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A molecular derivation is presented for the coupled Langevin equations that describe the motion of
heavy particles in a fluid. In contrast to the case of a single heavy particle, the friction tensors which appear
depend upon the instantaneous separations between the particles. A Fokker-Planck equation describing
the reduced distribution function for the heavy particles is also obtained. Calculations with these equations
require evaluation of the friction tensors. The friction tensors are evaluated in two ways, by an approximate
macroscopic hydrodynamic calculation and an approximate hydrodynamic fluctuation calculation. Both
calculations lead to identical expressions for the friction tensors which are shown to have a long-range
character at large interparticle separations. Finally, it is shown that these long-range effects cancel in
the calculation of the diffusion constant for each particle but remain in the calculation of the relative diffusion

constant.

I. INTRODUCTION

In recent years the molecular theory of Brownian
motion of a single heavy particle in a fluid has been
studied by a variety of techniques.!'™ In this paper we
examine the molecular theory of Brownian motion for
a collection of identical heavy particles in a fluid. Our
motivation for undertaking this problem is to provide
a basis for a theory of the hydrodynamic behavior of a
suspension of colloidal particles in solution.

In the first section we use the techniques developed
by Mazur and Oppenheim® and by Albers, Oppenheim,
and Deutch’ to derive a generalized Langevin equation
for the motion of the heavy particles. The generalized
Langevin equation we obtain leads simultaneously to a
Fokker-Planck equation for the reduced distribution
function of the Brownian particles and coupled Langevin
particles and coupled Langevin equations describing
the equation of motion for the momentum of each
Brownian particle. These latter equations, for the mo-
mentum, will be referred to here as momentum Langevin
equations.

The momentum Langevin equations are valid when
the ratio of the mass m of a bath particle to the mass
M of a Brownian particle is sufficiently small, and when
all of the pertinent relaxation times of the bath, 7, are
short compared to the relaxation times for the momen-
tum of a Brownian particle. In addition the velocity of
a Brownian particle must be small compared to the
velocity of a bath particle. The condition on the velocity
assures that the disturbance caused by the Brownian
particle can be distributed in the bath.

These conditions are identical to those obtained for
single particle Brownian motion.5” The important dif-
ference is that when more than a single heavy particle
is present the longest relaxation time characterizing the
bath 73 is of order (R/¢) where R is a typical distance
between two fixed heavy particles and ¢ is the speed of
sound in the bath.

For the special case of two heavy particles, the gen-
eralized Langevin equation we obtain results in a
Fokker-Planck equation more general than the equa-
tion recently obtained by Mazo.® For long times >,
our result reduces to that found by Mazo. The mo-
mentum Langevin equations we obtain for two par-
ticles contain two friction tensors that describe the
self- and cross- relaxation for each particle. These two
friction tensors depend upon the instantaneous separa-
tion of the two particles. Calculations with the Langevin
equation or the corresponding Fokker-Planck equation
cannot be accomplished until the dependence on the
interparticle separation is known.

In this paper we evaluate the molecular expression
obtained for the friction tensor by modification of an
approximate hydrodynamic fluctuation theory argu-
ment developed by Zwanzig.® The dependence of the
friction tensors on interparticle separation, Ry, is ob-
tained to lowest order in (a/Ry2) where a is the radius
of the Brownian particles. This expression is compared
to the expression for the friction tensors obtained from
an approximate solution of the macroscopic hydro-
dynamic equations that describe flow past two fixed
spheres. Exact agreement is found between the two
calculations to lowest order in (a/Ry,).

Our final step is to use the approximate expressions
for the friction tensors to compute the change in the
diffusion constant of each Brownian particle arising
from the presence of the other particle. The friction
tensors have a long-range dependence on interparticle
separation. It is interesting that the long-range modifi-
cations of the friction tensor effect the relative and
center of mass diffusion constants but cancel in the
calculation of the diffusion constant of the individual
particles. This feature suggests to us that in colloidal
suspensions an analytic concentration expansion for
the effective friction tensors is unlikely, while such ex-
pansions may be valid for individual particle diffusion
constants.
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II. DERIVATION OF THE GENERALIZED
LANGEVIN EQUATION

We consider a system consisting of # Brownian par-
ticles of mass M and N bath particles of mass m. The
positions and momenta of the Brownian particles will
be denoted by R* and P, respectively, while the posi-
tions of the NV bath particles will be denoted by rVv and
their momenta by p¥. The Hamiltonian for the sys-
tem is

HZHB‘f‘Ho,

where Hp is the Hamiltonian for the » Brownian par-
ticles in the absence of the bath particles,

Hy=[(P"-P")2M T+ V(R"), (2.1)

V(R") is the short-range interaction between the
Brownian particles, and H, is the Hamiltonian for the
N bath particles in the potential field of the #» Brown-
ian particles held fixed at positions R",

Ho= (¥-0/2m)+ UG+ X (%, R). (22)

Here U(r") denotes the short-range intermolecular po-
tential energy among the bath particles, and ®, is the
short-range potential energy of interaction between
Brownian particle ¢ and the N bath particles. The
quantity &, will be assumed to be the sum of pair inter-
actions
N

Py (1Y, R, = IZI¢( l R#'—'rl| ) (2.3)
which depends on the scalar distance between the cen-
ters of mass of the particles involved.

