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We present a derivation of a Langevin-type equation for the operator Gu,'(f) =exp (iHt) | o ) e | exp(—iH{t),
where | @) and | «') are eigenstates of the subsystem Hamiltonian and H is the full Hamiltonian for sub-
system plus bath. For the case in which we consider a spin system weakly coupled to a thermal bath (lattice),
the equation of motion is of the form of the Redfield equation with a fluctuating term. This equation may
be used to derive the standard Redfield equation for the spin density matrix as well as Bloch equations
with fluctuating terms for the components of the magnetization for individual systems in the nonequilibrium
ensemble. The latter presents a first principles derivation of the magnetic analog of hydrodynamic fluctua-
tion theory. A calculation of several of the correlation functions which may be constructed from the theory

is presented.

I. INTRODUCTION

The relaxation of a nuclear spin in weak interaction
with a lattice is described by the Redfield equation
for the spin density matrix. Several interesting and
diverse derivations of this equation have been presented
in the recent past.’3 The spin density matrix which is
obtained from the Redfield equation is an averaged
quantity since it is obtained from the complete density
matrix of the system by averaging over the lattice
degrees of freedom. Furthermore, the spin density
matrix obtained from the Redfield equation provides
an adequate description of the spin system only on a
slow time scale; the rapid, fluctuating, motion of the
lattice degrees of freedom are excluded. From this spin
density matrix it is possible to obtain equations of
motion for the magnetization which we shall refer to as
Bloch equations. The Bloch equations are, of course,
equations of motion for the average magnetization. A
corresponding microscopic equation for this dynamical
variable is not available.

Our present purpose is to consider a more funda-
mental equation that simultaneously leads to the
ordinary Redfield and Bloch equations upon suitable
averaging. The generalized equation of motion we
obtain here is for the operator

Gaa (1) =exp(iHt) | & Y| exp(—iHY), (1.1)

where | @) and | a’) denote eigenstates of the spin
(Zeeman) system and H is the full Hamiltonian for
the system. The equation of motion for G (?) is a

microscopic equation that includes the effects of the
lattice. We assume that the spin system is in weak
interaction with the lattice and obtain an equation
which is a valid description of the slow time scale on
which the spins relax. On this slow time scale the lattice
motion is extremely rapid. We show that Gaa(?)
satisfies an equation of motion of the Redfield form
with the effects of the lattice appearing in a rapidly
fluctuating term. In addition, we obtain a microscopic
equation of motion for the magnetization operator
directly from the equation of motion for G (). This
equation is similar to the Bloch equation, but an added
fluctuating term is present which includes the effects
of the lattice. The stochastic properties of the fluctuat-
ing terms that appear in the equation for the mag-
netization and the equation for G,a(¢) are determined.

The analysis presented here is not intended to
provide a new practical calculational procedure.
Rather, we wish to present a point of view of spin re-
laxation. The point of view is that the existence of a
simple linear relaxation equation for a dynamical
variable or its associated density matrix implies that
the microscopic equations may also be expressed in a
simple way on the slow time scale of the macroscopic
variable. This situation will hold for a wvariety of
weakly coupled systems that can be described by a
master equation. The same point of view has been
adopted recently by Zwanzig and Bixon* in their
treatment of the Boltzmann-Langevin equation for
dilute gases and by Oppenheim and us® in our treat-
ment of Brownian motion.
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We employ a projection operator technique to obtain
an equation of motion for Gu.(f). The projection
operator technique differs from that employed by Mori®
in his generalized theory of Brownian motion. In
Mori’s approach attention is focused on obtaining
equations of the macroscopic variables, e.g., the
magnetization—no explicit reference is made to the
equation of motion for the distribution function, e.g.,
the spin density matrix. Here attention is focused on
obtaining the microscopic equation for the dynamical
variable Guq(f) which satisfies the same equation of
motion as the spin density matrix upon averaging over
lattice degrees of freedom. The projection operator
employed is qualitatively different from that required
in the Mori scheme. The results obtained are richer than
those obtained by direct application of Mori’s method.
Related work has been undertaken by Argyres and
Kelley* who employ a different projection operator to
obtain an equation of motion for the spin density
matrix directly. These authors, however, do not arrive
at the stochastic equation for G (f) or the stochastic
equations for the magnetization. Finally, we note that
Englert” has presented a very careful analysis of
weakly coupled quantum systems without explicit
reference to the Brownian motion point of view.

