2.4) and (4.6). Fol-
lowing Kirkwood! we introduce the dipole moment
B(w) by

B(w) = (o) + =

P Jre—rii<x

drzd‘l’zn‘l(rl: ©1; I, (Dz) '.L((D-)) .

(4.19)

Thus g(w;) is the average total dipole moment in a
microscopic sphere with radius N in the presence of a
molecule with orientation @y at the center of the sphere.
The microscopic distance N is the range of G.®. By
using Egs. (4.12), (3.30), and (4.18) we find that

B(oy) =[p(w) +x(w1) 1-[(e—1)/3e] (1) +x () ]

=[(2e+1) /3¢ ] (a1) +re(an) ] (4.20)
It follows from Eqs. (4.20) and (4.6) that
8o A= (e—1) (2e+1) /127 (4.21)

This equation relates the dielectric constant e to the
short-range part of the entire two-particle distribution
function #,. Equation (4.21) was found by Kirkwood!
in the special case of a spherical sample volume V
embedded in an infinite dielectric with the same
dielectric constant.

In the special case that g=1y, Eq. (4.21) reduces to
the Onsager formulal®:?

1Bou= (e—1) (2¢+1)/12me (4.22)

for the dielectric constant ¢ of a polar fluid of rigid
dipoles. The formula (4.22) was derived by Onsager by
adopting the model that each molecule is a dipole
in an impenetrable spherical cavity and that the mole-
cules interact with the medium outside their cavity
according to the macroscopic theory of dielectrics. It is
interesting to note that we obtain the equality z=p if
we assume in Eq. (4.19) that

ng(rl, Wy, Iy, 0)2) =0, if | I—r, |<>\,

13(Ty, @15 T, @) = (p2/02) G2V (11, @15 T3, @02),

i | r—r [ >N (4.23)

The assumption (4.23) corresponds to the picture of
hard spheres with diameter A, interacting with each
other according to the effective long-range interaction
which we found for separations larger than \. Our
molecular expression for f(w:), Eq. (4.20), gives a
formal molecular expression for the Kirkwood ‘g”
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factor! introduced by the definition z=gp completely
in terms of short-range quantities.

V. ILLUSTRATION FOR SPECIAL GEOMETRIES

When the surrounding continuum in W has the same
dielectric constant e as the molecular fluid, the long-
range part of the two-particle distribution function
involves the reaction field tensor Ryym*(r,r’;e™),
which for arbitrary geometries is a difficult quantity
to compute. However, for favorable geometries Ry wy*
can be investigated. In this section we explicitly treat
a few favorable geometries in order to illustrate the
crucial role played by this part of the two-particle
distribution function.

We shall show explicitly that the molecular two-
particle distribution function when employed to calcu-
late the relation (3.5) between the polarization Py and
the external field E, for some special geometries leads
to complete agreement with the relation between Py
and E, according to the macroscopic theory. The two
long-range terms T and Ryim)* are essential for this
agreement. Clearly this agreement must be found in
our development since the molecular expression for
G.®, Eq. (4.11), has been shown to be consistent with
the constitutive relation Eq. (2.14) with a molecular
expression for the dielectric constant that is independent
of the sample shape and the surroundings.

A. Sphere in Vacuum

First, we consider a sphere in vacuum with radius a,
volume V, filled with the molecular fluid. The external
field Eo in the absence of the sphere arises from fixed
external charges and is taken to be uniform. Because
the molecular fluid is a dielectric with dielectric constant
¢, the macroscopic field E(r) in the presence of the

sphere is homogeneous within the sphere. The expression
for E(r) is”

E(r) =[3/(e+2) JE, (5.1)
The total dipole moment of the sphere is given by
VPy=[(e—1)/4r][3/(e+2) IVE,.  (5.2)

According to the statistical mechanical theory the
expression for the total dipole moment in V is

VPy=3{M (0")M () ) E,

for r in the sphere.