The Liouville operator for the system is given by

tL=1iLy+1Lp,
where

iLo= (D%/m) - VoV — V(U4 3 0,)- V7 (2.4)
p=1
and

iLp=(P*/M)- Vgr+F-Vpr, (2.5)

and where F,, the force on the Brownian particle », is
given by

F,=—vV,(V+9,), v=1,23 ++-+. (2.6)
We define a projection operator ® by the equation
®A=(A)=Z""[drVdp" exp[—BH,]4, (2.7)
where
Z=Z(R") = [dr¥dp¥ exp[ —BH,]. (2.8)

A potential of mean force x may be defined from
Eq. (2.8)
Z(R")=C(, N, V) exp[—Bx(R") ], (2.9
so that

(Vru®,)= (—8)"1Vg, InZ(R*) = Vp,x(R*)  (2.10)
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and hence
<Fu>= - (VRMEV+CI)#]>: —VRu[V"l"X(R")]- (2-11)
We now operate with the identity
exp[i(1—@) Lt]=exp[iL{]
— / dt expliL (1—7) IOiL exp[i(1—®) [r]  (2.12)
0
on
K{(0)=(1—-@®)iL¢(R", P"), (2.13)
where
¢(0)=9¢(R", P") (2.14)

is an arbitrary function of the positions and momenta
of the Brownian particles. The result is

s =AW+E-0+ [ Cdret D LK () (2.15)

0
where

¢(£) =expliLt]iLe(0),
A (&) = exp[iLt](iL5)$(0),

(2.16)

(217
and

K+(0) = exp[i(1—®) LILiLe(0) — (iLs)é(0) ] (2.18)

In order to obtain Eqs. (2.13), (2.17), and (2.18),
we have made use of the fact that ®ily(--+)=
<iLo("')>=0~

To proceed with the development several of the
terms in Eq. (2.15) must be expressed in a different
form. The term A (¢) explicitly is

A(t) =exp[iLE] S [(Py/ M) - Vg (B ¥, J(0).

u=1

(2.19)

The term {(:LpK*(7)) in Eq. (2.15) may be simpli-
fied to

GLsK*(r) )= g [P,/ M) (VruK*(r))

+Veur (FuK* (7)) (2.20)
The identity
<VR#K+(7) )= _6<EuK+(T) ), (2.21)
where
EMEFM_<F#> (222)
is easily verified with the use of the fact that
(K*+ (1) y=(K*+)=0. (2.23)

It follows from Egs. (2.21) and (2.23) that
GLeK*(7) )= 2 [Veu— (8/M)P,J- (Eu(0) K*(7) ).
(2.24)

Since

(1—®)iLe(0) = (1—@)iLpdp(0) = Z E, Vp,¢(0),

=1

(2.25)
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the quantity K*(f) may be expressed as
K*(t) =exp[i(1—0) Lt] 32 E,(0) - Vr,$(0).  (2.26)

With these results Eq. (2.15) takes the form
¢(t) = X {[Pu(t) /M Vrucyt8,u(8) » Ve }6(2)

1K 0+ 5 [ drepliLt—n)]

X{[Veu— (B/M)P,]- <EM exp[i(l—(?) Lr]E,)

-Ve.p(0)}, (2.27)
where we have defined

Su () = expliLt](F,).

In order to reduce the exact equation of motion for ¢,
Eq. (2.27), to a generalized Langevin equation, one
must undertake an analysis similar to that developed
by Mazur and Oppenheim® for the single particle mo-
mentum Langevin equation and employed by us’ for
the single particle generalized Langevin equation. The
reader is referred to these papers for details.
Equation (2.27) can be rewritten in the form

(2.28)

(D) =AW +KH )+ 3 X et [VP“_ %]

[ BESD) VebOirt It L, (229

0

where
E’(r) =exp(iLo7)E,, (2.30)
- { (B, exp[i(1—@) L7 ]E,)— (EEX(7) )} - Ve.p(0) dr
(2.31)
and
I,= Z“: ZV: '/: (LU= —giLt) [VP,.— %‘]
(EES (7)) Vp,(0)dr. (2.32)

We wish to determine the conditions under which it is
valid to approximate the exact equation, Eq. (2.29),
by an approximate equation with the terms I; and I
set equal to zero. We assume that: (1) (4 exp[iL¢]B)=
(4)(B) for > 74, where 7, is the longest relaxation time
for the bath in the presence of the Brownian particles
fixed in position. In the system considered here, there
will be a bath relaxation time which depends on R;;
and which is roughly [ | R;; | /c], where ¢ is the veloc-
ity of sound in the bath; and (2) the conditions of Egs.
(3.15)-(3.17) of Ref. (7) are met, where P and R can
be replaced by any of the P, and R,. With these as-
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sumptions, Eq. (2.29) becomes
() =AO)+K*(¢)
+ 2 2 ML Veu— (B/M)Pu] Yur(£) - Ve, (0), (2.33)

where

Yoo ()= /tdr(E"Ev(T»EY,‘y(t, R7). (2.34)

In this equation we have retained the leading terms in
powers of A= (m/M )2« 1. In the next section we dis-
cuss applications of this equation.