The analogy between the theory of Brownian motion
and spin relaxation is most useful. The Fokker-Planck
equation for the Brownian particle distribution function
corresponds to the Redfield equation. The simple ex-
ponential relaxation of the average Brownian particle
momentum corresponds to the Bloch equations for the
magnetization. The existence of these simple transport
equations for the averaged quantities implies simple
microscopic equations. For the magnetization, the
Bloch equations are augmented by a fluctuating
“force” which corresponds to the Langevin equation
for the Brownian particle momentum. For spins the
microscopic analog of the Redfield equation is the
equation of motion for Gaes(#), while in Brownian
motion theory the microscopic analog of the Fokker
Planck equation is the equation of motion for the
phase function?*®

D(H) =5[R() —RJP[P(H) —P], (1.2)

where R(#) and P(¢) are the position and momentum
of the Brownian particle at time ¢. In both the case of
spin relaxation and Brownian motion, all the results
are succinctly expressed in the fundamental equation
for Guer (2) and D(t), respectively.

For clarity, we explicitly consider here the primitive
case of a single spin relaxing via an intramolecular
mechanism. It is an easy matter to interpret our
results in terms of an N-spin system where inter-
molecular and/or intramolecular relaxation mecha-
nisms are present. However, when intermolecular re-
laxation mechanisms prevail, the reduction to a Bloch-
type equation for the magnetization is accomplished
with greater difficulty.
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II. DERIVATION OF THE EQUATION OF MOTION

The Hamiltonian for the spin system and the lattice
is

H=H,+H+\H'=H+\H, (2.1)

where H, is the Hamiltonian for the spin system in the
presence of a static magnetic field (Zeeman Hamil-
tonian), H; is the lattice Hamiltonian, and H’ is the
interaction of the spin system and the lattice char-
acterized by the coupling constant A. We require that
the lattice average of the interaction Hamiltonian
vanish, i.e.,

(2.2)

where Tr; indicates a trace over the eigenstates of the
lattice Hamiltonian and p; is the equilibrium density
matrix for the lattice

pr=exp(—BH)) /Tri exp(—BH). (2.3)

If (H') is not zero, we redefine H, and H' so that (2.2)
holds.

The equation of motion for the density matrix of the
system, p(f), is

where L is the Liouville operator for the system. From
the form of the Hamiltonian, the Liouville operator may
be written as

L=Lot LA\ = Lo+ AL, (2.5)

where Ly=[H,, -+ is the Liouville operator for the
spins and lattice in the absence of any interaction and
L'=[H’, -++] is the interaction Liouville operator.

We seek an equation of motion for the operator de-
fined in Eq. (1.1),

Gaar (1) =exp(iLt) | &’ ){a |.

To obtain this equation of motion we introduce a pro-
jection operator @ and let the operator identity

<H’>ETrlszl=0,

(2.6)

exp(iLt) =exp[i(1—@®) Li ]+ /t dr exp[iL{t—r) F®L

Xexp[i(1—®)Lr] (2.7)

act upon

(1—®) Gar (0) = (1—®)iLGoar (0). (2.8)
The result is
Guar (1) = exp(3Lt) ®iLGuar (0)

+expli(1—®@) Li}(1 —®)iLGae (0)

+ /t dr exp[iL(t—T) i®L
0
Xexp[i(1— @) Lt](1—®)iLGua (0), (2.9)

where we have used the fact that for any operator 4
A () =exp(iLt) A (0) =exp (1H!) A (0) exp(—2H?).
(2.10)
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The appropriate projection operator for spin re-
laxation is defined by

(PAE<A>ETI'zp1A. (211)
From this definition one may easily show
®iLy(+++)=0 (2.12)
and
®iLGaar (0) = — i0aarGaar (0), (2.13)

where wuor=(Es—E4) and E, is the energy of spin
state | @). We may reduce Eq. (2.9) to the form

Gaa’ (t) = _iwqa’Gaa’ (t) +Kaa’ (l)
—)\2/ dr exp[iL(i—7)]
0

XTri{pill exp[t(1—@) LIrL'Gaer (0)}, (2.14)

where we have defined the random ‘force” term
Koo (1) as

Kaa (£) =exp[i(1— @) LEIAL Goar (0). (2.15)