(5.3)

which follows from Eq. (3.5) for the case that E, is
homogeneous. Here M is the total dipole moment of the
molecules

M(o")= 3 (o).

i1

(5.4)

The average ( ) denotes an average over a canonical
ensemble for a fluid in the special geometry of a sphere
in vacuum in the absence of the external field Eo. From
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Egs. (5.2) and (5.3) it follows that
BVHM (V)M (") Jo=[(e—1)/4x1[3/ (e+2) V.
' (5.5)

Equation (5.5) is derived by using the property that
the fluid is a dielectric with dielectric constant e. One
notices that Eq. (1.4) follows if one takes the trace in
Eq. (5.5). We shall now show that when our expression
for n, Eq. (4.12) is used to compute the polarization
fluctuation (M(w¥)M(w")) for this geometry we
obtain exact agreement with Eq. (5.5).

By using Egs. (3.12) and (3.14) for n; and #, one
easily shows that

BV (M (0¥)M (@") Jo=3Bou*U+B [ donde,
Xy (@1, @2) (@) (), (5.6)

where ¥, (w1, &) is the angular two-particle correlation
function defined by

Yo, @) = V1 / drdn,Ga(ty, @, T, @), (5.7)
Vv

The superscript zero on ¢ in Eq. (5.6) indicates that
this is the form appropriate to a sphere in vacuum.
From Egs. (3.24) and (4.11) it is clear that to compute
¥» we must in general integrate G.®, T and Ry.wy* over
1 and r,. For the case of a sphere in vacuum the region
W is zero and the reaction field tensor Ry* is given by
Eq. (A13) in Appendix A with e=¢"1.

30 & (1=90+D)

o1y 013 1=0 [+ (I4-1) ]

Ry*(11, oy €71) =

Iy 1
X ;ﬁ Pi(cosfn). (5.8)

21+1

If we integrate Eq. (5.8) with respect to 1, over the
sphere, only the term with /=1 contributes, and we find

2 e—14r
drRy* je)=————4d'U
/.phm PRI ) == 23 e
8re—1
=———U. 5.9
3 e}2 (5.9)

The integration of T over the sphere is given by
4
/ drT(ry, 1) = — = U, if 7, is in the sphere,
sphere 3

(5.10)

where the integration over the singularity has been
taken into account according to Eq. (2.4). Conse-
quently, for the sphere in vacuum we find

¥ (o1, @) =T (w1, 0,) — (B0*/9) [47/ (e+2) ]
X[ (o) +x(wr) J-[p(@) +x(a) ] (5.11)

Here T is the contribution to the angular two-particle
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correlation function due to G,®

T'(01, @) =V [ dridrGy® (1, o 12, @), (5.12)

Since G2 is of short range the term T is strictly inde-
pendent of sample shape and surroundings. Note that
the last term in Eq. (5.11) is shape dependent and
contains a finite contribution due to the reaction field
tensor Ry*. If the expression (5.11) is inserted in Eq.
(5.6), one obtains the equality (5.5) precisely. In
carrying out this step note that from Eq. (3.30) it
follows that

J danT (o, @) p(@2) = (p/Q)x(wy)  (5.13)

and that the dielectric constant e is given by Eq. (4.6).
Hence we have shown that our result (4.11) for the
long-range part of the two-particle correlation function
G, leads to perfect agreement with the macroscopic
theory for this special case.

B. Sphere Embedded in Continuum

We now consider the case of the same spherical
molecular sample of the fluid with radius ¢, volume V
embedded in an infinite continuum W with the same
dielectric constant e as the molecular fluid. The exter-
nally applied field is taken to be homogeneous and
equal to E; at large distances from the sphere. If the
sphere is filled with the molecular fluid, the dielectric
constant is constant all over the space, and the macro-
scopic electric field is E, everywhere. In the absence of
the molecular fluid in the sphere, we have a spherical
cavity in an infinite dielectric. The field E. in the cavity
is related to the field E, by"

E.=[3¢/(2e+1) JE..

One notices that E, is the appropriate external field for
the molecular sample in the sphere. If the cavity is
filled with the fluid, the total dipole moment in the
sphere is related to the cavity field by

VPy=[(e—1)/4x [ (2e+1)/3¢]VE.. (5.15)
The statistical mechanical theory yields for this case
VPr=3(M(0¥)M(&") ). E., (5.16)

where the average ( ), indicates an average over a
canonical ensemble for a fluid in the special geometry
of a sphere embedded in an infinite dielectric with the

same dielectric constant e. It follows from Egs. (5.15)
and (5.16) that

BV M (0" )M (0V) )o=[(e—1) /47 ][ (2e+1) /3¢ JU.
(5.17)

This equality follows from the fact that the fluid is a
dielectric with dielectric constant e. Equation (1.5)
follows from Eq. (5.17) by taking the trace. We shall
show that when our expression for n, Eq. (4.12) is used
to compute the polarization fluctuation for this geom-
etry we obtain exact agreement with Eq. (5.17).