III. PROPERTIES OF THE MOMENTUM
LANGEVIN EQUATIONS

The momentum Langevin equation is obtained from
the generalized Langevin equation, Eq. (2.33), by the
choice ¢=P,,

P,()=S,()+E*(t) = L Pu(t) - (t, R (1)),

m
y=1, -+ (3.1)
where S,(¢) is given by Eq. (2.28), the random force
Ef(l)=expi(1—®)L{]E,, (3.2)

and the friction tensor {,, is defined by &,.(¢, R")=
(8/M) Y (t, R*) and

L (t, RM(0))= (B/M) ey (t, RY). (3.3

For time scales of interest, £>7;, the equation for P(¢)
becomes

P.()=S.()+E () — ¥ Pu(t) - Lu[R (1) ],

}n’

y=1, «- (3.4)

°, R,
where

LR (1) J=tul >, R*() ] (3.5)

The coupled Langevin equations that describe the mo-
mentum relaxation of the heavy particles are given by
Eq. (3.1) or, for long times, by Eq. (3.5). Note
that in these equations the effective friction tensors
that describe the momentum damping are time de-
pendent through the instantaneous interparticle sepa-
rations R*(¢).

In order to complete our association of Egs. (3.1)
and (3.4) with the Langevin equations for this system,
we must discuss the averages of products of the fluctuat-
ing force E,*(f). It follows from Egs. (2.7), (2.22),
and (3.2) that .

E*(1))=(E,)=0.

It follows from the arguments in Ref. (6) that
(E4(0)E+ () )~(E.(0)E,*(2) )=2(M/B) ¢ (RM)6(2),
(3.7

where the last equality is true on the momentum relax-
ation time scale £>7. In fact, in the weak coupling

(3.6)
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limit A—0, {—w (A\%) = constant, E, can be described
by a Gaussian stochastic process® with mean zero, Eq.
(3.6), and with the second moment given by Eq. (3.7).

The next calculation of interest is to determine how
the correlation function

F,,,,(l, T)E<E,‘+(t)E,,+(H-'r) > (3'8)

is related to the correlation function F,,(0, 7). The
correlation function F,, (¢, 7) satisfies the differential
equation,

9Fu (1, 7) /0t=GLs[ B, () B (t47)]).
This equation may be expressed as

OF,. (¢, 7)/0t={iLp)F,, (¢, 7)
+ 2 [Vea— (B8/M)P.]- (E«(0)ESH(OE,F (i47) ),

(3.9)

(3.10)
where use has been made of the fact that
VRaFuv=6<EaEu+(t)EV<t+T) >

+ (Vro[[ESH(OE(t47) ). (3.11)

The last term in Eq. (3.10) is of higher order in X than
the other terms for small ¢ and 7. For larger ¢ it has the
behavior described in Ref. 6 where for >, E,(¢)
forms a Gaussian random process. Thus, for small A
the solution to Eq. (3.10) can be written

Fﬂv(ta )= EXP[KLB >t]FMV<0! )= exp[i<L>t]Fuv(0a ).
(3.12)

This result demonstrates that the correlation function
of the random force F,,(#, 7) is nof stationary in time.
Physically this reflects the relative motion of the two
Brownian particles. The time dependence, with respect
to £, of F,, (4, 7) may be computed using the averaged
Liouville operator (L).

In one-particle Brownian motion theory, the fluctu-
ation dissipation theorem holds, i.e., the friction con-
stant is equal to the time correlation function of the
random force times (8/M). We now demonstrate that
in the many particle theory this relationship is more
complicated. To lowest order we find from Egs. (3.3),
(3.5), and (3.12) that

(8/M) [ Fult, 7)dr=expli( D[R (O)] (3.13)

which is #nof equal to the effective friction constant
L [R*(8)]). If we compute the average friction con-
stant at time ¢, we obtain

(L[ R(#) 1= (exp(iLt) )}¢u[R"(0) ],

which again is not the same as Eq. (3.13).

The Langevin equations, Eq. (3.4), we obtain for
several Brownian particles are considerably more compli-
cated than that for one Brownian particle because of
the R*(¢) dependence of the friction constant. Even at

(3.14)
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large separations of the Brownian particles where the
short range function S,,(f) can be set equal to zero,
the average of Eq. (3.4) is

@)=~ @Pu(t)- LR (H)])  (3.15)

and the average on the right-hand side cannot be
rigorously broken.