In order to obtain Eq. (2.14), we have used Egs.
(2.9), (2.10), and the fact that

Koo (l) = <Kaa' (t) >= 0.
The operator identity

expli(1—@®) Lr]=exp(iLer)+ /r dr’ exp[iLo(t—7)]
0

X[E(A—=@®)AL'—iL,e] exp[i(1—®)Lr'] (2.17)

relates exp[#(1—@®) Lt] to exp[iLot]. Our basic assump-
tion® will be that in the limit of weak spin-lattice
interaction and for long times, one is justified in re-
taining only the lowest-order term in X in Eq. (2.17)
when operating on K. (0). With this assumption,
Eq. (2.14) becomes

G.aa’(t) = —iwaa’Gaa’(t)+Kaa’(t)
— f dr expliL(i—1)]
[}

XTr;[plL, eXp(’I:L[)T) L’Gmxl(O) ] (218)

It is useful to transform to the interaction representa-
tion in order to remove the oscillatory Zeeman terms
which appear in Eq. (2.18). This transformation is
accomplished by means of the definition

Gaa'*(t) Eexp(iwaa't) Gaa' (t) = eXp(iLt)
Xexp(—iLot) G (0).
In terms of G.or*(£), Eq. (2.18) becomes
¢t
Coa* () = Kua*(0) =3¢ [ dr expliL(1=1) ]
0

Xexp[—iLo(t—7) ] Trif piL*(t— 1) L*(£) Gaar (0) ],
(2.20)

(2.16)

(2.19)
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where we have made use of the distributive property of
exp(iL¢t) and defined

L*(f) =exp(iLot) L' (2.21)

The fluctuating “force” in the interaction representa-
tion, Kaa*(1), is

Koa* (1) = exp (10aat) Kaar () = exp[i(1— @) Lt AL’
Xexp(—iLot)Gaar (0). (2.22)

We now take the », »’ spin-space matrix element of
Eq. (2.20)

] Gaa®*(@) | V)= | Ka*(2) | )

t
X % [ | T (=) L0 Gaw (0] 8)
8.8 J¢
X | Geg*(t—1) | v'). (2.23)
If the interaction Hamiltonian has the form
(2.24)

H'= Z Fqu,
q

where F, is a lattice operator and .S, is a spin operator,
it is possible to evaluate the term

<B’ | Trl[PlL*(t_"')L*(t)Gaa’(0)] l B>

in Eq. (2.23). After a great deal of calculation one ob-
tains

(] Guar* (1) | V)= (| Kua*(®) 1)

P05 [ Py () exp(itd) o | G (1=1) | ),
8.8 Yo
(2.25)
where
Foarger(m)= 2 {{a]| S¢ | BYB"] So| ")

X[gao (1) exp(iwpat) +goo (—7) exp(—iwgar)]
—barp 2. | Sq l Y| Sy ] B)8ea (1)

Xexp(iwpyr) —8ap 2 (8| S| V¥ | Sor | &)
v

X g (—7) exp(—iwg,)}, (2.26)
2o (7) is the lattice correlation function
gag (1) = (F (1) F o (0) ), (2.27)
with
Fi(r)=exp(GH)Fyexp(—iHir).  (2.28)

Finally, A is the difference between the frequencies
Waa’ a.nd wpg’,

A=wour—wggr=(Ea— Ew— Eg+Eg).  (2.29)

For {> 7., where 7. is the correlation time associated
with the lattice, one may extend the upper limit of the
integral to infinity. Because of the factor exp(iAt) the
major contribution arises for those terms in the sum
for which A=0. Furthermore, it may be shown that
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[ [ Gog* (1— 1) ) may be replaced by (v | Gaa*(8) | V)
incurring an error that is formally of higher order than
A2, Hence, for £>7,, Eq. (2.26) becomes

<Vi G.aa’*(t) ‘ V'>= <V] Kaa’*(t) ! Vl>

N Rewar 0] G () 1),

(2.30)

where the prime on the summation restricts the sum to
include only those terms for which A=0 and where
R,qg is the usual Redfield relaxation tetradic defined
as

Raa’ﬂﬁ'z / dTFaalBBI(T). (2.31)
0

Note that in Eq. (2.30) the relaxation tetradic operates
only on the spin states which appear as operator labels
and not on the spin states which appear as matrix ele-
ments. Furthermore, the matrix element (v | Gaa*(1) | ')
remains an operator in the lattice variables. From Egs.
(2.28) and (2.29) we obtain the equation