By using Egs. (3.12) and (3.14) for this case one

(5.14)
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easily shows
BV 1M (0" )M (@) )o=1BpuU+B [ dorde,
X (o1, @) (1) p(e2).  (5.18)

The superscript © on y» indicates that this is the form
appropriate to a sphere embedded in a medium with
the same dielectric constant. The surrounding volume
W is now the entire space except for the sphere V. So
for this case (V+W) fills the entire universe and hence

Ryyw)* (11, 12; €1) =0. (5.19)
Thus we find for G,® for this case [cf. Eq. (4.11)]
G2,0® (11, 015 Tz, @02) = (Bp?/2?) [ (1) +x (1) ]

T(ry, r2) - [ (@) +x () ] (5.20)
Hence
Y2 (01, @) =T (a1, ) — (Bp?/02) (47/3¢)
X[ (o) +x () J-[p(0n) +x(w) 1. (5.21)

Note that T is the same in the expression (5.11) for y»°
and in Eq. (5.21) for ¢»*®, since this quantity is inde-
pendent of the geometry. If we substitute Eq. (5.21)
in Eq. (5.18), we obtain Eq. (5.17) precisely with e
given by Eq. (4.6).

C. Infinite Layer

Another simple geometry which is used in calcula-
tions is an infinite layer of the molecular fluid with a
finite thickness, which fills the region V in space where
0<z<d. This geometry is an idealization of the experi-
mental situation of a dielectric slab which fills the region
between two large plane parallel capacitor plates. If we
apply a homogeneous external field Ey, not necessarily
along the z axis, one finds from Maxwell’s equations
that the field E inside the layer is homogeneous and
related to Ey by

1
E= 1 -E,, inside the layer (5.22)
e
and the polarization of the layer is given by
1
Py=[(e—1)/4x] 1 ‘E;.  (5.23)

el

If we compare Eq. (5.23) with the molecular theory

we obtain
1

BV M ()M (V) )i=[(e—1) /47] 1 ,

(5.24)
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where the average { ); denotes an average over a
canonical ensemble for a fluid layer in vacuum in the
absence of the external field E,. Strictly speaking, the
volume V is infinite for the layer. However, the average
M (0¥)M(w") ); is proportional to the volume, and if
we consider the left-hand side of Eq. (5.24) as the limit
of a finite layer, the ratio is finite and the equation will
be valid in this limit. In the same way as above we may
show that

BV (M (0" )M (") )i=3Bou*U+B [ dandw,
Kot (@1, 02) (1) p(@2).  (5.25)

The angular two-particle correlation function ¢! is
defined by

‘1’21(‘011 “‘2) =V / drldr2Gz,l(l'1, Wy; Iy, 0)2) (526)
14

or, more precisely, the right-hand side of Eq. (5.26) in
the limit of an infinite layer. The function G, is the
two-particle correlation function G, for this special
geometry. The volume W is zero for this case, and G.,;
contains a part with Ry*(ry, 1y; €1). In Appendix A it
is shown [see Eq. (A14)] that the contribution of Ry*
to Y»! is zero. The contribution of the integration of T
for the layer is given in Appendix A by Eq. (A16).
From these equations we obtain the expression for ¥»!

‘1/21(‘»1) 0)2) = r‘(wli 0)2) _47'-(6‘)2/692)

X[ (on) +x(@n) TLw (@) +x(w2) L. (5.27)

If we substitute Eq. (5.27) in Eq. (5.25), we obtain
precisely the relation (5.24).

Hence we showed explicitly that for these geometries
the general result Eq. (4.11) leads to the correct macro-
scopic behavior. The different long-range parts of the
two-particle correlation functions for these cases result
in different angular two-particle correlation functions
[Egs. (5.11), (5.21), and (5.27) Jand in different values
for V1M {(w")M (0¥) ). However, these differences
are just what is required to make the expressions (5.5),
(5.17), and (5.24) for different geometries consistent
with a single shape-independent dielectric constant,
which is defined in a molecular way by Eq. (4.6). The
differences in the angular two-particle correlation func-
tions ¥ arise from the fact that the term with T in G,®@
[Eq. (4.11)7] is integrated over different volumes, and
that the reaction field tensor Ry w)* explicitly depends
on the shape of the sample volume ¥V and the surround-
ing volume W.