In this section we have examined the properties of
the momentum Langevin equations obtained from the
generalized Langevin equation, Eq. (2.33), for the spe-
cial choice ¢=P,. Clearly, we could examine the equa-
tions obtained for other choices of ¢ in a manner com-
pletely analogous to that undertaken for a single
Brownian particle in Ref. 7. Instead, we shall turn our
attention in the next section to a discussion of the
Fokker-Planck equation for this system.

IV. THE FOKKER-PLANCK EQUATION

The generalized Langevin equation obtained in Sec.
IT may be used to obtain a Fokker-Planck equation for
the reduced distribution function ¢ (R», P~ ¢) for the
Brownian particles. The results of Eq. (2.33) may be
summarized in an equation of motion for the phase
function

D()=D(Rx, P~ 1| R*, Pr)
=exp[iL{J5(R*—R") (P —P»),  (4.1)

where R» and P~ denote arbitrary values of the posi-
tions and momenta of the Brownian particles. The
equation for D is

(9/0) D(t) = eXP[iU] 2 [(P/M)- Vg,
+{F.)- Ve, ID(0)+GH(1)+ 2. 2" exp(iLt)

X[VPM_ (ﬂ/M)Pu:] YuV(t) " VP#D(O)’
where the random force G*(¢) is

Gt(H)=exp[i(1—®)L{] > E, Ve, D(0). (4.3)

(4.2)

The generalized Langevin equation, Eq. (2.33), is re-
gained by multiplying Eq. (4.2) by ¢(R", P*) and
integrating over all values of R* and P~. It should be
emphasized that Eq. (4.2) cannot be justified without
an examination of the function ¢ with which the delta
function is eventually associated.

The equation for D(#) may be written in an alterna-
tive form if one takes into account properties of the
delta functions in D(0),”

3D/ot+ Y [(B,/M) -V (R,)+ (F.)- V(B ID(D)
=G*()+ L X v(P,) - yu(t, R

Lv(®)+(/M)PID(0). (44)
In Eq. (4.4) and the following equations V(ﬁ“) and
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v(B,) denote gradients with respect to R, and P,, re-
spectively. For times £>7; one may replace y,.(f, R")
by y.w(«<, R*) in Eq. (44) to obtain the random
Fokker-Planck equation

(aD/any+ X [P/ M) - v (R)+ (F.)+ V(P ID ()
=GH(H)+ X3 v(B) - Lu(RY)
B (M/B)V(P)ID(), (45)

Lu(RY) = (8/M) yuu(0, R?). (4.6)

Note that the friction tensor appearing in Eq. (4.5)
does not depend explicitly upon time in contrast to
the friction tensor that appears in the momentum
Langevin equations.

Properties of the random Fokker-Planck equation
may be established exactly as in Ref. (7) where the
single particle random Fokker-Planck equation is dis-
cussed in detail. For example,

(G*+(0, R, Pm)G+(1, R, Pr))
=Y Ve d(R"—R7)5(P"—P*) « v (1)
B, v

where

-Vp,s(RP—R)s(Pr—Pr). (47)

The equation for D(t), Eq. (4.4), may be used to obtain
the distribution function for the Brownian particles
since’

Y(Rr, Pr, 1) = [drVdpVdR*dP"f(0) D(2), (4.8)

where f(0) =f(r¥, p¥, R*, P*) is the initial nonequilib-
rium distribution of the complete (N+4n) particle
system.

If one assumes, as is usually done® that the initial
distribution consists of the bath particles in equilibrium
in the field of the fixed Brownian particles,

f(O) = pog(R", Pn) )
then Eq. (4.8) becomes
(R, Br f) = [dR"dPg(R", P)(D(¢)). (4.10)

Because (G*(f) =0 the quantity (D(¢)) satisfies the
Fokker-Planck equation

a{D(t))/ot
=— S [(B/M)-V(R)+(F)V(B,)UD®))

X 3T V(P,)-Lult, R [Pk (M/8) V(P D)),

(4.9)

(4.11)
where

Gu(l, RY) = (8/M) y.(1, R™). (4.12)

For times £>7,¢,,(4, f{") may be replaced by (,,“ﬁﬁ"),
Eq. (4.6). It follows from Eq. (4.10) that ¢(R", P~, ¢)
will satisfy the identical differential equation with ini-
tial condition ¢ (0) =g(R", P*). For the special case of
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two particles and £>7,, Eq. (4.11) corresponds to
Mazo’s recent result.®

There is an important difference between the Fokker-
Planck equation for the distribution function, Eq.
(4.11), and the momentum Langevin equations, Eq.
(3.1), which is not present in the single particle theory.
In the momentum Langevin equations even when £,
the effective friction constant depends upon the instan-
taneous positions of the Brownian particles [see Eqgs.
(3.1) and (3.3) ] while in the Fokker—Planck equation
the friction constant depends only on the coordinates
R*. As a consequence, the momentum Langevin equa-
tion is highly nonlinear while the Fokker—Planck
equation remains linear, albeit quite complicated. The
difference arises because of the quantities that are im-
plicitly held constant in the two equations. In the
momentum Langevin equation it is the initial momenta
and positions that are held fixed while in the Fokker—
Planck equation it is the momenta and positions at
time ¢ that are held fixed.