@l G (1) | V)= (0 | Kaar (1) | V') —i00ar (| Gaar (8) | ¥')
+x2§j Rowsg (v | Gagr (1) | V). (2.32)

In operator form Eq. (2.32) is an equation of motion

for Gae (1),
Gaar (1) = — iwaa'Gaar (1) N 2 RaarperGpgr (1)
8.8
+ Koo (1)

This equation is the central result of our analysis. The
form of the equation is identical to the Redfield equa-
tion, except for the added fluctuating force Kaa-(f).

The spin density matrix {a| o(¢) | &) is defined by

(a|o(®) | a)=(a| Trilexp(—iLt)p(0) ]| ),

where p(0) is the initial nonequilibrium density matrix
of the over-all system. From the definition of Gaa(2),
Eq. (1.1), it follows that

<a[ a(f) ] al>=Tr[Gaa’(t>P(O) ]’

where Tr[---] denotes a trace over lattice and spin
states. Under usual circumstances the initial density
p(0) may be approximated by p(0)=pis(0) where
o (0) is the initial nonequilibrium density matrix for the
spin degrees of freedom. In this case, we have

(o ‘ o(t) ‘ al>=Tr8[<Gaa'(t) >°'(0) ]’

so that the equation of motion for the spin density
matrix is the same as the equation of motion for
{Guar (1) ). Note that {(Ga.r(#)) is an operator in spin
space. Since (K.o'(£))=0 [see Eq. (2.16) ], it follows
immediately from Eqs. (2.33) and (2.36) that (Ge' () )

(2.33)

(2.34)

(2.35)

(2.36)

ALBERS AND J.
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and {a| o(f) | ') satisfy the equation
(3/0t) (| o (1) | )= —itaar (| o () | &)

N Y Raager (Bl a(2) | 87 (2.37)
8.8

which is the ordinary Redfield equation. From these

considerations, in analogy to the theory of Brownian

motion, the equation of motion for G, (#), Eq. (2.23),

may be referred to as the Redfield-Langevin equation.

III. REDUCTION TO THE BLOCH-LANGEVIN
EQUATION

The definition of the average macroscopic mag-
netization is

MT(t) =Y Trs[SrG(t) ]7

where S; is the spin operator and v the gyromagnetic
ratio. In the following, we set y=1. If the spin density
matrix obeys the Redfield equation, Eq. (2.37), the
magnetization will obey the equation of motion

M, (1) = —[3eox M (1) 422 Z (a’|Sla)

a,af B

r=x,9,2, (3.1)

XRaa’ﬂﬂ’(Bl a(t) |8,

where 3¢, is the static Zeeman field. The form of the
usual Bloch equations is

M, (t) = —[3eox M () l,— (1/T) [M.(t) — M ],

r=x! y! 2

(3.2)

(3.3)
where M0 is the equilibrium magnetization

Mp= 3 @] S:]a)a la]a’), (3.4)

and {a| ¢®| @'} is the equilibrium spin density matrix
(@] ®} &' y=60ar[ 2 exp(—E./kT) ' exp(—Eu/kT).

If the z axis is chosen so that 5C0=380ﬁ, then T,=Ty=
Tz, T3=T1, and Mz0=My°=0.

It is well known that the relaxation matrix is not
always of a form that permits a reduction of Eq.
(3.2) to Eq. (3.3). The situations where Raargpr has a
form where the reduction is possible are discussed in
great detail in Aleksandrov.® Comparison of Eq. (3.2)
and Eq. (3.3) shows that a necessary condition for the
equality of these two equations is

X [e' | Se] @) Rany+(1/T7) (o | Sr ] a)Bagbars

— (/T | Sila)ala®| o' )oger ]=0. (3.5)

Here we assume that the form of the spin-lattice inter-
action, the multiplicity of the spin, and the temper-
ature are such that Rqgs satisfies Eq. (3.5) so that one
realizes the simple form of the Bloch equations for the
average magnetization. If the relaxation matrix does
not satisfy Eq. (3.5), the resulting equation for the
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average magnetization will not be of the simple form
of Eq. (3.3). An example of a case where R,ugs
does not satisfy Eq. (3.5) is for a spin I>1, with
quadrupole interaction and when conditions of extreme
narrowing are not met.