VI. CONCLUSIONS

In this article we have developed a molecular theory
for strongly polar dielectric fluids of arbitrary sample
shape that may or may not be embedded in a dielectric
continuum. One important conclusion is that the con-
stitutive relation between the local polarization and
the local macroscopic electric field is valid, provided
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that the molecular sample has macroscopic dimensions
and provided that the external field does not vary too
strongly over microscopic distances. Consequently,
the dielectric constant that appears in the constitutive
relation is independent of the sample shape and the
nature of the surroundings. We have given a formal
molecular expression for the dielectric constant in
terms of shape-independent quantities.

The most important result of this investigation is the
explicit expression that we have obtained by graphical
techniques for the two-particle correlation function G,
for large separation. This expression applies for the
sample V in vacuum or when the sample is embedded
in a continuum of arbitrary shape in a volume W, which
has the same dielectric constant as the sample. The two-
particle correlation function has two long-range terms.
One of these terms involves T, the dipole-dipole tensor,
which when integrated over particle positions will lead
to sample shape-dependent results. The second term
involves a tensor which is identified to be the same as
the reaction field tensor arising from the region outside
(V+W), when it is filled with a dielectric of dielectric
constant ¢!. This second term is explicitly shape de-
pendent and is proportional to the inverse of the total
volume (V+4-W).

An interesting consequence of the theory is that G,
inside the sample is the same when we consider the
sample surrounded by a continuum W and when we
consider both the sample volume V and the volume of
the surrounding region W to be filled with the molecular
fluid. One of the differences between these two situations
is that V is an “open” system when (V+W) is filled
with the molecular fluid. In general we may expect this
difference to give rise to an additional term in #,
proportional to V.18 This term is not explicitly included
in our development because of the thermodynamic limit
implicit in our use of the graphical expansion, i.e., G»®
contains no terms proportional to V1.2 We expect that
proper inclusion of this term would not affect our results
for the polarization or the dielectric constant because
the orientation-dependent part of this term is likely to
be of short range.

As the molecular sample becomes larger our theory
becomes progressively more exact. In the thermody-
namic limit Ry*=0 and our treatment is exact if one
accepts the graphical expansion for the dipolar system.
Conversely, as the molecular sample becomes smaller
the theory is less exact. Taking into account higher
order terms in 6 will not be useful since some terms of
order V! have been omitted by use of the graphical
expansion. It is likely that corrections of order V™! to
the dielectric constant are essentially shape dependent.

For special uniform polarization geometries we have
explicitly shown that the long-range terms of G» are
essential for obtaining results consistent with a shape-
independent dielectric constant. The angular two-
particle correlation function, obtained from G, is shape
dependent. On the other hand, the position pair distri-
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bution function, obtained by integrating #, over the
orientations, contains no long-range contribution. This
latter part is of particular importance since most experi-
ments designed to probe two-particle distribution func-
tions directly are not sensitive to the orientational
dependence and measure therefore only the position
pair distribution function.

The long-range part of the two-particle distribution
function in the absence of the external field causes the
polarization to be a geometry-dependent functional of
the external field. This same two-particle distribution
function is related to the thermodynamic quantities of
the system, such as the Helmholtz free energy, the
pressure, the internal energy, when there are no external
fields. However, it may be shown that these thermo-
dynamic quantities in the absence of the field are inde-
pendent of the geometry to lowest order in &. The
thermodynamic properties of polar fluids will not be
discussed further here.

In this article we have neglected fluctuations in the
dipole moment of the molecules. The inclusion of a
polarizability complicates the theory. Nevertheless in
a similar way, as we used in this paper, it is possible to
show that a system of polarizable molecules with or
without a permanent dipole moment obeys the consti-
tutive relation of the macroscopic theory of dielectrics.
This will be demonstrated in a subsequent paper.