Calculations cannot take place with either the coupled
momentum Langevin equations or the Fokker-Planck
equation unless something is known about the depend-
ence of {,,(R"), Eq. (4.6), on particle position. In the
next section we undertake an evaluation of the friction
tensor for the special case of two particles. For two
particles the friction tensor takes the form (£>1)

£ (Ris) =[8/M ] f " EEIDL  uov=1, 2.
0
(4.13)

V. EVALUATION OF THE FRICTION TENSOR

We shall evaluate the friction tensor in two ways. The
first is an approximate macroscopic calculation of the
force experienced by two stationary spheres when the
velocity of the fluid is uniform at infinity. The second
way proceeds by an approximate microscopic calcula-
tion, based on fluctuation theory, of the autocorrelation
expression for {,,. In both approaches approximations
are introduced that are valid in the limit of large
particle separation, i.e., for (¢/ | Rjz|) small, where
a is the radius of the sphere. To lowest order in this
ratio we find, as expected, identical expressions for the
friction tensor.

The Macroscopic Approach

Consider a sphere placed at position Ry in a fluid
where the unperturbed velocity field is v*(R). It is
well known from hydrodynamics that at points R; far
from the sphere the resulting velocity field v(R) is de-
scribed by!o-!!

v(R;) =v(R;) —{oTiv(R)), (5.1
where T,; is the Oseen tensor,
Ti=pe[H-R,R;], p=[8mm|Ry| T, (5.2)
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and ﬁ{j is the unit vector in the direction of the inter-
particle vector. The quantity {, is the friction constant
for a single sphere in the fluid, | is the unit tensor, and
7o is the viscosity of the fluid in the absence of all par-
ticles. Here we are interested in determining v(R;) at
the two Brownian particles that are widely separated
and held fixed at positions R; and R,. For convenience
we choose a coordinate system where the two particles
lie on the z axis so that

T=o[ Kk ]. (5.3)

The perturbed z component of velocity at particle one
is given by

v.(Ry) = {1/[1—(2¢0p) 2]} 0 (Ry)
—{2¢op/[1—(250p)* )} 22 (Ro),

and the perturbed x component of velocity at particle
one 1s

Uy (R]

(5.4)

{1/[1—=(¢op)2 ]} 2"(Ry)
foP/D_ §OP>2]}1’ (3.5)

with an identical expression for the y-component equa-
tions. Expressions for the perturbed velocity at R, are
identical to Egs. (5.4) and (5.5) with interchange of
Rl and Rg.

The force on each particle may be approximated by
F(Ri):_foV(R;), 121, 2. (56)

This approximation introduces an error of order
(a/ | Riz|), which, however, is already implied by
the use of Oseen’s tensor.

From Egs. (5.6), (5.4), and (5.5), it follows that

F(R) = ¥ M{,v(R)),

(Ry)

i=1,2.  (5.7)

The nonvanishing elements of the four friction tensors
are given by
M &= M ]..= {¢o/[1—(2¢0p) %]}
= {o[ 14 (2000) >+ 0 ($op) *],
(M EuTee=[MEuTy=[Mlo]ew= M2
= {{o/[1—= (¢op) 2]} = Co 14 ($op) >+ O ({op)*]  (5.9)
for the “self-friction tensors, and
[MGu])ee=[MlnJe.={ —2¢0%/[1— (2600)*]}
= =25 1+ 0(¢op) %],
(M & Jee=[ M0 ]y =[MlnJew=[MEn ]
={—§?p/[1— (Cop) ]} = = o[ 1+ 0(5op) 2] (5.11)

for the cross friction tensor. In the special coordinate
system chosen, all off diagonal elements are zero. Note
that if o= 6mnea, then

(fgp) = (3/4) (a/ | R;: I ), (5.12)
and that all of the expression for {;; in Egs. (5.8)-

(5.8)

(5.10)
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(5.11) have been expanded to lowest nonvanishing
order in this parameter consistent with the approxima-
tions introduced in the calculation.

The modification introduced by the presence of a
second Brownian particle is of order (a/ | Ry |)? for
the “self”-friction tensors and of order (a¢/| Ry |)
for the “cross” friction tensors. It is important to note
that both these modifications are long ranged which
is a necessary consequence of the long range hydro-
dynamic interaction effects that are present in in-
compressible fluids.