To arrive at the Bloch-Langevin equation we con-
sider Eq. (3.1) in the form
M@= X la(0) [v) | Gaar ()| 9)

a,al p !
X' | S:|a), (3.6)
where we have used Eq. (2.36). We define the operator

8:(1)
8:(1) = Z} Gaar (1) (o I S ] @) (3.7)

which permits us to rewrite Eq. (3.6) as
M0 = T 610(0) )6 | Trlas (D19 (38)

The operator $,(f) is constructed so that its trace with
the initial nonequilibrium density matrix, p(0) =
po(0), yields the average macroscopic magnetization.
Indeed Eq. (3.8) is identical to

M, () =Tr[p(0)8,(£) 1= Tr[s(0) (8: (1) }]. (3.9)

We may arrive at the Bloch equation for M,(f) by
considering the equation of motion for §,(f). From
Eq. (3.7) and the equation of motion for Gu.(t),
Eq. (2.33), we obtain

d8:(8) /d= T [~ iaGau (1) (' | ;| @)

F Koo (8) (@' | Si | a)+22 ﬂ%: RoarppGepr (8)

X' | S a)]. (3.10)
This equation may be immediately simplified to
ds. (1) /dt=—[3eox 8(t) ],
+>\2a’§ﬂﬂ’ RoarpgGeg (1) (@' | S| a)+h,(1), (3.11)

where we have defined the random field operator

k() = 3 Kaar (£) (@' ] S, | @). (3.12)
a,al

The term involving the relaxation tetradic in Eq.

(3.11) may be evaluated by use of Eq. (3.5). The

result is an equation of motion for $,(¢) :

d8,(£) /dt=—[3Co % 8(t) — (1/T+) [8.() =8, T+, (1),
(3.13)

where 8,9=M,%. We refer to Eq. (3.13) as the Bloch—
Langevin equation. This equation is an operator
equation in both spin and lattice variables. If the
average is performed over the lattice, we obtain an
operator equation that has the form of the Bloch

2617

equation
(dsr(t) /dt>= —EJCO x <S(t) )Jr_ (I/Tr) [<Sr(t) >"‘8rol
(3.14)
where we have used the fact that
(h:(2) )=0 (3.15)

which follows from Egs. (3.12) and (2.16). Of course,
Eq. (3.14) remains an operator equation in spin space
and will clearly lead to the Bloch equations for the
magnetization if use is made of Eq. (3.9). Finally, the
spin matrix elements of the Bloch-Langevin equation
may be taken

ldsP(t)/di]vy=—[3X | 8(1) |V

+ o B | V)= (/T[] 8:(8) | v') 8%, ]
(3.16)

What is the significance of the Bloch-Langevin
equation? If the spin is described by the Redfield
equation on the slow time scale and if this Redfield
equation is consistent with the Bloch equation, then it
necessarily follows that a magnetization type operator
8:(¢) satisfies the Bloch-Langevin equation. The
operator 8,.(¢) is a useful description of the slow time
scale and includes the effects of the fast lattice motion
in a fluctuating term %.(f) whose average over the
equilibrium lattice density matrix is zero. The Bloch—
Langevin equation, Eqgs. (3.13)-(3.16), is an operator
equation. The microscopic analog of the Bloch equa-
tion® is obtained by averaging Eq. (3.16) over an
initial nonequilibrium spin density matrix &' | ¢(0) | »)

. (t) = —[3C x m(¢) ]r“ (1/T) [mr(l) "'mro]

+b.(). (3.17)
Here
m(t) =Tr[a(0)8,(1) ], (3.18)
mS=M), (3.19)
and 4,(#) is a random magnetic field
b:() =Tr[c(0Y (1) ]. (3.20)

In this form, the Bloch-Langevin equation is an equa-
tion for the microscopic magnetization, m,(t), which
depends upon the lattice configuration. The observable
macroscopic magnetization is related to m,(¢) by

M. (8) = (m.(8)). (3.21)

Since {b,(¢) Y=0, when Eq. (3.17) is averaged over the
equilibrium lattice density matrix, one recovers the
ordinary Bloch equation. The Bloch-Langevin equa-
tion in the form of Eq. (3.17) is analogous to the
Langevin equation for a heavy particle in Brownian
motion theory.
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IV. CALCULATION OF THE CORRELATION
FUNCTIONS FOR THE REDFIELD-LANGEVIN
EQUATION