APPENDIX

We study the reaction field tensor Ry*(ry, I2; ) more
explicitly for some special geometries. We consider a
spherical cavity with radius ¢ in an infinite dielectric
with dielectric constant &. We wish to find an expression
for the reaction field tensor, and we shall accomplish
this in several steps. First, we calculate the potential ®
due to a point charge Q inside the cavity. We choose a
coordinate system with the origin in the center of the
spherical cavity and with the point charge on the z axis.
The distance between the charge and the origin is called
b. Because Q is inside the spherical cavity, we know that
b< a. The geometry is invariant for rotations about the
z axis. If we use spherical coordinates (7, ¢, 8), then ®
does not depend upon the azimuth angle ¢. From
Maxwell’s equations it follows that"

e(r) (8%/0r) is continuous at r=a, (A1)
where
e(r) =¢, if r>a,
e(r)=1, if r<a, (A2)
and
® is continuous at r=a. (A3)
Moreover, if we introduce the potential &, by
®(r, 0) =Q[r*+b2—2rb cosf |12+ By (r, 0), (A4)

then &, is the potential due to the polarization in the
dielectric which is caused by the presence of the charge
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Q. This potential ; must obey the Laplace equation
Vi =0 (AS)

Laplace’s equation is not valid at the boundary r=a
because of the discontinuity in the dielectric constant.
Because of the axial symmetry of the geometry the
potential &, is of the form"

if r<a and if r>a.

By (r,0)= > Ap'P;(cosh), if r<a,
1=0

&y (r,0)= > By '1P;(cosh), if r>a, (A6)
=0

where the functions P; are the Legendre polynomials.
Note that & has no singularities and goes to zero if r
tends to infinity. The potential due to the point charge
Q can be expanded as

QL2 +b2—2rb cosf 172

= > 0bir1P;(cosh), if r>b. (A7)
=0
The condition (A3) requires that
Ala‘=Bza‘H, (AS)

whereas we obtain from Eq. (A1)
@Bi(l141) a2+ Qb (14-1) a2
=— Ao 4-Qbl(I4+-1)a"2  (A9)
In obtaining Eq. (A9) we make use of Eq. (A7) and
the fact that 8<a. From Egs. (A8) and (A9) one finds
4:=0{(1—&) 4+ 1)b"/[I+e&(I+1) Ja**}.  (A10)

Thus the potential &, at ry due to the polarization of the
medium caused by the presence of the charge Q at 1y is
© (1—e) (I+1) rgirid

B =R P

where 6o is the angle between 1, and r;. Hence the
potential at r; due to the polarization of the medium
caused by a dipole p at 15 is

_3_ © (1—e) (I41) rint
010 1= [I+e(l4-1)] a?H

Pl(COSH()l), (All)

P, (C05001)

if rn<e and n<a. (A12)
The reaction field tensor is thus given by
9 0 =2 (e0—1)(I+1) roirid
Rv*(r, 1oy 60)= — — >, ——————= Pi(cosby),
v* (11, To; &) o1 910 = [t e(+ 1] @ 1(costn)
if n<a and r1<a. (A13)

This tensor is zero if e=1, as it should be. The expan-
sion (A13) converges if 7o<a and 7 <a. One easily
checks that Ry* can get large if 1, and 1, are close to the
boundary and simultaneously close to each other. If we
multiply @ and the vectors 1o and r; with a certain factor,
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we find that Ry* is proportional to the inverse of the
volume ¥ of the cavity.

Another geometry of interest is a layer in the region V
of space where 0<z<d. We are interested in the reac-
tion field tensor Ry*(ry, Is; ). Although we shall not
write down an explicit formula for this tensor, we shall
show that

/ dr2RV*(r1, Io; eo) =0, (A14)
12
For that purpose we remark that the field Ep due to a
homogeneously polarized layer with polarization Py is
given by

0
Ep= 0 Py, inthelayer,
—4r
and
Er=0, outside the layer. (A15)

This follows if we recall that the field due to a homo-
geneously polarized sample is caused in effect only by a
polarization surface charge density which is equal to
—Py-n,” where n is the outward unit vector normal to
the surface. Because the resulting field Ep given by
Eq. (A15) is zero outside the layer, this field cannot
induce a polarization in a dielectric outside the layer V.
Hence the reaction field caused by the entire homo-
geneously polarized layer is zero, which proves Eq.
(A14). Moreover, it follows from Eq. (A15) that

0
dl'gT(I'l, r‘l) = O 3

layer
—A4r

if 1y is in the laver. (A16)
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