The Microscopic Approach

We next evaluate the friction tensors by a direct
calculation of the time integral of the equilibrium time
correlation function expression given in Eq. (4.13).
This procedure is based on a calculation by Zwanzig®
for the friction constant of a single Brownian particle.
We imagine an arbitrary fluctuation in the local ve-
locity of an unperturbed fluid v°(R, #) at time . If two
heavy particles are fixed in the fluid the resulting veloc-
ity field v(R, {) may be approximately related to v,
by an argument identical to that used above. In a
coordinate system where the z axis lies along the inter-
particle vector, we have from Egs. (5.4) and (5.5)

ta(Ry, 1) = (1= L2)7[1.°(Ry, §) — Lata(R;, t)]
(i%7=1,2), (5.13)
where a=x, y, z and
Ly=L,=tp,  L.=2p. (5.14)

The velocity fluctuations average to zero at any time
and will, of course, vary appreciably over a spatial
length of order a. Accordingly, the effective force on
each Brownian particle, assumed spherical, is computed
by a modification of Eq. (5.6) to include an average
over the particle surface,

F(R,, £)=—[{o/(4m) ]fdQv(R,, 1), (5.15)

This force may be expressed in terms of Fourier coeffi-
cients of °(R, ¢),

v*(R, 1) = [dkv'(k, {) exp[ik-R],
by use of Eq. (5.13). One finds
Fo(R;, )y =[—to/ (1= L2 ][dk(sinka/ka)
X[exp(ik-R;) ]~ Lo[exp(ik-R;) o (k, £), i#j=1, 2.

(5.16)
The “cross” force correlation function is

(Fa(Ry, F(R;, 0) )=[5o%/ (1= La*) (1—Lg*) ]
X [dkydks (sinkia/ ki) (sinkea/kea)
X {exp[i (k- Rit+ky» Ro) ]~ L, exp[i(ki+k:) - R, ]
— Ly expli(kotky) - Ry ]+ LaLg expli(ki- Rot-ko+ Ry) ]}
X (Vo (K, £) Vs (K2, 0) )=Gap( | Riz [, ). (5.17)
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The “self”’-force correlation function is
(Fa(Ry, () Fg(Ry, 0))=[¢¢/ (1—La?) (1—Lg») ]
X [dkydk,(sinkia/ kia) (sinksa/ksa)
X {exp[i (ki+ks) - Ri]— Lq exp[i (ki Ro4-ka+ Ry) ]
— Ls exp[i(ky- Ro+ky» Ry) 4 LoLs exp[i(kit-ks) « R ]}
X (VL(ky, 1)V (Ko, 8) )=Kus( | Rz |, £). (5.18)

The force correlation functions are thus related to
velocity fluctuations in an unperturbed fluid. The un-
perturbed velocity correlations are obtained from usual
hydrodynamic fluctuation theory. They are'

(Val ks, 2) Vs (s, 0) )= (2R T/ n0kr*)
X[5(2)/ (2r) 38 (Kit+-ko) [Bas— (ki®ki?/kr?) ], (5.19)

where ks is Boltzmann’s constant. When this expression
for the velocity correlations is substituted into Eqgs.
(5.17) and (5.18) the force correlations may be evalu-
ated. The results for the nonvanishing force correla-
tions are as follows. For the longitudinal “cross” force
correlation,

G..(Ru, 1) =[48(t)/(1—L)*]

XL+ LD (Rw/a) —3L.]; (5.20)
and for the transverse ‘“cross” force correlation,
Geo(Rio, 1) =Gy (Rug, 1) =[6(1) 4/ (1= L)?]

X[+ LA (Ry/a) —5L, ] (5.21)

For the longitudinal “self”’-force correlation,
K.(Ru, ) =[48(t)/(1—-L) ]

X[3(14+L2) —2L.I(Rw/a) };  (5.22)
and for the transverse ‘“‘self”’-force correlation,
K.o(Ru, t) = Ky (R, ) =[A45(1) /(1= L% ]

X[+ L2) —2L.I:(Ris/a)]. (5.23)
In these equations

A =[5k T/ (4mano) ] (5.24)

and the integrals 71(Ri2/a) and I.(Ryz/a) are defined as

Ii(Ryp/a) = (2/m) '/:1 du /w dk exp[iku(Ry/a) ]

X (sink/k) [1—u2]), (5.25)
+1 ©
I(Ru/a) = (2/7) / du / dk exp[iku(Ru/a)]
Iy
X (sinfk/B) [ (14-22) /2. (5.26)

These integrals may be evaluated exactly. The result is
L(x)=(2/x) = (4/3)x7%,  x22, (5.27)
Li(x)=(4/3) — (x/4), x<2, (5.28)
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and
L{x)=(1/x)+(2/3)x7%,  x22, (5.29)
L(x) = (4/3) — (3/8)x, x<2. (5.30)

To lowest order in (a/R;2) the force correlation func-
tions are found to be

ng(Rm, l)= —2146(1) (d/ng), (531)
Gro(Ruo, 1) = — A5(8) (a/Riz) = Gyy(Rue, 1), (5.32)
K..(Ru, 1) = (44/3)8(0) [14 (3¢/2R1)?],  (5.33)

K. (Ruo, 1) = (44/3)5 () [1+ (3a/4R12)* )= Kyyy (Rrz, 1)
(5.34)

Our final step in the calculation is to compute the
friction tensor M{;; from the force correlation func-
tions according to Eq. (4.13). The average force that
is involved in Eq. (4.13) may be taken to be zero since
the Brownian particles are widely separated and this
force extends for only a few molecular diameters. Note
that through the use of Stokes law,

$o= 67”70";

which may legitimately be employed within the con-
text of this approximate calculation, the constant A
may be expressed as

A=1(3¢0/28).