In this section we compute the time correlation
functions of the random quantities appearing in the
previous sections. We begin with the Redfield~Langevin
equation in the operator form [A=1],

8Gua®() = ' RaasgdGap* () +Kaa*(1), (4.1)
8.8/

where

6Gaa’*(t) =Gaa’*(t) _o.aa,O, (42)

and oaa®=0a%ue is the equilibrium spin density
matrix. In obtaining Eq. (4.1) we have used Eq. (2.30)
and the fact that

E, Raa’ﬁﬂfa'ﬂﬂ’oz O. (4.3)
8.8/
It follows from Eqgs. (2.16) and (2.22) that
(6Gaa*(1) }= ;;};’/ [exp({R) Joarpsr0Gp*(0),  (4.4)

which leads to the time correlation function expression
for G*(1)

(8Gaar™() 8G,,*(0) )
=£, Lexp(IR) Jaarssr0Gea*8G,,*(0).  (4.5)

This correlation function is an average over the equilib-
rium lattice density matrix. The complete equilibrium
average includes a subsequent average over the equilib-
rium spin density matrix. This complete average is
defined by

(A)w="Tr[pd 1=Tr 00?4 ]=Tr,[c*(4)].
From Eq. (4.5) we find
(Gaa'™(2) Gy (0) = [eXP(tR) ]ua’v’vawoy (4.7)

where we have made use of Eq. (4.3). Correlation
functions of the type presented in Eq. (4.7) may be
used to compute correlation functions of dynamical
variables. For example,

O8O0 In= 2 [(Gaa (£) Gy (0) )

aal vy

(4.6)

X' | 8]a)ly'| 8] 7v)] (4.8)

The correlation functions of the random ‘“force”
Koo*(f) may also be calculated. First we integrate
Eq. (4.1) to obtain

8Gaa™ (1) = gl Lexp(#R) Juargs:6Gs™*(0)

+ 3 [ arlep(t=n B Ko (). (49)
B 0

Next, we square this expression and take the average

ALBERS AND J. M. DEUTCH

over the equilibrium lattice density matrix,

¢
(3G aar™ (1) 8Gas* (1) ) = T+lim f drs
0

{0

X /t dry Z [exp((t— TI)R)]aa’w'
0 vyl wo!
X[exp((t‘ 72)R)]ﬂﬂ’w' <KW’*(TI) K,,,,'*(Tg) >> (410)
where
T=1m (3G *(2) ) (8Gea* (1) ) (4.11)

> o0

and use has been made of Eq. (2.16). We shall assume
that
lim {3Gaer* (1) ) =0,

t-r 00

(4.12)

so that T may be taken to be zero. If Gg*(0) were a
well-behaved matrix, this property could be established
from Eq. (4.4) since og¢, the sole eigenmatrix of R
with zero eigenvalue, is subtracted from Ggs*(0).
Strictly speaking, it is not possible to deduce Eq.
(4.5) without an examination of the subsequent spin
averages with which (§G..-(#)) is eventually to be
associated. We may however take T=0 provided that
we assume that the fluctuation formula will be em-
ployed only to compute a restricted class of averages
for which Eq. (4.12) can be explicitly justified.

Since Kquo*(#) is linear in the lattice coordinates, as
can be seen from the definition in Eq. (2.15), the
random force correlation function has a time variation
characteristic of the fast lattice motion. Accordingly,
we assume this correlation function to have the form

(Ko * (1) Ku*(12) )=B(v, 7', »,¥)8(r1— ). (4.13)

On the slow time scale where Eq. (4.9) is valid, the
random force correlation function appears to be a delta
function in time. When Eq. (4.13) is substituted into
Eq. (4.10), one obtains

(8Gaar® (1) 8Gge* (1) y=lim /t dr

tao0 Y
X ; , [exp(R(t—1) ) Joary [ eXp(R(t—7) ) Jssr

XB(v,Y, v 7). (4.14)
It is an easy, but somewhat lengthy, matter to verify
the identity
— X [Reamdggrayt+LaanRagm ]

MM !