Since in Eq. (4.13) the time integral runs from ¢=0
to =, one picks up only one-half of the delta func-
tion. The results for the friction tensors M {;; from the
hydrodynamic fluctuation calculation are in complete
agreement with the results presented in Eq. (5.8)-
(5.11), obtained from purely macroscopic hydrodynamic
arguments. This agreement between the two methods,
while at first sight surprising, is to be expected. Hydro-
dynamic fluctuation theory is constructed so that an
evaluation of the time correlation function expressions
gives identical results to macroscopic hydrodynamics,
provided, of course, that consistent approximations are
used in both calculations. In the two calculations pre-
sented here the important approximations implied by
use of Oseen’s tensor are: (a) low Reynolds number
flow, (b) an incompressible fluid, (c) large separation
between the two Brownian particles. It would be inter-
esting, but quite difficult, to relax any of these assump-
tions.

VI. CALCULATION OF DIFFUSION CONSTANTS

The results for the friction tensors determined in the
previous section may be used to compute the diffusion
constants of the Brownian particles. Of particular in-
terest is the modification in the diffusion of one particle
caused by the other. At large particle separations the
coupled Langevin equations, Eq. (4.4) may be writ-
ten as

Pla(t) = _fapla(t) _I‘aP:‘a(t)'i"Ela(t) (61>
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and )
P2u(t) = _g‘aP‘-’a(t) _FaPIa(t)'f"E?a(t)y

where a=x, y, 2, and we have adopted a coordinate
system whose z axis points along the interparticle di-
rection at all times. It follows that the nonvanishing
elements of the friction tensors at time ¢ are given by
Eq. (5.8) to (5.13). For ease of notation we have
defined

(6.2)

g‘a= ((ll)aaz (?22):1:1 (63)
and

Faz ((IZ)aaz ({21)0101-

The term A;(¢) appearing in Eq. (3.4) is not present in
Egs. (6.1) and (6.2) because it vanishes at large inter-
particle separations.

These stochastic equations are, in fact, highly non-
linear as a consequence of the friction coefficients’ de-
pendence on the instantaneous interparticle separation.
However, in the case where the interparticle separation
is large, a simplifying assumption is possible. The mo-
mentum of each particle relaxes in a time of the order
{0l For times long compared to ¢!, the particles will
diffuse with a diffusion constant of the order (kT/M¢y).
The distance I(¢) which they travel may be estimated
from the usual theory to be [(¢)=[(kT/Mso)i T2, so
that at time / the interparticle separation Ris(Z) is
approximately

(6.4)

Rua(t) = Ry(0) +1(1).

We shall restrict our attention in our calculation of dif-
fusion to times sufficiently short so that J(#)<<Ry(t).
Under these circumstances Ry2(#) may be approximated
by Ri2(0) in the friction coefficients and random forces
appearing in Egs. (6.1) and (6.2). The friction tensors
remain diagonal in the coordinate system where the z
axis is directed along the initial interparticle direction.
Of course, our calculation for the diffusion constant
will only be valid for times within which each particle
has not moved appreciably compared to Ry.(0). From
these approximations and Eq. (3.7) it follows that the
correlation functions of the random forces are

(Eralisg(t) Y= (FoaFog(£) Y= 2M by T¢odagd (¢)

(6.5)

(6.6)
and

(BEraEng(t) y= {Faolirg(t) y=2MFkyTTabusb (£). (6.7)

The analysis of the coupled Langevin equations is
simplified if one transforms to the variables-

pa:PIG_P‘lay Pa:P1a+P‘2a,

ra:'Rla_RQa, Ra=R1a+R2a. (68)

With this transformation, Egs. (6.1) and (6.2) become

1 Pa(t) = = (§a—Ta) pa(t) +eall) (6.9)
anc
N Pa(l)= _(g‘a_i"ra)])a(t)‘*_Ea(t)y (610)
where
ea(t) :Ela(t) _E2a(t) (611)

M. DEUTCH AND TI.

OPPENHEIM

and
B (1) = E1, ()4 Eo(1). (6.12)
From Egs. (6.6) and (6.7) it follows that
(ea(0)es(t) )=4MkyT[fa—Talougd(£),  (6.13)
(Ea(0)Eg(t) )= 4MET[fatTalousd (1),  (6.14)
and
(€a(0) E5(t) )= (Ea(0) e5(1) )=0. (6.15)

Expectation values of the random forces are zero. The
uncoupled equations are easily integrated to give

pa(t) =exp[ — ({a—Ta)t]pa(0)
+/t drexp[— (fa—Ta) (t—7) Jea(7) (6.16)
0

and

P.(t) =6XP[" (fa—Ta)t]Pa(0)
+ /th expl — (ot To) 4—7) JEL (7). (6.17)
0

These two equations may be used with Egs. (6.13)-

(6.14) to verify the approach of the Brownian parti-

cles’ momenta to their equilibrium value,
lim {pa2(¢) )= lim (P2(¢) y=2MPT.

>0

(6.18)

t>o

The relevant diffusion constants may be computed in
either of two equivalent ways. First, one may integrate
Egs. (6.16) and (6.17) to obtain expressions for 7,(f)
and R,(#). The relative diffusion tensor D,s and the
center of mass diffusion tensor D.s® are related to
these two quantities according to

lim ({Ar, () Arg(1) ))= 2Dt (6.19)
and
lim ((AR.(f)ARs(£)))=2Dus®t,  (6.20)

>0

where Ar, (1) =r,(1) —7,(0), etc. Alternatively, we may
compute the diffusion tensor according to the time
correlation function formulas

1 0
Deg = ]l?,/o dt{(pa(t) ps(0) )5

1 £
= A;/O at{pa(t) )ps(0))  (6.21)

and

mo L7
D™= / A{(Palt) P3(0)))s

1 o
=@/0 dt{(Pa(t) )Ps(0) )5.  (6.22)

The angular bracket with subscript B in Egs. (6.19)-
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(6.22) denotes an equilibrium average of initial mo-
menta of the two Brownian particles. From Egs. (6.9)
and (6.10) one finds

(pa(t) Y=exp[ — ({a—Ta) {]pa(0)
(Pa(t) YB=exp[— (fat+Ta) £]P(0)

which leads to the following results for the center of
mass and relative diffusion tensors:

2(kyT/M)dap
(g‘a_ra)

=2Dodag[ 1 —fa(a/Ri2)+0(a/Ry2) 7]

(6.23)
and
(6.24)

Das®=

(6.25)
and

2(kT/M)b0s

(¢atTa)
2DSas[ 14-fo(a/Ri2) +0(a/Rys)*]
where Dy= (RT/M¢y) and f,=f,= (f./2)=3/4.

g =

(-3

(6.26)

The diffusion tensor for particle one (or equivalently
for particle two) may be obtained in an analagous
manner. From Eqgs. (6.23) and (6.24) one finds

(P19 (t) )p=exp[ — (fa—Ta) t][$(0)/2]
+exp[ ({atTo) ][ Pa(0)/2].  (6.27)

The definition of the diffusion tensor for particle one is

Dag® = A—;E /:" dt{{p@ () 1@ (0) ))s,  (6.28)

which leads to the result
Dﬂﬁ(l) = (ka/M) [5049;0/(?&2—1‘:12) ]= DO&QB- (629)

The important feature of this result is that the long-
range effects that appeared in the momentum relaxa-
tion of each particle cancel, leading to a single particle
diffusion constant which is unmodified by the presence
of the distant sphere to second order in ¢/R. The can-
cellation is suggested in the Langevin equations, Egs.
(6.1) and (6.2) where it can be seen that the second
particle has two compensating effects; the decrease in
the frictional force due to the second particle (T',<0)
is offset by an increase of the frictional force by an
enhancement of the direct or “self”-friction constant

(g'a > ?0) .
CONCLUDING REMARKS

It is important to mention two reservations about the
calculations just presented. The first concerns the long-
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range nature of the friction tensors. The long range
arises as a consequence of the Oseen tensor which
implies low Reynolds number flow and the neglect of
convective terms in the Navier Stokes equations. At
distances sufficiently far from a sphere, these convective
terms must be taken into account and this may well
introduce a natural cutoff in the effective range of the
hydrodynamic interaction. Oseen has presented an argu-
ment! indicating that the modifications must be intro-
duced when the Reynolds number, Re=1vap/n,, is com-
parable to (¢/Ri:). Consequently, the macroscopic
hydrodynamic calculation presented in Sec. IIT will
only be valid provided

Rex (d/.Rm)

which implies an upper limit on the interparticle dis-
tance. Presumably, at very large separations, similar
difficulties are present in the fluctuation calculation.
It should be mentioned that no precise theory exists
for dealing with the case of extremely large Ry,.

The second reservation concerns the exact cancella-
tion found in Eq. (6.29) for the single particle diffusion
tensor D,s®. The exact cancellation might not be ex-
hibited for the Langevin equation which includes the
instantaneous Ri»(#) in the friction tensors. However
a perturbation analysis, too lengthy to include here,
suggests that the cancellation will still be present. The
main conclusion, however, that the distance depend-
ence is of shorter effective range for the diffusion
tensors than for the friction tensors will not be changed.

Future work will be concerned with systems contain-
ing many heavy particles and an examination of their
hydrodynamic properties.
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