¢ a
5 (3Gan* (1) 6Gry* (1) y=lim / ir 2
two0 Y aT
X 2 [exp(R(—1)) Jearrvexp(RU—7) )Y agr
¥yt
XB(v,v,v,v), (4.15)
where I is the unit tetradic

Iaa’ﬂﬂ’=5aﬁ5n’6’- (4'16)
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The integration may be formally accomplished, and
one finds that
B(aa a,7 B; B,) = Z

A Mo’

X BGa*(£) 8G* (1) ).

Since B is proportional to R, to be consistent with our
prior approximations, the equal time correlation
function appearing in Eq. (4.17) need only be computed
to lowest order in the spin-lattice coupling. Thus,

8Gaw* (1) = exp(iHY) exp(—1iHt)6Gyn(0)
Xexp (iHet) exp(—1iH1)

CRaarnTsgrm+Taarnn' Rogny ]

(4.17)

(4.18)

may be approximated by 6Gx(0) in the correlation
function on the right-hand side of Eq. (4.17) since to
lowest order H may be replaced by Hy. It follows that

B(a, a,; B: ﬂ’)=_ 2

NN !

F oo an Regray 10Ganr (0) 8Gyy (0) .

CRaarnn Lggrmy
(4.19)

The complete equilibrium average is easily found
from Eqgs. (4.13), (4.19), and (4.6):

(Kaar™(t) Kgg* (0) Yo =—3(t) [Raa'ps08°+ Rograatara®].
(4.20)

This result for the correlation function of K*(t) can be
obtained by the alternative procedure of direct calcu-
lation from the definition of K* Eq. (2.22), if only
lowest-order terms in the spin-lattice interaction are
retained. From Eq. (2.22) and the condition that
nonvanishing elements of R satisfy A=0 [see Eq.
(2.29) 7, it follows that

<Kaa’ (t) Kﬁﬁ’ (0) >Av =—0 (t) [Raa’ﬂ’ﬁaﬂﬂo'i'"Rﬂﬂ’a’aa'a’a’O]-
(4.21)

The correlation functions of interest for the Redfield—
Langevin equation are given in Egs. (4.5), (4.7),
(4.13), and (4.21).

V. CALCULATION OF THE CORRELATION
FUNCTIONS FOR THE BLOCH-LANGEVIN
EQUATION

Calculation of the correlation functions for the
random terms appearing in the Bloch-Langevin
equation may be obtained in an analogous manner.
The Bloch-Langevin equation may be written as

808 (£)/dt=Fie038, () ~ (1/T4) 88,(2) +hy (1)

(g=0,£1), (5.1)
where the components of the vector 88 are
080 =088, 08.41= 08,1188, (5.2)

2619

and the vector h is similarly defined. In Eq. (5.1)

We= —qﬂC() and T:{:1= Tz, To= T1. (53)
It follows immediately that
(984(£)88,(0) )= exp[ — L,¢165,(0)38,(0),  (5.4)

where p=0, +1, and L,=T,'4iw,. The complete
average of this correlation function is

(88,(2)68,(0) Iw=exp[— Ly {6588 n,  (5.5)
and it is an easy matter to show that
(6S8Spn=8,-C(| ¢ ), (5.6)

where C(| ¢|) denotes the simple spin average. One
may easily show from the definition of 88,(f), Egs.
(5.2), and (3.7), that

(684(2)885(0) )av=(654(£)6.55(0) Y.

Thus, Eq. (5.5) is a statement of Onsager’s assumption
for the decay of equilibrium fluctuations on the slow
spin relaxation time scale.

Finally, we shall compute the correlation function of
the random field %,(¢). From the definition of A.(¢),
Eq. (3.12),

<h41(t) hp(o) >Av= Z o <Kaa’ (t) Kﬁﬂ’ (0) >Av

a,af 8,

(5.7)

X{a'[ S¢| ') (B S, | B). (5.8)

It follows by direct calculation from Egs. (4.21) and
(3.5) that

<hq(t) hp(o) >Av= 5(0 [(1/Tq) (65‘155?}‘,,

+ (1/Tp) <5SP6541>AV]7 (59)
and using Eqs. (5.6) and (5.3)
(ha()h—g(0))n=28()C(1 g DT (5.10)

Thus the correlation function of the random force is
simply related to the macroscopic relaxation times

T =[1/C( g N [~ dha()ho(0)m, (511

which is a manifestation of the fluctuation—dissipation
theorem.
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